

DiffKV: Differentiated Memory Management for Large Language Models with Parallel KV Compaction

Yanqi Zhang, Yuwei Hu, Runyuan Zhao, John C. S. Lui, and Haibo Chen

Presenters: Chengru Yang, Jiawei Yi

Agenda

1 Background

2 Insights and Challenges

3 System Design

4 Evaluation and Conclusion

Agenda

1

Background

2

Insights and Challenges

3

System Design

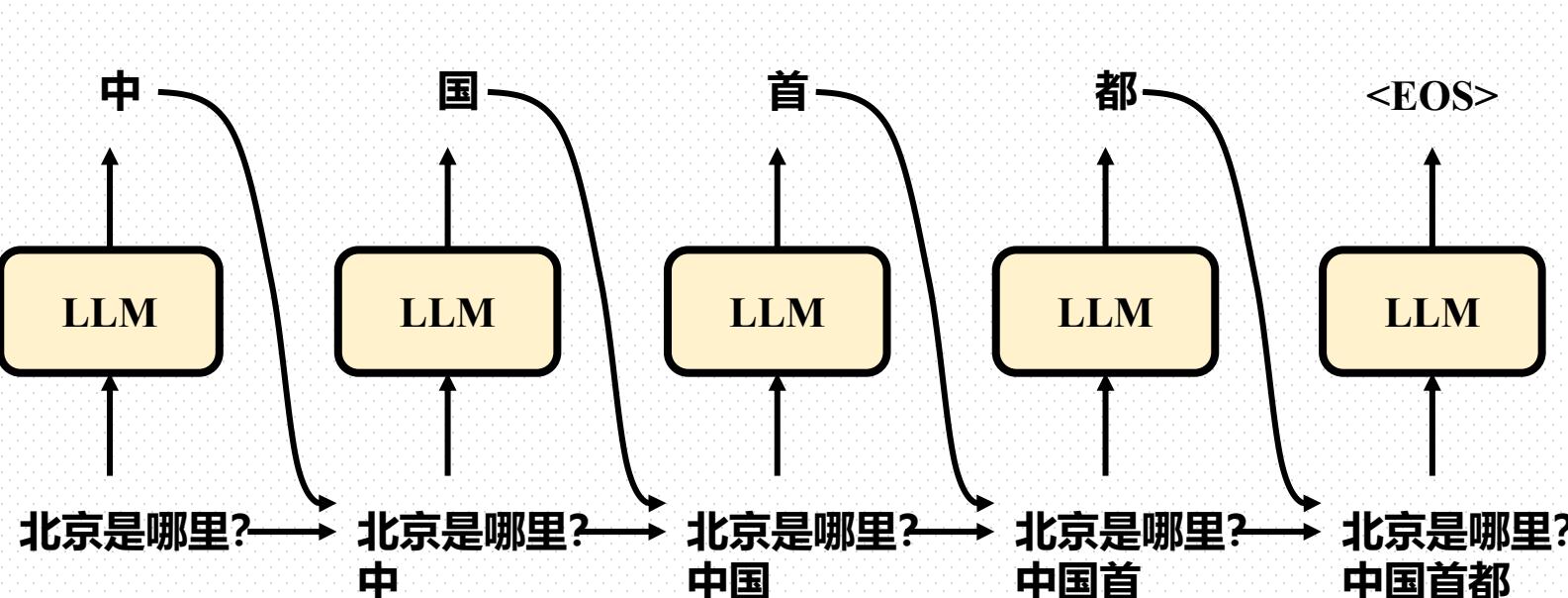
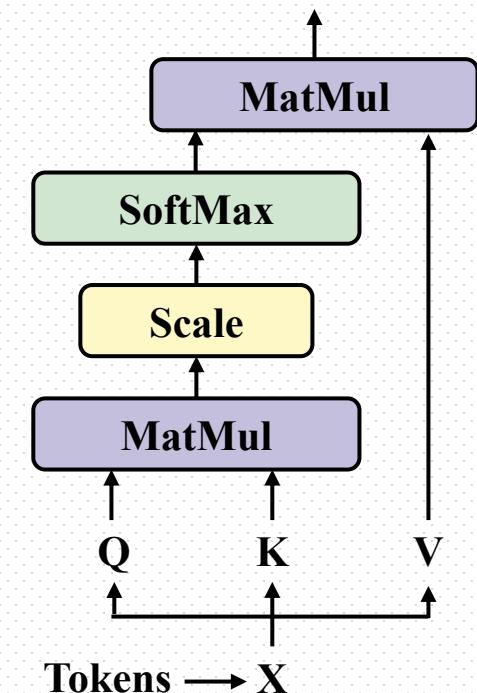
4

Evaluation and Conclusion

Background

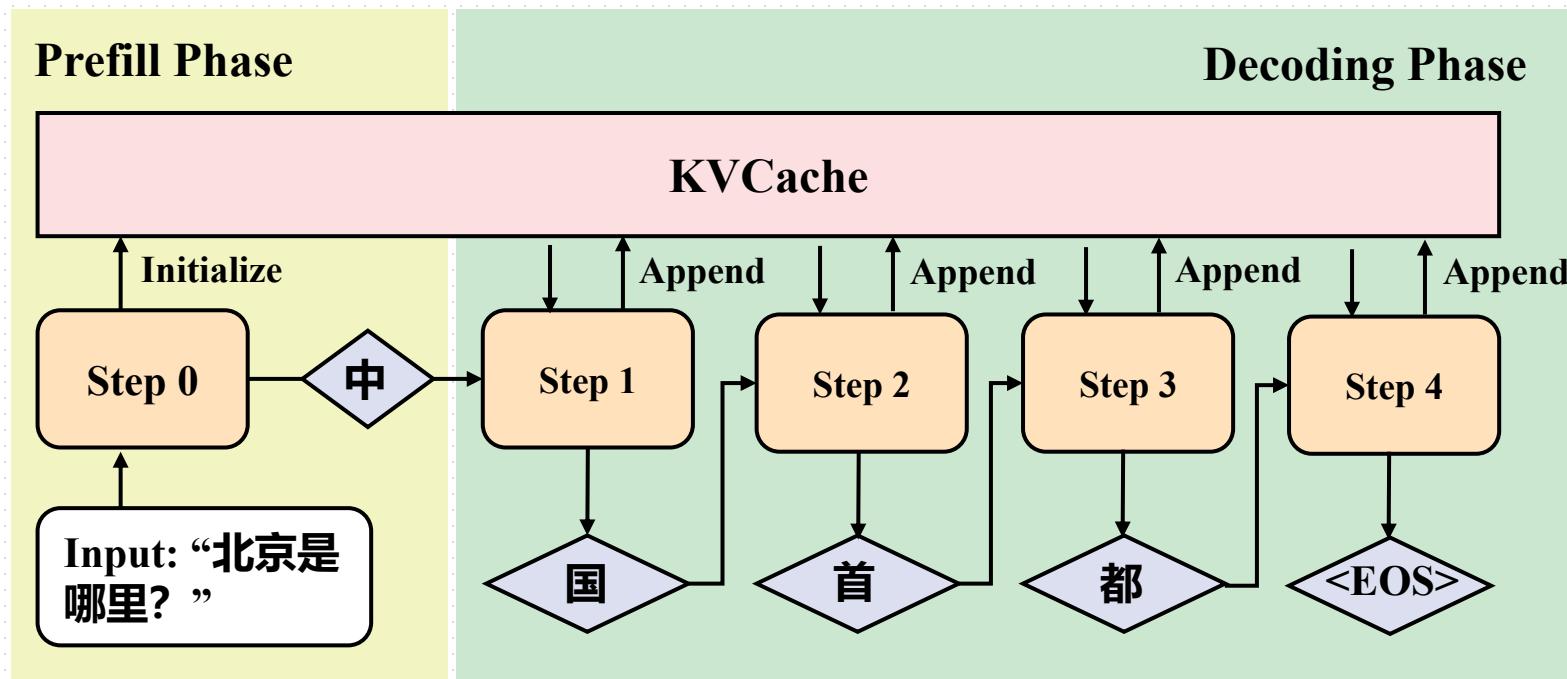
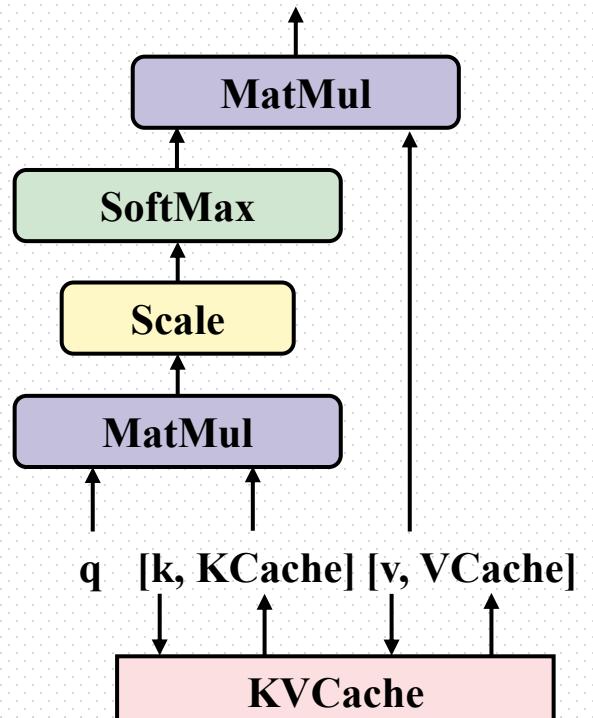
□ Autoregressive LLM inference

- ❖ Generate new tokens step by step
- ❖ Each step's generation relies on all the input and generated tokens
- ❖ Attention is computed from Query, Key and Value, all derived from tokens



Background

- **KVCache: trade memory for inference efficiency**
 - ❖ Cache KV vectors to eliminate redundant computations
 - ❖ A core component for LLM inference

