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Background

❑Autoregressive LLM inference

❖Generate new tokens step by step

❖Each step’s generation relies on all the input and generated tokens

❖Attention is computed from Query, Key and Value, all derived from tokens
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Background

❑KVCache: trade memory for inference efficiency

❖Cache KV vectors to eliminate redundant computations

❖A core component for LLM inference
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Background

❑Problem: high GPU memory footprint of KVCache

❖May exceed GPU memory capacity

❖High attention computation latency in bandwidth-bound decoding phase

Longer context window Longer model outputs KVCache scales linearly with #tokens
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Background

❑KVCache memory footprint reduction approaches

❖KVCache offloading with sparse attention

❖KVCache compression

CompressionOffloading + Sparse attention
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Background

❑This paper focuses on KVCache compression

❖How to compress KVCache?

➢Combine quantization and token pruning to form a hierarchical compression strategy

❖How to manage compressed KVCache?

➢Adapt to paged KVCache, a must for industrial practices



9

Agenda

Background1

System Design3

Evaluation and Conclusion4

Insights and Challenges2



10

Insights and Challenges

❑Q1: How to compress KVCache?

❑Insights for KVCache compression

❖Differentiated impacts of Keys and Values

❖Differentiated token importance

❖Differentiated attention head sparsity patterns
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❑Differentiated impacts of Keys and Values

Attention output is determined by:

➢ Attention scores (impacted by Keys)

➢ Norm of Values (impacted by Values)
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Insights and Challenges

❑Differentiated impacts of Keys and Values

Attention output is determined by:

➢ Attention scores (impacted by Keys)

➢ Norm of Values (impacted by Values)

➢ Attention scores spans from 𝟏𝟎−𝟖 to 𝟏𝟎𝟎

➢ V-norm spans only from 𝟏𝟎−𝟐 to 𝟏𝟎𝟏

Higher quantization precision for Keys! 
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Insights and Challenges

❑Differentiated token importance

➢ High precision for the critical ones

➢ Low precision for less-critical ones

➢ Pruning for the least-critical ones
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Insights and Challenges

➢ High precision for the critical ones

➢ Low precision for less-critical ones

➢ Pruning for the least-critical ones

Sparsity patterns vary across requests, heads

➢ A dynamic, head-wise compression 

strategy is required

❑Differentiated, dynamic attention head sparsity patterns

❑Differentiated token importance
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Insights and Challenges

❑Q1: How to compress KVCache?

❑Insights for KVCache compression

❖Differentiated impacts of Keys and Values

➢Different quantization precision for keys and values

❖Differentiated token importance

➢Hierarchical compression strategy for tokens of different importance

❖Differentiated, dynamic attention head sparsity patterns

➢Dynamic, head-wise compression
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Insights and Challenges

❑Q2: How to manage compressed KVCache?

❑Challenge for adaption to paged KVCache

❖Differentiated memory layout of Keys, Values, tokens and attention heads

❖How to design a scalable, GPU-based page management mechanism that 

minimizes memory fragmentation?
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System Design

❑KV Compaction Policy (prefill)

❖Compute attention score

➢Recent window to keep all token’s KV in window

❖Compute token significance

➢Token significance is calculated by averaging the following tokens’ attention socre to it

❖Choose compaction strategies

➢Alow and Ahigh are analyzed offline for each model

➢For ith token, Alow and Ahigh are devided by i
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System Design

❑KV Compaction Policy (prefill)
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System Design

❑KV Compaction Policy (prefill)
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System Design

❑KV Compaction Policy (prefill)
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System Design

❑KV Compaction Policy (decode)
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System Design

❑KV Compaction Policy (decode)
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System Design

❑KV Compaction Policy (decode)
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System Design

❑KV Compaction Policy (decode)
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System Design

❑Data structure for memory management
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GPU memory is partitioned in to:

➢ Six data sigments for Keys and Values

➢ Tokens per page vary with quantization settings
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System Design

❑Data structure for memory management

Quantized
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Unified Pages

Bidirectional 

Page Table

GPU memory is partitioned in to:

➢ Six data sigments for Keys and Values

➢ Tokens per page vary with quantization settings

Page Table for per-head and per-request:

➢ Avoid duplicated metadata for different precisions

➢ Entry size uses high-precision pages to prevent overflow
High-precision pages → ← Low-precision pages



28

System Design

❑Data structure for memory management
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GPU memory is partitioned in to:

➢ Six data sigments for Keys and Values

➢ Tokens per page vary with quantization settings

Page Table for per-head and per-request:

➢ Avoid duplicated metadata for different precisions

➢ Entry size uses high-precision pages to prevent overflow

Circular page list for parallel KV compaction:

➢ Two pointers for page allocation and recycling

➢ Use parallel prefix-sum to alloc and recycle

High-precision pages → ← Low-precision pages
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System Design (workflow)
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System Design (workflow)
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System Design (workflow)
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System Design (workflow)
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Evaluation

❑Evaluation Setup

❖Models: Llama3-8B/70B、Qwen2.5-7B/32B 、QwQ-32B、R1-Distill-Qwen-14B、R1-

Distill-Llama-8B

❖Device: NVIDIA L40GPU (48GB)

❖Evaluation metrics: accuracy / score + throughput / latency

❖Weights are stored in FP16 precision



35

Evaluation

❑Differentiated KV Compression Policy

❖Differentiated KV Quantization

➢ K8V4 ≈ FP16

➢ K8V4 > K4V8 (Qwen2.5-7B)

➢ K4V2 can keep some acc

➢ Lower bound for V is 2 bit

Choose K8V4 for high precision

K4V2 for low precision
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Evaluation

❑Differentiated KV Compression Policy

❖Dynamic Sparsity for heads and requests

➢ Dynamic: DiffKV sets different pruning rate 

for per-request and per-head under total 

pruning rate of a static value

➢ Static: DiffKV set same pruning rate for all 

requests and heads

➢ Dynamic always perform better than Static 

when pruning rate less than 50%
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Evaluation

❑System Performance

DiffKV achieves highest throughput than 

others

➢ Quest only compute significant attention

➢ SnapKV pruns insignificant token

➢ Atom use 4-bit quantization

➢ KIVI use 2-bit quantization
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Conclusion

❑Problem: 

❖KV cache dominates GPU memory; existing quantization/pruning is coarse-

grained and inefficient, limiting batch size and throughput.

❑Key Findings:

❖Keys matter more than values for quality

❖Different requests, heads and tokens matter

❑Solution:

❖Differentiated KV compression (K/V mixed precision + per-head and per-

request dynamic compaction strategy)



Thank you!
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