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Background

JAutoregressive LLM inference
“*Generate new tokens step by step
“*Each step’s generation relies on all the input and generated tokens

“* Attention is computed from Query, Key and Value, all derived from tokens
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Background

JKVCache: trade memory for inference efficiency
“*Cache KV vectors to eliminate redundant computations

A core component for LLM inference
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Background

dProblem: high GPU memory footprint of KVCache
‘*May exceed GPU memory capacity

“*High attention computation latency in bandwidth-bound decoding phase
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KV Cache memory footprint reduction approaches

“*KVCache offloading with sparse attention

‘*KVCache compression
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Background

This paper focuses on KVCache compression
“*How to compress KVCache?
» Combine quantization and token pruning to form a hierarchical compression strategy

‘*How to manage compressed KVCache?

» Adapt to paged KVCache, a must for industrial practices
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Insights and Challenges

1Q1: How to compress KVCache?

1Insights for KVCache compression
“*Differentiated impacts of Keys and Values
“*Differentiated token importance

‘s Differentiated attention head sparsity patterns




Insights and Challenges

Differentiated impacts of Keys and Values
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Insights and Challenges

Differentiated impacts of Keys and Values

-
Attention output is determined by:

» Attention scores (impacted by Keys)
» Norm of Values (impacted by Values)
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Insights and Challenges

Differentiated token importance
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Differentiated token importance

Insights and Challenges
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Sparsity patterns vary across requests, heads
» A dynamic, head-wise compression

strategy is required




Insights and Challenges

1Q1: How to compress KVCache?

1Insights for KVCache compression
“*Differentiated impacts of Keys and Values

» Different quantization precision for keys and values
“*Differentiated token importance

» Hierarchical compression strategy for tokens of different importance

“*Differentiated, dynamic attention head sparsity patterns

» Dynamic, head-wise compression




1Q2: How to manage compressed KVCache?

_1Challenge for adaption to paged KVCache

“*Differentiated memory layout of Keys, Values, tokens and attention heads
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“*How to design a scalable, GPU-based page management mechanism that
minimizes memory fragmentation?
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System Design

KV Compaction Policy (prefill)

“*Compute attention score

» Recent window to keep all token’s KV in window
“*Compute token significance

» Token significance is calculated by averaging the following tokens’ attention socre to it
“*Choose compaction strategies

» Alow and Ahigh are analyzed offline for each model
» For ith token, Alow and Ahigh are devided by i




KV Compaction Policy (prefill)
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System Design

JKYV Compaction Policy (prefill)
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KV Compaction Policy (prefill)
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System Design

KV Compaction Policy (decode)

Algorithm 1: KV compression policy (generation)

x1 1: Input: Parameters oy, 0;; High & low precision P, & P,
2: Input: Candidate token 7.; Sequence length N
3: Input: High & low precision KV cache KV, & KV,
x2 4: Function: Significance Score; Quantization Quant;
5. if Score(z,) > % then
X3 6: KVh.add(Quant(tc, Py))
7. 1, = argmincgy, (Score(t))
[ high precision ] 8 if % < Score(r,) < % then
x4 9: KV),.remove(t,), KV;.add(Quant(zt,, P;))
10:  else if Score(r,) < 3 then
11: KV, .remove(t,)
new KV need I8 [ low precision ] 12: endif
to compress 13: else if Score(z.) > 5 then
_ 14:  KVj.add(Quant(z., P))
x6 15: 1, = argmin,cgy,(Score(r))
window | [ pruned ] 16:  if Score (1,) < % then
(64 in paper) 17: KV,.remove(t,)
x7 18:  end if
- 19: end if
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System Design

KV Compaction Policy (decode)

Algorithm 1: KV compression policy (generation)

x1 1: Input: Parameters oy, 0;; High & low precision P, & P,
2: Input: Candidate token 7.; Sequence length N
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10:  else if Score(r,) < 3 then
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new KV need I8 [ low precision ] 12: endif
to compress 13: else if Score(z.) > 5 then
_ 14:  KVj.add(Quant(z., P))
x6 15: 1, = argmin,cgy,(Score(r))
window | pruned ] 16:  if Score (1)) < % then
(64 in paper) 17: KV,.remove(t,)
x7 18:  end if
- 19: end if




System Design

dData structure for memory management

Unified Pages

Quantized Keys
Keys metadata
Quantized Values
Values metadata
Token Position

scores

a )

GPU memory is partitioned in to:
> Six data sigments for Keys and Values

> Tokens per page vary with quantization settings

\. J




System Design

dData structure for memory management

Quantized Keys
Keys metadata
. Quantized Values

Unified Pages Values metadata
Token Position
scores

Bidirectional

Page Table

High-precision pages —

«— Low-precision pages

f

L

GPU memory is partitioned in to:
> Six data sigments for Keys and Values

> Tokens per page vary with quantization settings

f

L

Page Table for per-head and per-request:
» Avoid duplicated metadata for different precisions

» Entry size uses high-precision pages to prevent overflow

J




System Design

dData structure for memory management

Quantized Keys
Keys metadata
. Quantized Values

Unified Pages Values metadata
Token Position
scores

Bidirectional

Page Table

Circular Free
Page List
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High-precision

-precision pages
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GPU memory is partitioned in to:
> Six data sigments for Keys and Values

> Tokens per page vary with quantization settings

f
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Page Table for per-head and per-request:
» Avoid duplicated metadata for different precisions

» Entry size uses high-precision pages to prevent overflow
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Circular page list for parallel KV compaction:
» Two pointers for page allocation and recycling

» Use parallel prefix-sum to alloc and recycle
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System Design (workflow)

Request:
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Evaluation

dEvaluation Setup

*Models: Llama3-8B/70B. Qwen2.5-7B/32B . QwQ-32B. RI1-Distill-Qwen-14B., R1-
Distill-Llama-8B

‘*Device: NVIDIA L40GPU (48GB)
**Evaluation metrics: accuracy / score + throughput / latency

**Weights are stored in FP16 precision




Evaluation

Differentiated KV Compression Policy
‘»Differentiated KV Quantization
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Evaluation

Differentiated KV Compression Policy

“*Dynamic Sparsity for heads and requests
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Fraction (%) of tokens pruned

Dynamic: DiffKYV sets different pruning rate
for per-request and per-head under total
pruning rate of a static value

Static: DiffKV set same pruning rate for all
requests and heads

Dynamic always perform better than Static

when pruning rate less than 50%
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Evaluation

System Performance

Throughput normalized to vLLM
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DiffKV achieves highest throughput than

others
» Quest only compute significant attention
» SnapKYV pruns insignificant token

» Atom use 4-bit quantization

» KIVI use 2-bit quantization
\_ W,




Conclusion

JProblem:

*KYV cache dominates GPU memory; existing quantization/pruning is coarse-
grained and inefficient, limiting batch size and throughput.

1Key Findings:
*»Keys matter more than values for quality

“*Different requests, heads and tokens matter

JSolution:

‘»Differentiated KV compression (K/V mixed precision + per-head and per-
request dynamic compaction strategy)




Thank you!

Presenters: Chengru Yang, Jiawei Yi
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