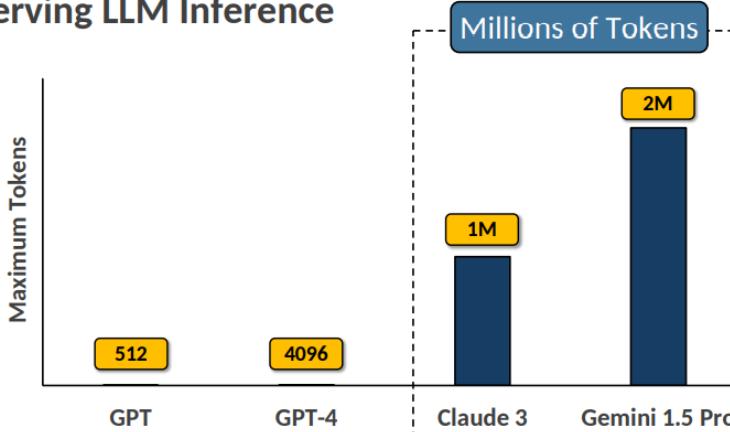


Background

□ Problem: high GPU memory footprint of KVCache

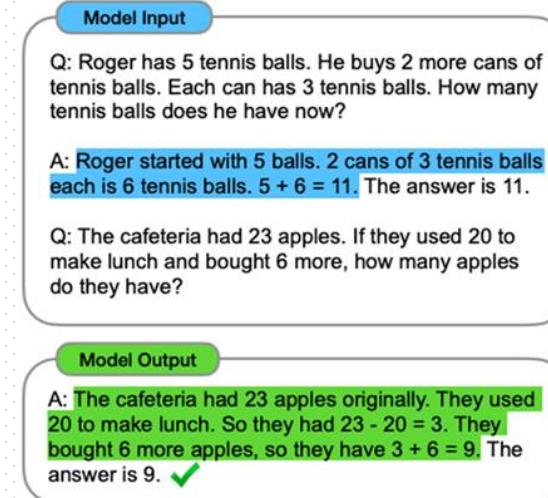
- ❖ May exceed GPU memory capacity
- ❖ High attention computation latency in bandwidth-bound decoding phase

Serving LLM Inference



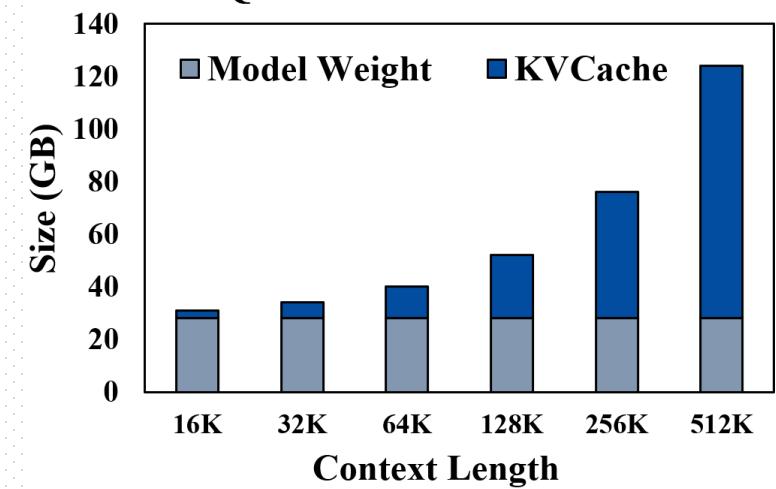
Longer context window

Chain-of-Thought Prompting



Longer model outputs

Qwen2.5-14B-1M-Instruct

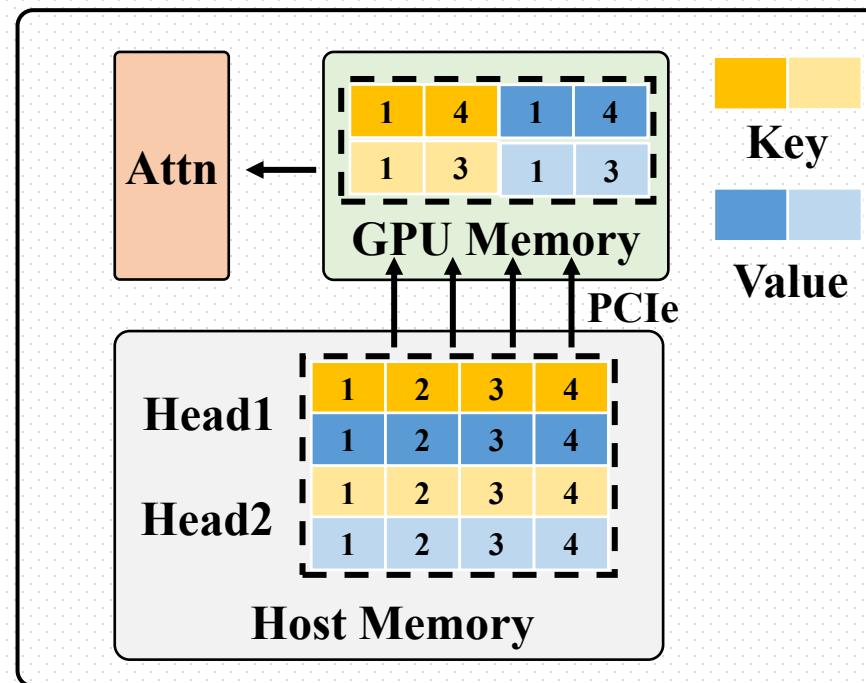


KVCache scales linearly with #tokens

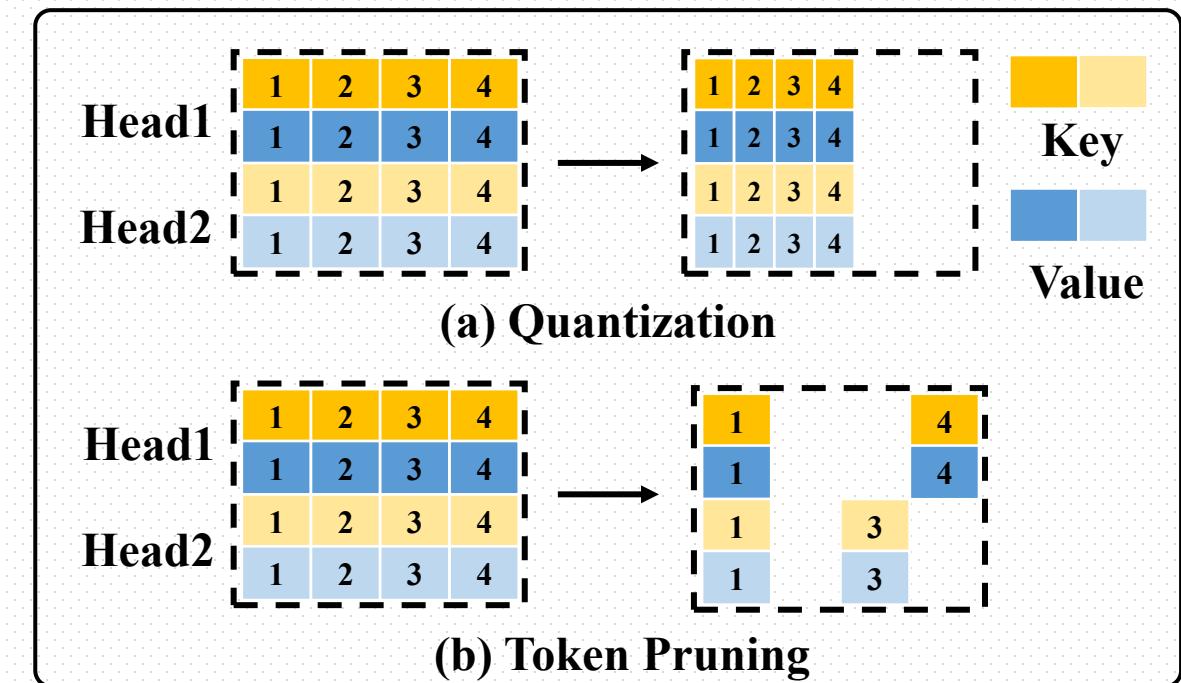
Background

❑ KVCache memory footprint reduction approaches

- ❖ KVCache offloading with sparse attention
- ❖ KVCache compression



Offloading + Sparse attention



Compression

Background

- ❑ This paper focuses on **KVCache compression**
 - ❖ How to compress KVCache?
 - Combine **quantization** and **token pruning** to form a **hierarchical compression strategy**
 - ❖ How to manage compressed KVCache?
 - Adapt to **paged KVCache**, a must for industrial practices

Agenda

Background

Insights and Challenges

System Design

Evaluation and Conclusion

Insights and Challenges

- ❑ Q1: How to compress KVCache?
- ❑ Insights for KVCache compression
 - ❖ Differentiated impacts of Keys and Values
 - ❖ Differentiated token importance
 - ❖ Differentiated attention head sparsity patterns

Insights and Challenges

□ Differentiated impacts of Keys and Values

$$\text{Attn}(Q, K, V)_i = \underbrace{\sum_{j=1}^i \text{softmax} \left(\frac{QK^\top}{\sqrt{d}} \right)_{ij} |v_j|}_{\text{Coefficient}} \underbrace{\frac{v_j}{|v_j|}}_{\text{Unit vector}}$$

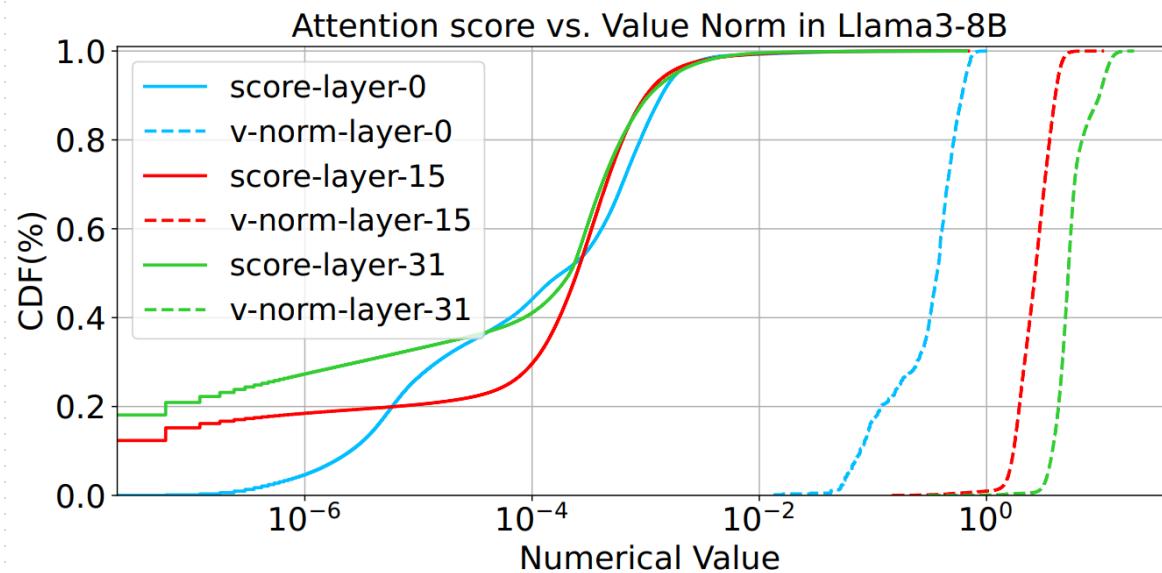
Attention output is determined by:

- **Attention scores (impacted by Keys)**
- **Norm of Values (impacted by Values)**

Insights and Challenges

□ Differentiated impacts of Keys and Values

$$\text{Attn}(Q, K, V)_i = \underbrace{\sum_{j=1}^i \text{softmax} \left(\frac{QK^T}{\sqrt{d}} \right)_{ij} |v_j|}_{\text{Coefficient}} \underbrace{\frac{v_j}{|v_j|}}_{\text{Unit vector}}$$



Attention output is determined by:

- Attention scores (impacted by Keys)
- Norm of Values (impacted by Values)

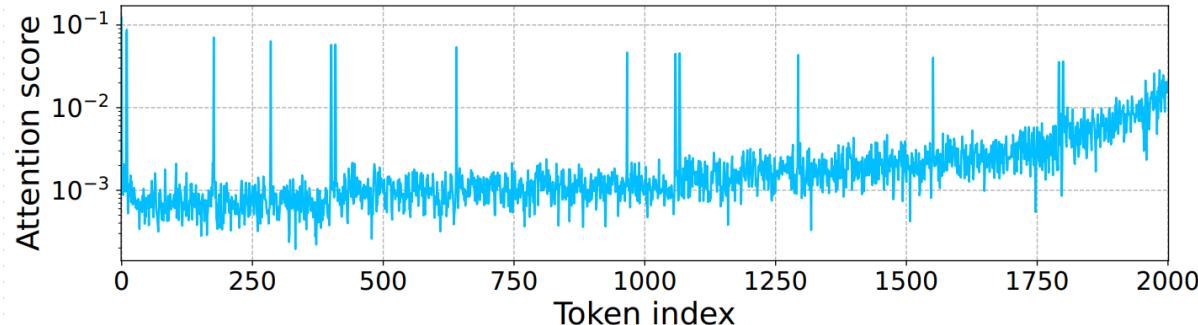
➤ Attention scores spans from 10^{-8} to 10^0

➤ V-norm spans only from 10^{-2} to 10^1

Higher quantization precision for Keys!

Insights and Challenges

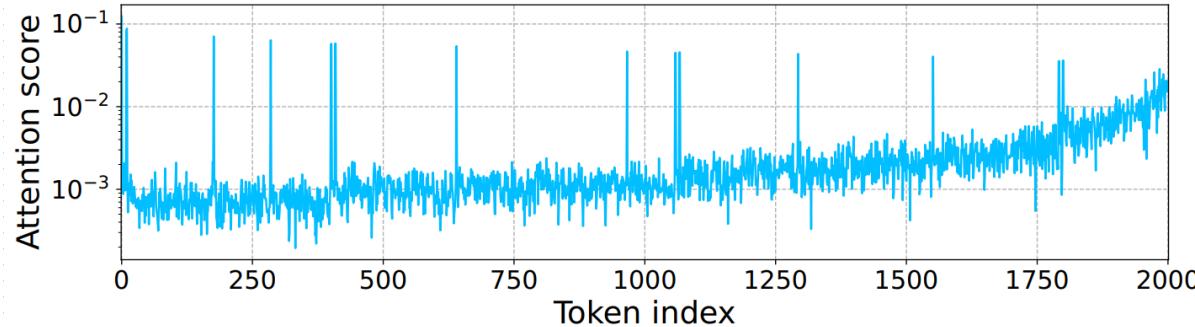
□ Differentiated token importance



- High precision for the critical ones
- Low precision for less-critical ones
- Pruning for the least-critical ones

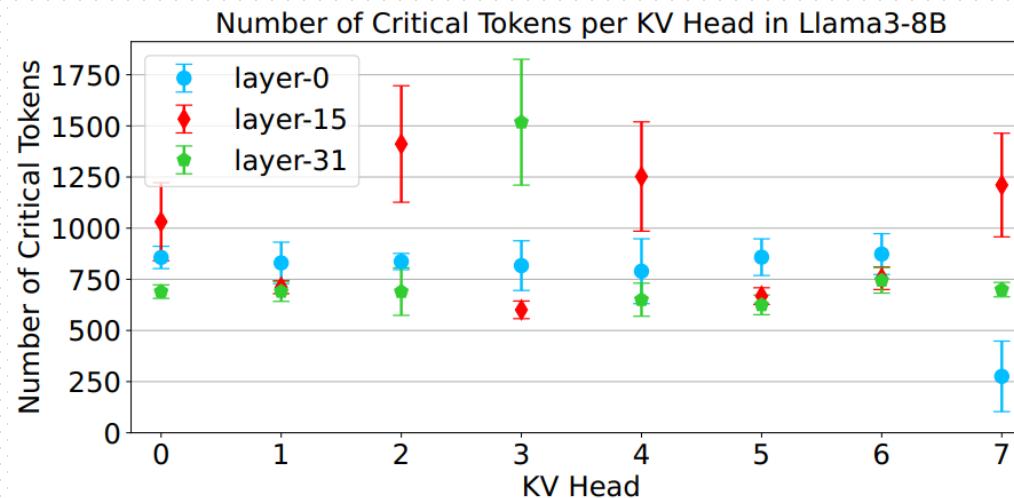
Insights and Challenges

□ Differentiated token importance



- High precision for the critical ones
- Low precision for less-critical ones
- Pruning for the least-critical ones

□ Differentiated, dynamic attention head sparsity patterns



Sparsity patterns vary across requests, heads

- A dynamic, head-wise compression strategy is required

Insights and Challenges

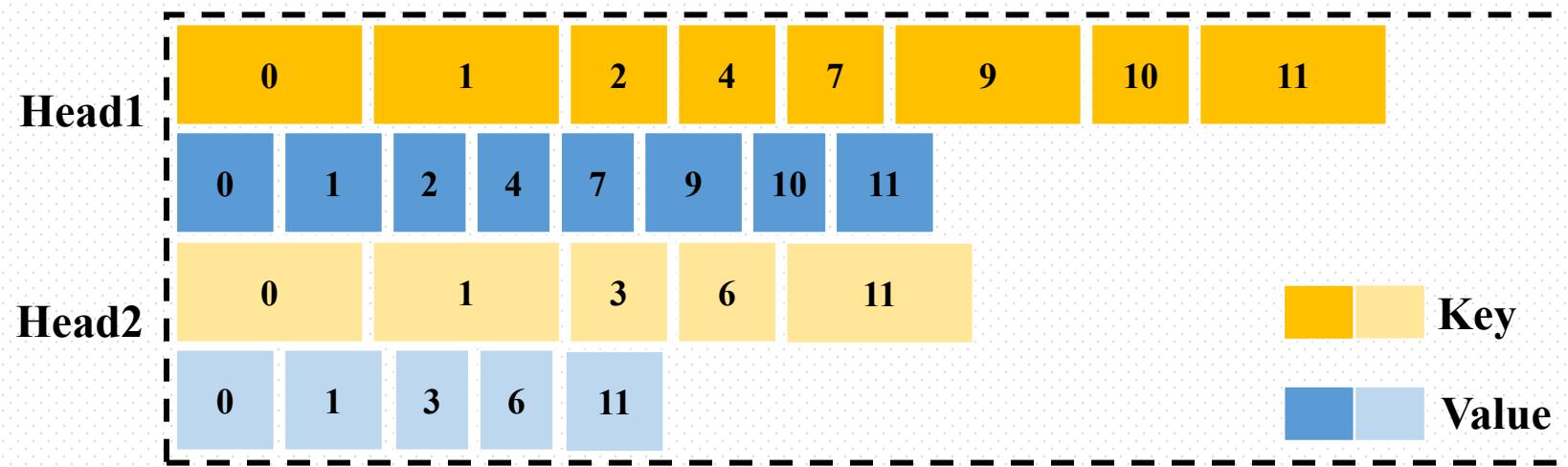
- ❑ Q1: How to compress KVCache?
- ❑ Insights for KVCache compression
 - ❖ Differentiated impacts of Keys and Values
 - **Different quantization precision** for keys and values
 - ❖ Differentiated token importance
 - **Hierarchical** compression strategy for tokens of different importance
 - ❖ Differentiated, dynamic attention head sparsity patterns
 - **Dynamic, head-wise** compression

Insights and Challenges

□ Q2: How to manage compressed KVCache?

□ Challenge for adaption to **paged KVCache**

❖ Differentiated memory layout of Keys, Values, tokens and attention heads



❖ How to design a **scalable, GPU-based** page management mechanism that **minimizes memory fragmentation?**

Agenda

Background

Insights and Challenges

System Design

Evaluation and Conclusion

System Design

❑ KV Compaction Policy (prefill)

❖ Compute attention score

- Recent window to keep all token's KV in window

❖ Compute token significance

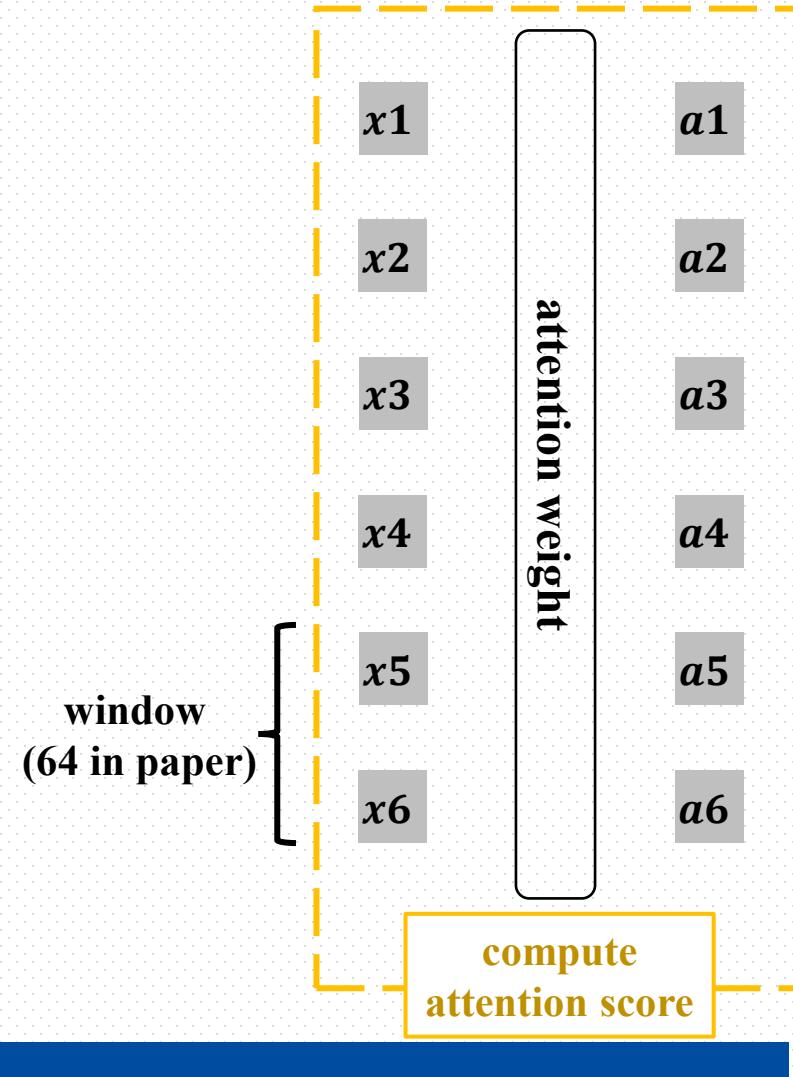
- Token significance is calculated by averaging the following tokens' attention score to it

❖ Choose compaction strategies

- A_{low} and A_{high} are analyzed offline for each model
- For i th token, A_{low} and A_{high} are divided by i

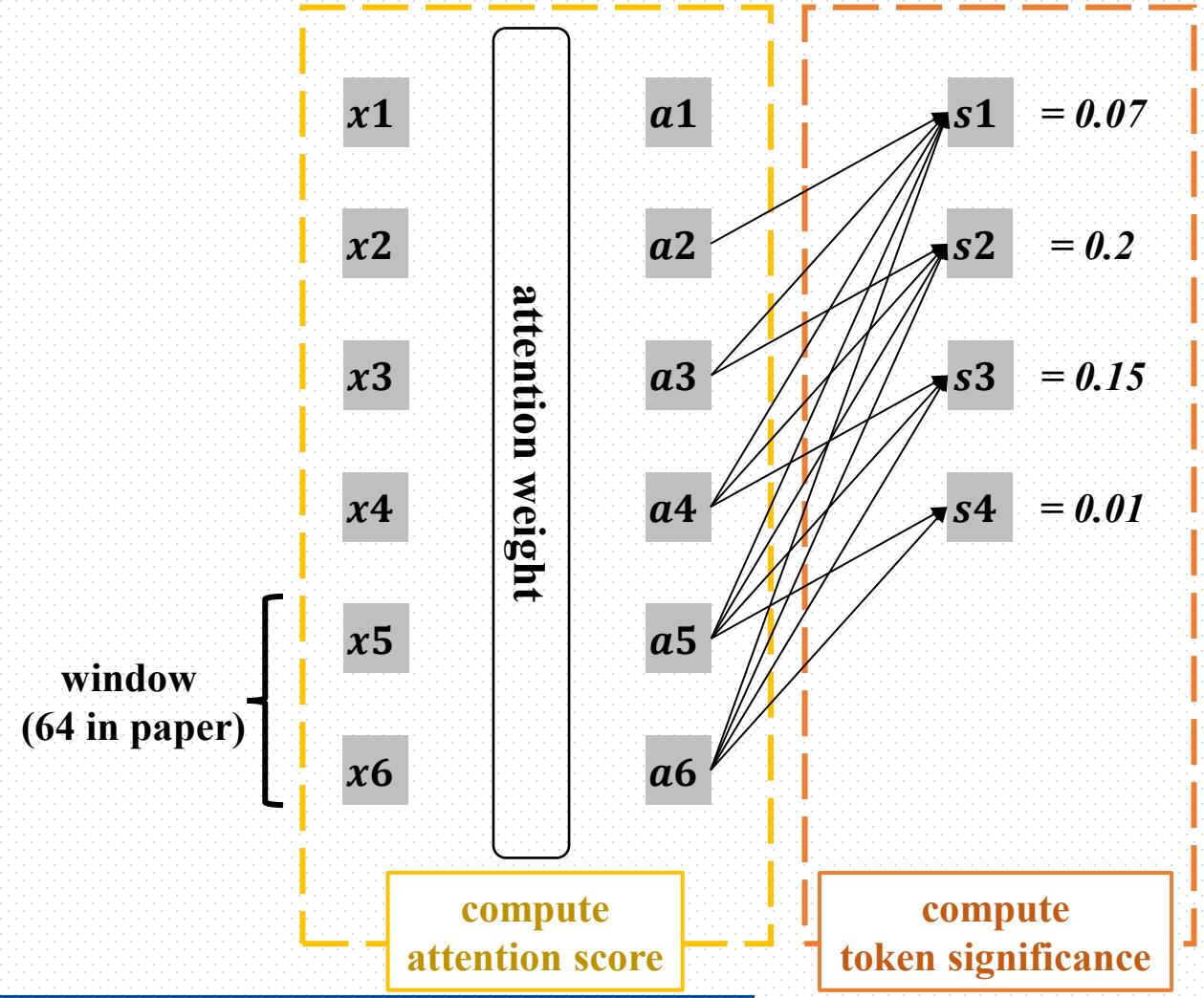
System Design

❑ KV Compaction Policy (prefill)



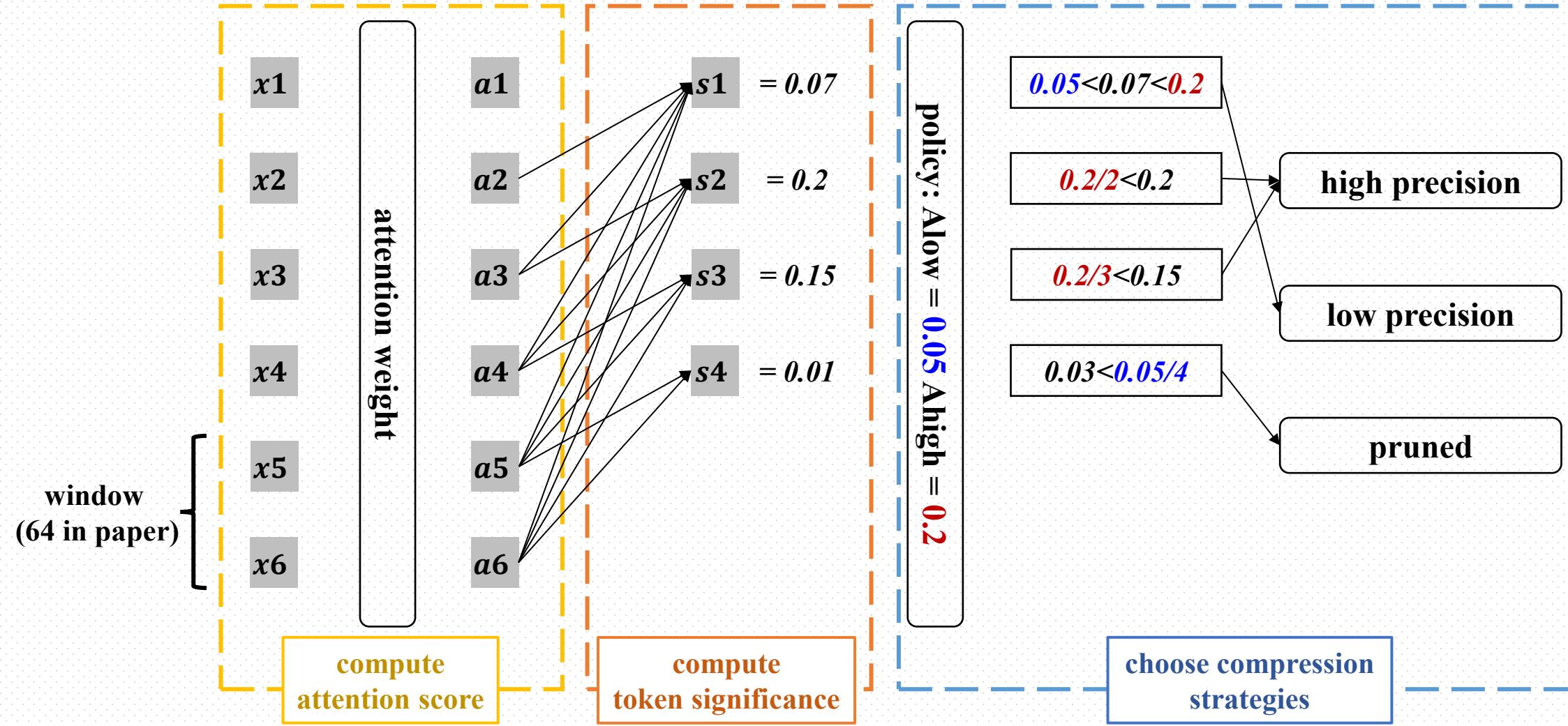
System Design

❑ KV Compaction Policy (prefill)



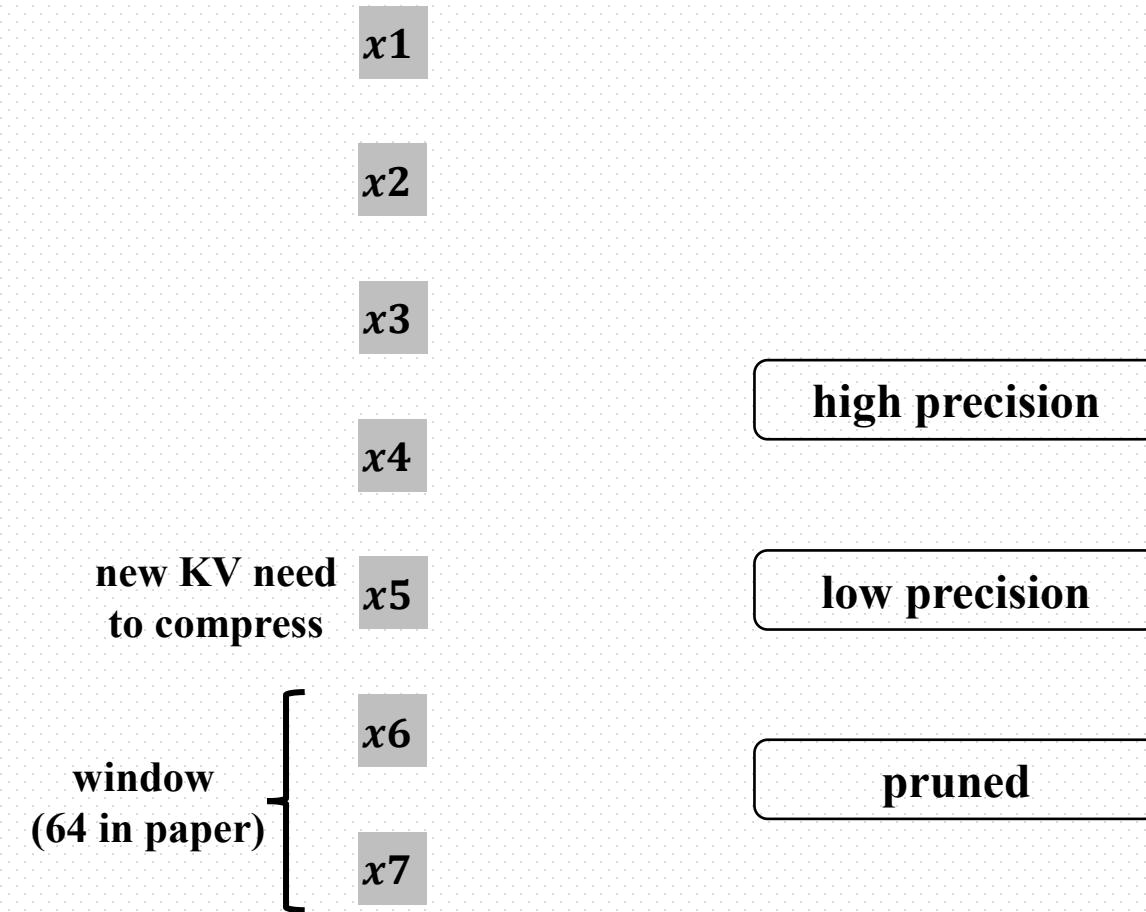
System Design

❑ KV Compaction Policy (prefill)



System Design

❑ KV Compaction Policy (decode)



Algorithm 1: KV compression policy (generation)

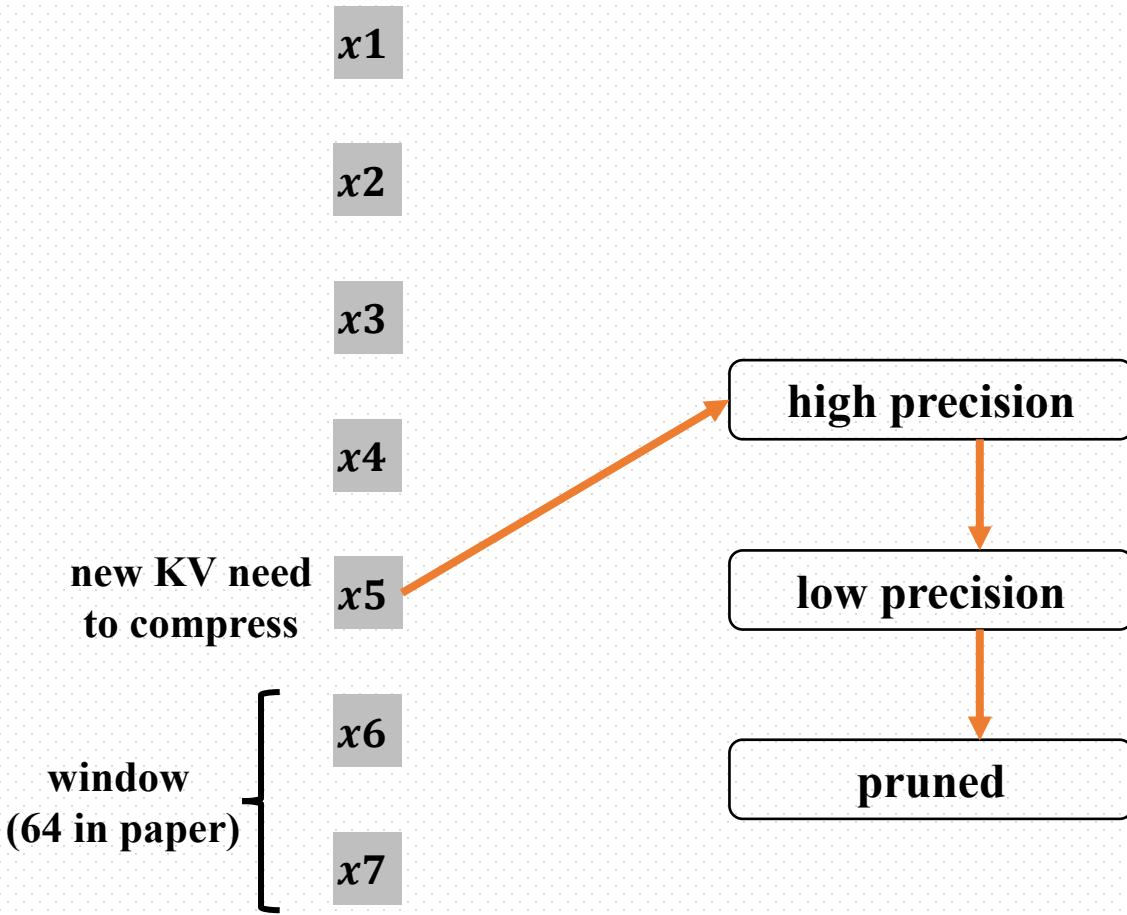
```

1: Input: Parameters  $\alpha_h, \alpha_l$ ; High & low precision  $P_h$  &  $P_l$ 
2: Input: Candidate token  $t_c$ ; Sequence length  $N$ 
3: Input: High & low precision KV cache  $KV_h$  &  $KV_l$ 
4: Function: Significance Score; Quantization Quant;
5: if  $\text{Score}(t_c) \geq \frac{\alpha_h}{N}$  then
6:    $KV_h.\text{add}(\text{Quant}(t_c, P_h))$ 
7:    $t_v = \text{argmin}_{t \in KV_h} (\text{Score}(t))$ 
8:   if  $\frac{\alpha_l}{N} \leq \text{Score}(t_v) < \frac{\alpha_h}{N}$  then
9:      $KV_h.\text{remove}(t_v)$ ,  $KV_l.\text{add}(\text{Quant}(t_v, P_l))$ 
10:   else if  $\text{Score}(t_v) < \frac{\alpha_l}{N}$  then
11:      $KV_h.\text{remove}(t_v)$ 
12:   end if
13:   else if  $\text{Score}(t_c) \geq \frac{\alpha_l}{N}$  then
14:      $KV_l.\text{add}(\text{Quant}(t_c, P_l))$ 
15:      $t_v = \text{argmin}_{t \in KV_l} (\text{Score}(t))$ 
16:     if  $\text{Score}(t_v) < \frac{\alpha_l}{N}$  then
17:        $KV_l.\text{remove}(t_v)$ 
18:     end if
19:   end if

```

System Design

❑ KV Compaction Policy (decode)



Algorithm 1: KV compression policy (generation)

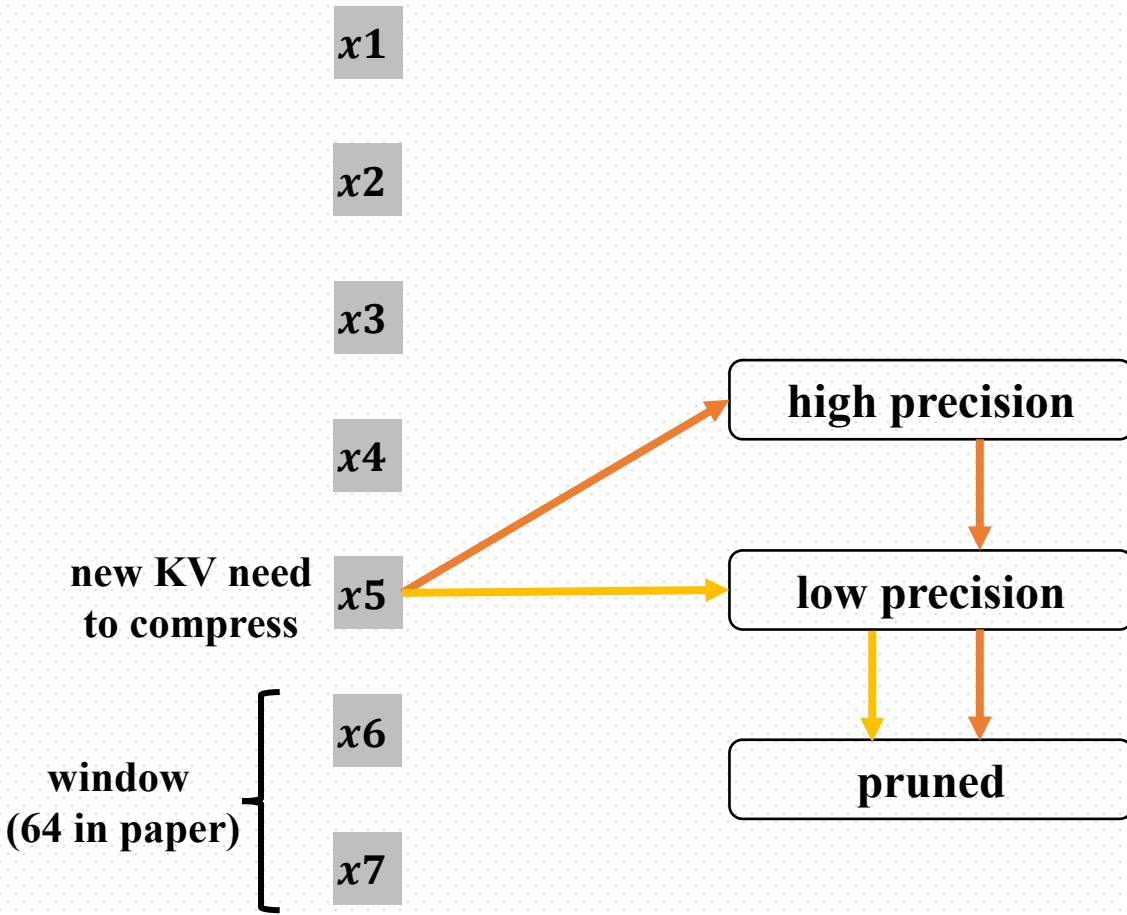
```

1: Input: Parameters  $\alpha_h, \alpha_l$ ; High & low precision  $P_h$  &  $P_l$ 
2: Input: Candidate token  $t_c$ ; Sequence length  $N$ 
3: Input: High & low precision KV cache  $KV_h$  &  $KV_l$ 
4: Function: Significance Score; Quantization Quant;
5: if  $\text{Score}(t_c) \geq \frac{\alpha_h}{N}$  then
6:    $KV_h.\text{add}(\text{Quant}(t_c, P_h))$ 
7:    $t_v = \text{argmin}_{t \in KV_h} (\text{Score}(t))$ 
8:   if  $\frac{\alpha_l}{N} \leq \text{Score}(t_v) < \frac{\alpha_h}{N}$  then
9:      $KV_h.\text{remove}(t_v)$ ,  $KV_l.\text{add}(\text{Quant}(t_v, P_l))$ 
10:   else if  $\text{Score}(t_v) < \frac{\alpha_l}{N}$  then
11:      $KV_h.\text{remove}(t_v)$ 
12:   end if
13: else if  $\text{Score}(t_c) \geq \frac{\alpha_l}{N}$  then
14:    $KV_l.\text{add}(\text{Quant}(t_c, P_l))$ 
15:    $t_v = \text{argmin}_{t \in KV_l} (\text{Score}(t))$ 
16:   if  $\text{Score}(t_v) < \frac{\alpha_l}{N}$  then
17:      $KV_l.\text{remove}(t_v)$ 
18:   end if
19: end if

```

System Design

❑ KV Compaction Policy (decode)



Algorithm 1: KV compression policy (generation)

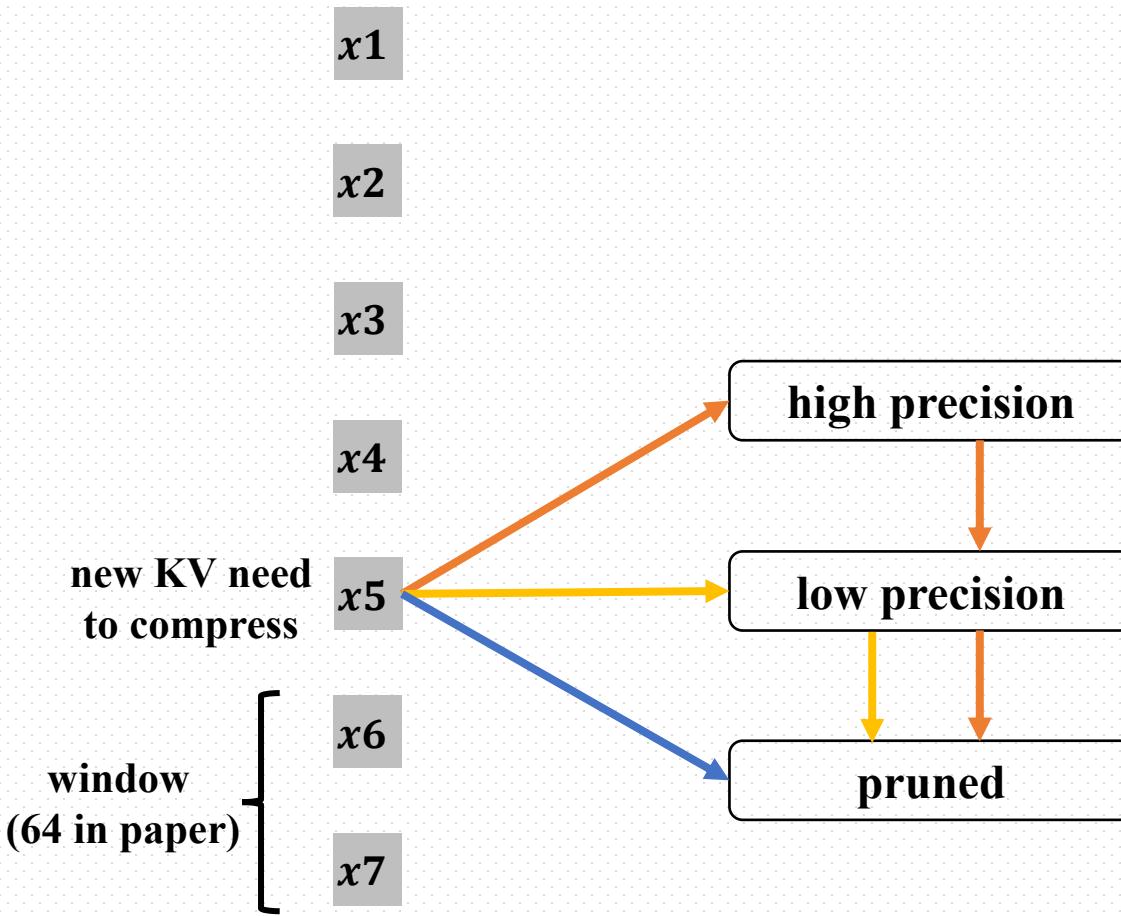
```

1: Input: Parameters  $\alpha_h, \alpha_l$ ; High & low precision  $P_h$  &  $P_l$ 
2: Input: Candidate token  $t_c$ ; Sequence length  $N$ 
3: Input: High & low precision KV cache  $KV_h$  &  $KV_l$ 
4: Function: Significance Score; Quantization Quant;
5: if  $\text{Score}(t_c) \geq \frac{\alpha_h}{N}$  then
6:    $KV_h.\text{add}(\text{Quant}(t_c, P_h))$ 
7:    $t_v = \text{argmin}_{t \in KV_h} (\text{Score}(t))$ 
8:   if  $\frac{\alpha_l}{N} \leq \text{Score}(t_v) < \frac{\alpha_h}{N}$  then
9:      $KV_h.\text{remove}(t_v)$ ,  $KV_l.\text{add}(\text{Quant}(t_v, P_l))$ 
10:   else if  $\text{Score}(t_v) < \frac{\alpha_l}{N}$  then
11:      $KV_h.\text{remove}(t_v)$ 
12:   end if
13: else if  $\text{Score}(t_c) \geq \frac{\alpha_l}{N}$  then
14:    $KV_l.\text{add}(\text{Quant}(t_c, P_l))$ 
15:    $t_v = \text{argmin}_{t \in KV_l} (\text{Score}(t))$ 
16:   if  $\text{Score}(t_v) < \frac{\alpha_l}{N}$  then
17:      $KV_l.\text{remove}(t_v)$ 
18:   end if
19: end if

```

System Design

❑ KV Compaction Policy (decode)



Algorithm 1: KV compression policy (generation)

```

1: Input: Parameters  $\alpha_h, \alpha_l$ ; High & low precision  $P_h$  &  $P_l$ 
2: Input: Candidate token  $t_c$ ; Sequence length  $N$ 
3: Input: High & low precision KV cache  $KV_h$  &  $KV_l$ 
4: Function: Significance Score; Quantization Quant;
5: if  $\text{Score}(t_c) \geq \frac{\alpha_h}{N}$  then
6:    $KV_h.\text{add}(\text{Quant}(t_c, P_h))$ 
7:    $t_v = \text{argmin}_{t \in KV_h} (\text{Score}(t))$ 
8:   if  $\frac{\alpha_l}{N} \leq \text{Score}(t_v) < \frac{\alpha_h}{N}$  then
9:      $KV_h.\text{remove}(t_v)$ ,  $KV_l.\text{add}(\text{Quant}(t_v, P_l))$ 
10:   else if  $\text{Score}(t_v) < \frac{\alpha_l}{N}$  then
11:      $KV_h.\text{remove}(t_v)$ 
12:   end if
13: else if  $\text{Score}(t_c) \geq \frac{\alpha_l}{N}$  then
14:    $KV_l.\text{add}(\text{Quant}(t_c, P_l))$ 
15:    $t_v = \text{argmin}_{t \in KV_l} (\text{Score}(t))$ 
16:   if  $\text{Score}(t_v) < \frac{\alpha_l}{N}$  then
17:      $KV_l.\text{remove}(t_v)$ 
18:   end if
19: end if

```

System Design

□ Data structure for memory management

Unified Pages

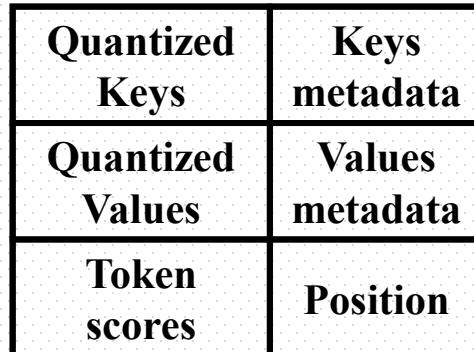
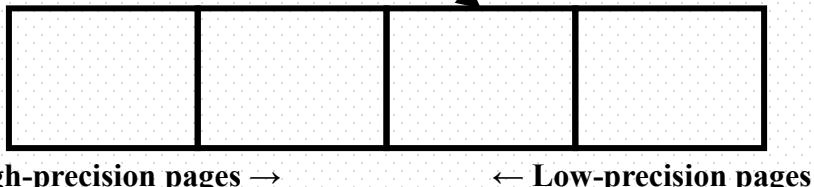
Quantized Keys	Keys metadata
Quantized Values	Values metadata
Token scores	Position

GPU memory is partitioned in to:

- Six data segments for Keys and Values
- Tokens per page vary with quantization settings

System Design

□ Data structure for memory management



GPU memory is partitioned in to:

- Six data segments for Keys and Values
- Tokens per page vary with quantization settings

Page Table for per-head and per-request:

- Avoid duplicated metadata for different precisions
- Entry size uses high-precision pages to prevent overflow

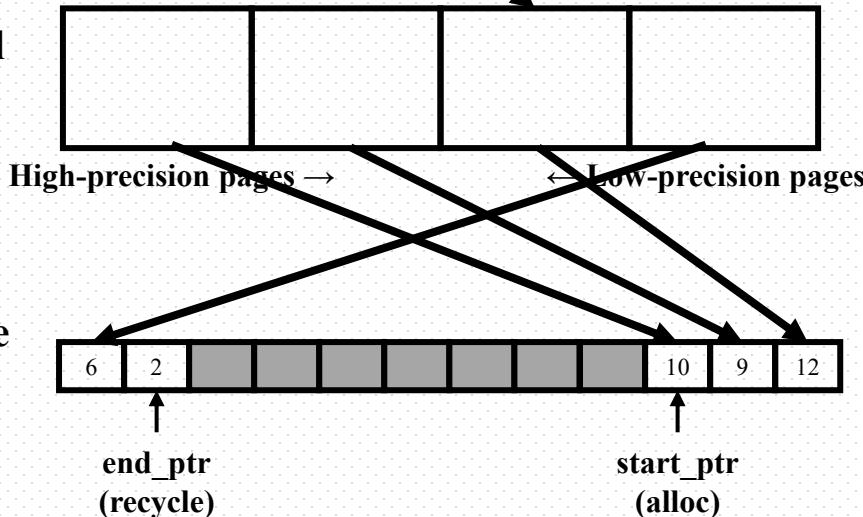
System Design

□ Data structure for memory management

Unified Pages

Quantized Keys	Keys metadata
Quantized Values	Values metadata
Token scores	Position

Bidirectional Page Table



Circular Free Page List

GPU memory is partitioned in to:

- Six data segments for Keys and Values
- Tokens per page vary with quantization settings

Page Table for per-head and per-request:

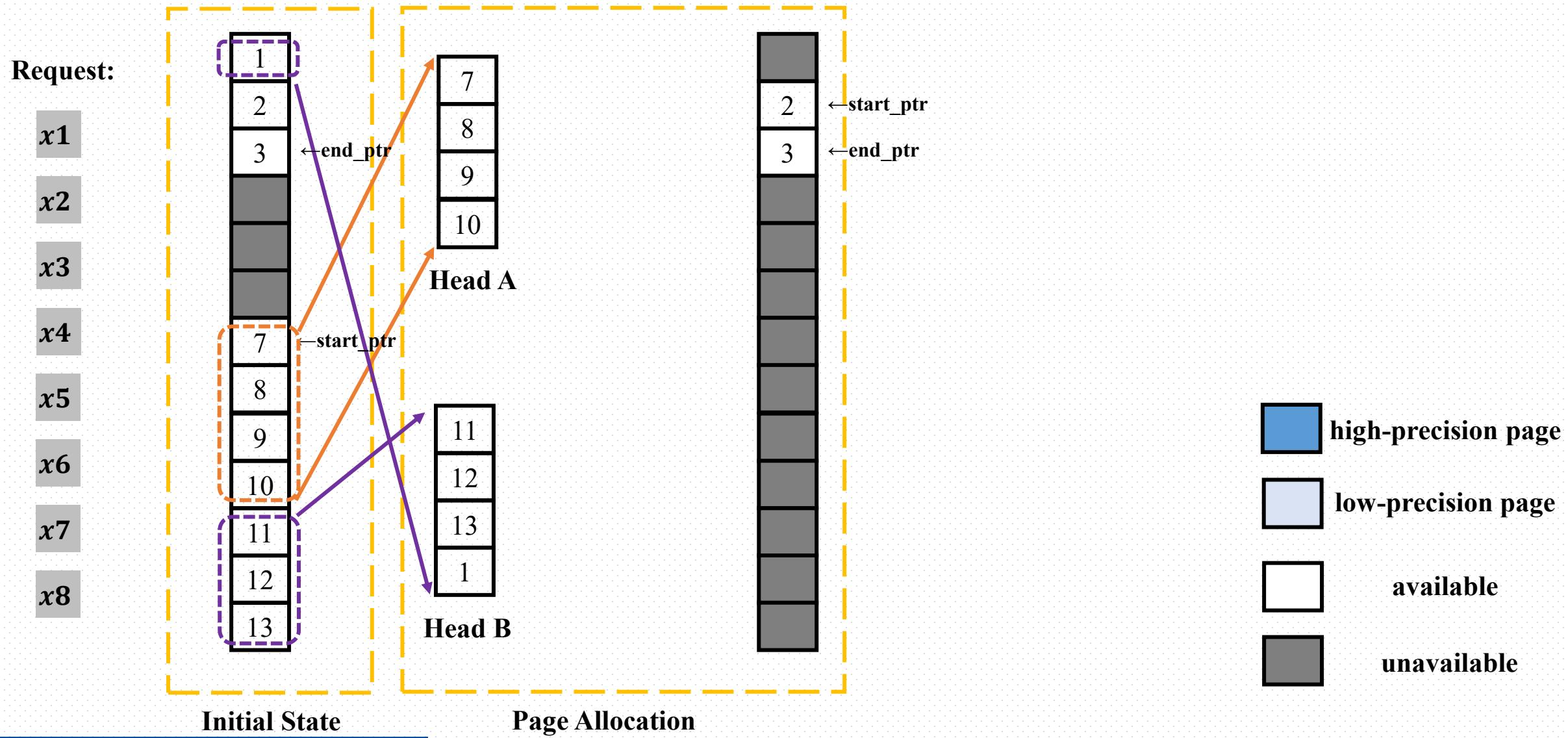
- Avoid duplicated metadata for different precisions
- Entry size uses high-precision pages to prevent overflow

Circular page list for parallel KV compaction:

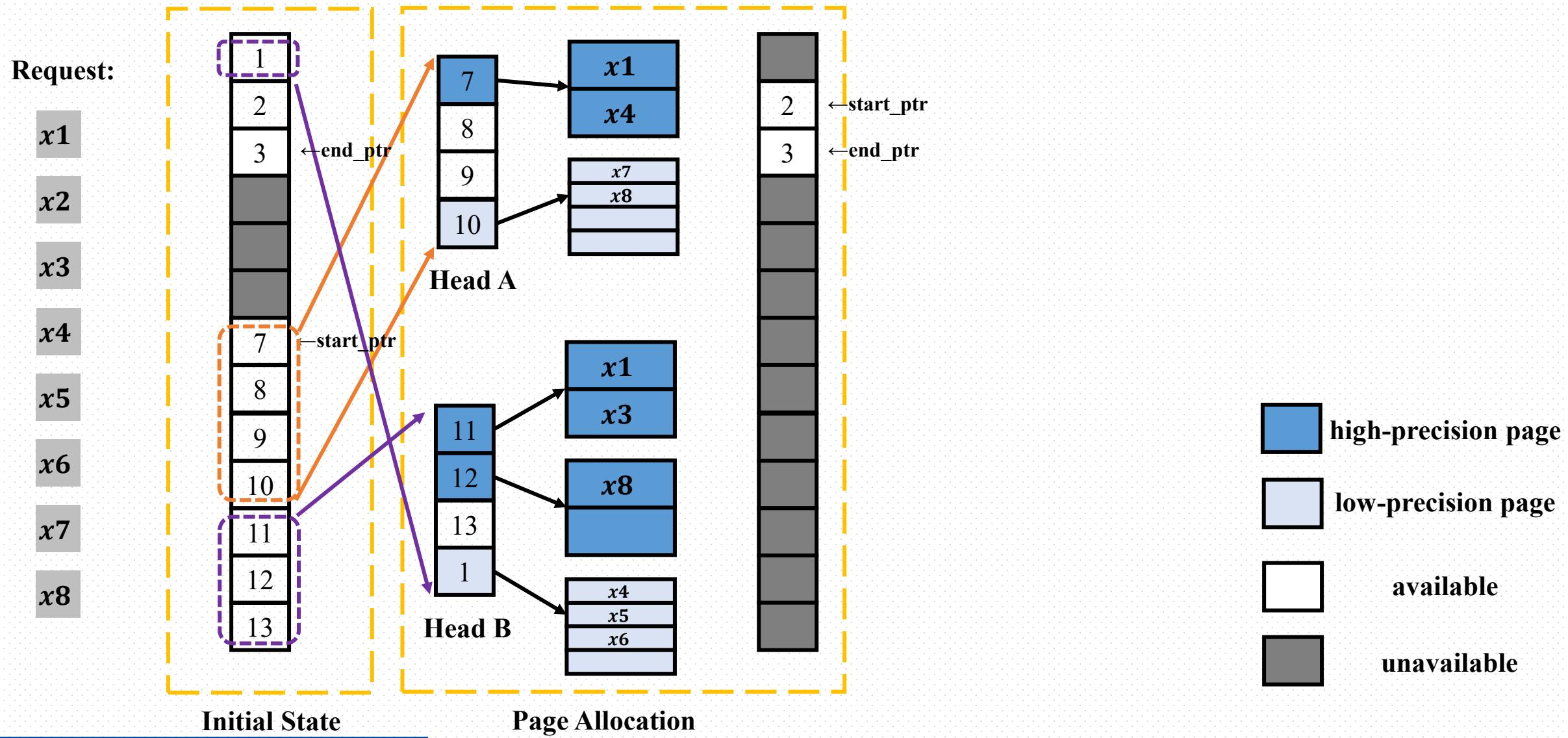
- Two pointers for page allocation and recycling
- Use parallel prefix-sum to alloc and recycle

System Design (workflow)

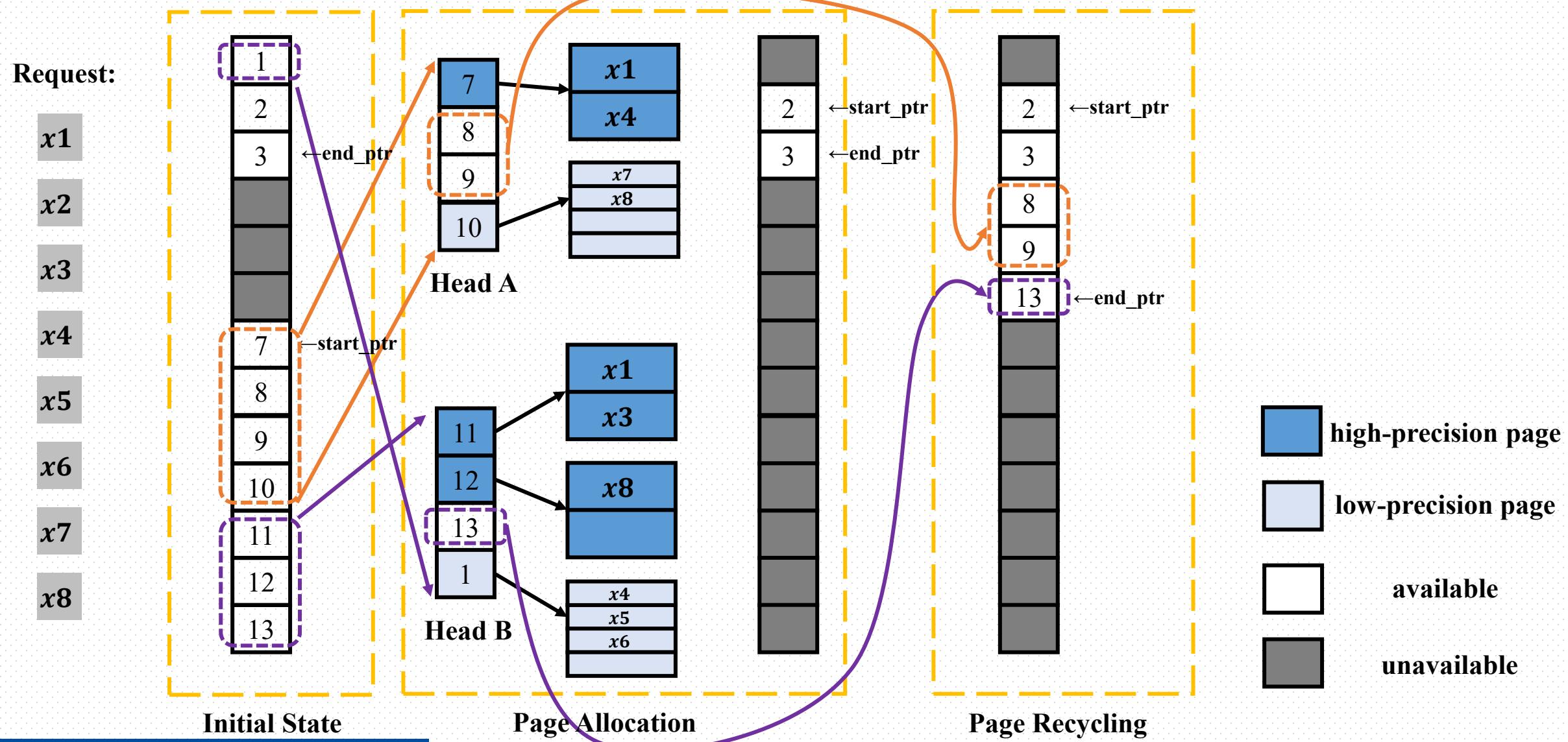
System Design (workflow)



System Design (workflow)



System Design (workflow)



Agenda

Background

Insights and Challenges

System Design

Evaluation and Conclusion

Evaluation

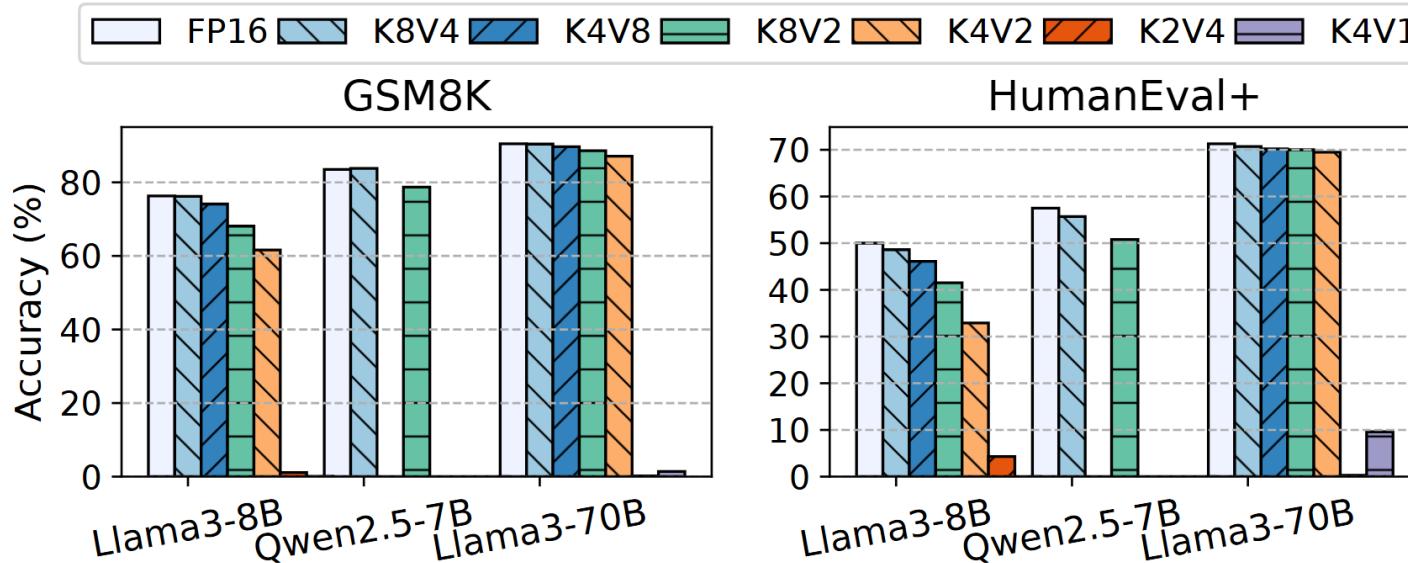
□ Evaluation Setup

- ❖ **Models:** Llama3-8B/70B、Qwen2.5-7B/32B、QwQ-32B、R1-Distill-Qwen-14B、R1-Distill-Llama-8B
- ❖ **Device:** NVIDIA L40GPU (48GB)
- ❖ **Evaluation metrics:** accuracy / score + throughput / latency
- ❖ **Weights are stored in FP16 precision**

Evaluation

□ Differentiated KV Compression Policy

❖ Differentiated KV Quantization



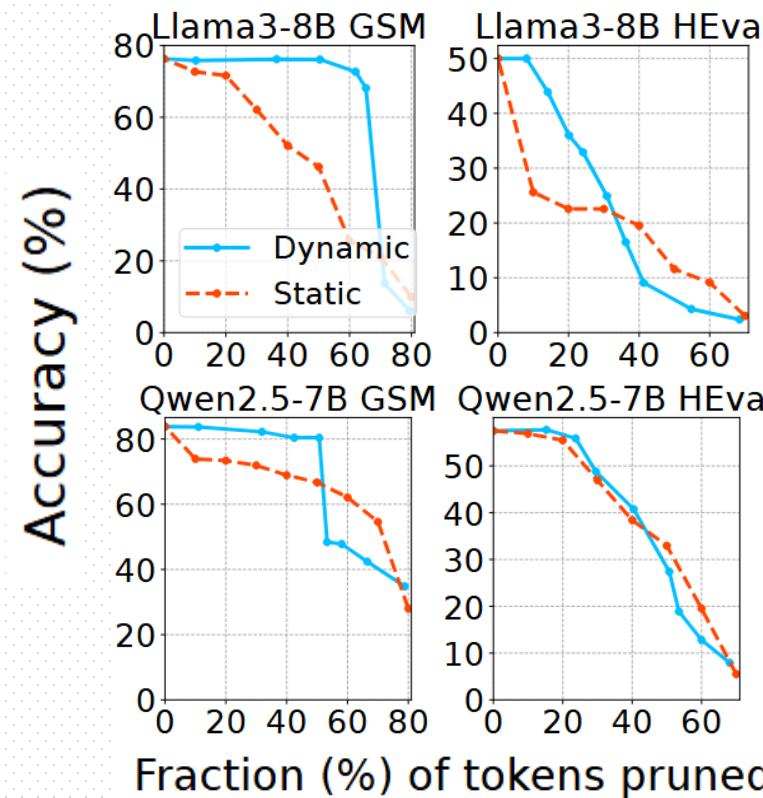
- **K8V4 \approx FP16**
- **K8V4 $>$ K4V8 (Qwen2.5-7B)**
- **K4V2 can keep some acc**
- **Lower bound for V is 2 bit**

Choose K8V4 for high precision
K4V2 for low precision

Evaluation

□ Differentiated KV Compression Policy

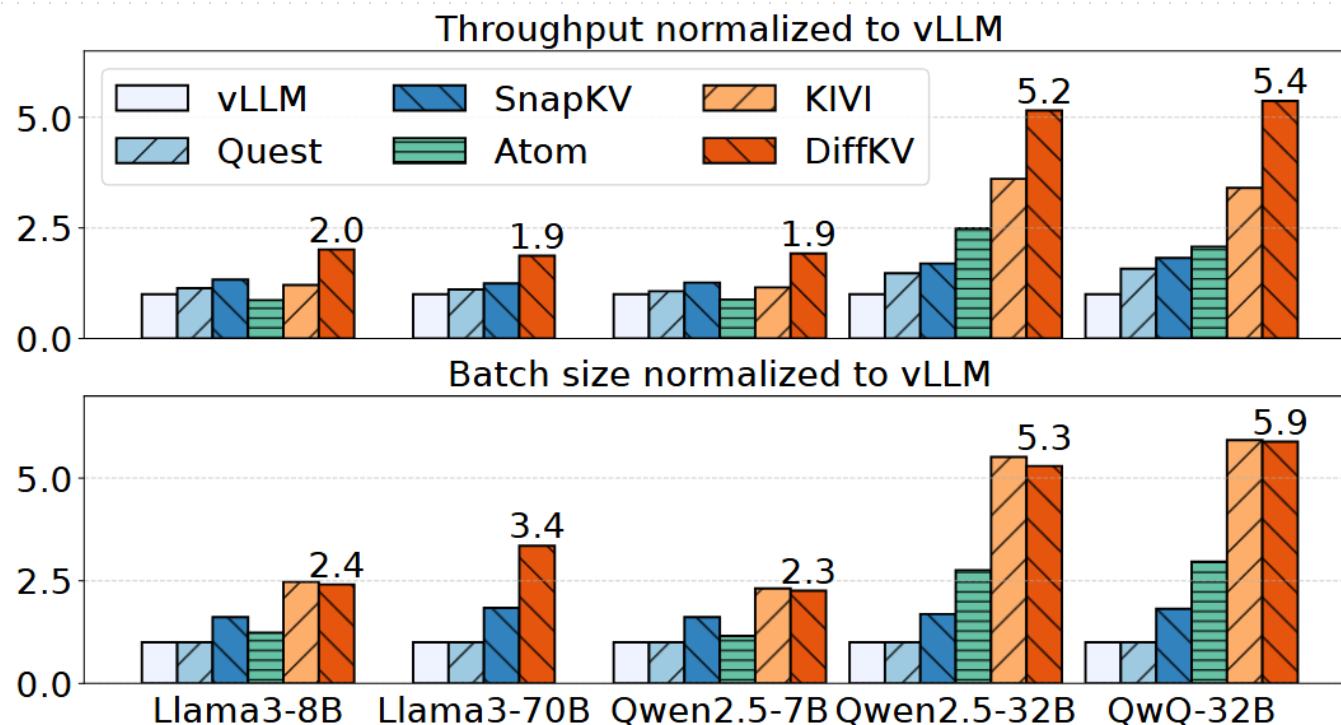
❖ Dynamic Sparsity for heads and requests



- **Dynamic: DiffKV sets different pruning rate for per-request and per-head under total pruning rate of a static value**
- **Static: DiffKV set same pruning rate for all requests and heads**
- **Dynamic always perform better than Static when pruning rate less than 50%**

Evaluation

System Performance



DiffKV achieves highest throughput than others

- **Quest** only compute significant attention
- **SnapKV** prunes insignificant token
- **Atom** use 4-bit quantization
- **KIVI** use 2-bit quantization

Conclusion

□ Problem:

- ❖ KV cache dominates GPU memory; existing quantization/pruning is coarse-grained and inefficient, limiting batch size and throughput.

□ Key Findings:

- ❖ Keys matter more than values for quality
- ❖ Different requests, heads and tokens matter

□ Solution:

- ❖ Differentiated KV compression (K/V mixed precision + per-head and per-request dynamic compaction strategy)

Thank you!

Presenters: Chengru Yang, Jiawei Yi