
DiffKV: Differentiated Memory Management for Large 

Language Models with Parallel KV Compaction

Yanqi Zhang, Yuwei Hu, Runyuan Zhao, John C. S. Lui, and Haibo Chen



2

Agenda

Background1

Insights and Challenges2

System Design3

Evaluation and Conclusion4



3

Agenda

Insights and Challenges2

System Design3

Evaluation and Conclusion4

Background1



4

Background

❑Autoregressive LLM inference

❖Generate new tokens step by step

❖Each step’s generation relies on all the input and generated tokens

❖Attention is computed from Query, Key and Value, all derived from tokens

LLM

北京是哪里？

中

LLM

北京是哪里？
中

国

LLM

北京是哪里？
中国

首

LLM

北京是哪里？
中国首

都

LLM

北京是哪里？
中国首都

<EOS>

MatMul

Scale

SoftMax

MatMul

Q K V

XTokens



5

Background

❑KVCache: trade memory for inference efficiency

❖Cache KV vectors to eliminate redundant computations

❖A core component for LLM inference

Step 0

Input: “北京是
哪里？”

Step 1

国

Step 2

首

Step 3

都

KVCache

中

Prefill Phase Decoding Phase

Step 4

<EOS>

Initialize Append Append Append Append

MatMul

Scale

SoftMax

MatMul

q [k, KCache] [v, VCache]

KVCache



6

Background

❑Problem: high GPU memory footprint of KVCache

❖May exceed GPU memory capacity

❖High attention computation latency in bandwidth-bound decoding phase

Longer context window Longer model outputs KVCache scales linearly with #tokens



7

Background

❑KVCache memory footprint reduction approaches

❖KVCache offloading with sparse attention

❖KVCache compression

CompressionOffloading + Sparse attention

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

(a) Quantization

Head1

Head2

(b) Token Pruning

Key

Value

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 4

1 4

1 3

1 3

Head1

Head2

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Host Memory

Head1

Head2

GPU Memory

1 4 1 4

1 3 1 3
Key

Value
PCIe

Attn



8

Background

❑This paper focuses on KVCache compression

❖How to compress KVCache?

➢Combine quantization and token pruning to form a hierarchical compression strategy

❖How to manage compressed KVCache?

➢Adapt to paged KVCache, a must for industrial practices



9

Agenda

Background1

System Design3

Evaluation and Conclusion4

Insights and Challenges2



10

Insights and Challenges

❑Q1: How to compress KVCache?

❑Insights for KVCache compression

❖Differentiated impacts of Keys and Values

❖Differentiated token importance

❖Differentiated attention head sparsity patterns



11

Insights and Challenges

❑Differentiated impacts of Keys and Values

Attention output is determined by:

➢ Attention scores (impacted by Keys)

➢ Norm of Values (impacted by Values)



12

Insights and Challenges

❑Differentiated impacts of Keys and Values

Attention output is determined by:

➢ Attention scores (impacted by Keys)

➢ Norm of Values (impacted by Values)

➢ Attention scores spans from 𝟏𝟎−𝟖 to 𝟏𝟎𝟎

➢ V-norm spans only from 𝟏𝟎−𝟐 to 𝟏𝟎𝟏

Higher quantization precision for Keys! 



13

Insights and Challenges

❑Differentiated token importance

➢ High precision for the critical ones

➢ Low precision for less-critical ones

➢ Pruning for the least-critical ones



14

Insights and Challenges

➢ High precision for the critical ones

➢ Low precision for less-critical ones

➢ Pruning for the least-critical ones

Sparsity patterns vary across requests, heads

➢ A dynamic, head-wise compression 

strategy is required

❑Differentiated, dynamic attention head sparsity patterns

❑Differentiated token importance



15

Insights and Challenges

❑Q1: How to compress KVCache?

❑Insights for KVCache compression

❖Differentiated impacts of Keys and Values

➢Different quantization precision for keys and values

❖Differentiated token importance

➢Hierarchical compression strategy for tokens of different importance

❖Differentiated, dynamic attention head sparsity patterns

➢Dynamic, head-wise compression



16

Insights and Challenges

❑Q2: How to manage compressed KVCache?

❑Challenge for adaption to paged KVCache

❖Differentiated memory layout of Keys, Values, tokens and attention heads

❖How to design a scalable, GPU-based page management mechanism that 

minimizes memory fragmentation?

0
Head1

Head2

21 4 7

0 1 9

9 10 11

11102 4 7

0 31 6

0 1

11

113 6

Key

Value



17

Agenda

Background1

Insights and Challenges2

Evaluation and Conclusion4

System Design3



18

System Design

❑KV Compaction Policy (prefill)

❖Compute attention score

➢Recent window to keep all token’s KV in window

❖Compute token significance

➢Token significance is calculated by averaging the following tokens’ attention socre to it

❖Choose compaction strategies

➢Alow and Ahigh are analyzed offline for each model

➢For ith token, Alow and Ahigh are devided by i



19

System Design

❑KV Compaction Policy (prefill)

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

a
tten

tio
n

 w
eig

h
t

𝒙𝟓

𝒙𝟔

𝒂𝟏

𝒂𝟐

𝒂𝟑

𝒂𝟒

𝒂𝟓

𝒂𝟔

compute

attention score

window

(64 in paper)



20

System Design

❑KV Compaction Policy (prefill)

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

a
tten

tio
n

 w
eig

h
t

𝒙𝟓

𝒙𝟔

𝒂𝟏

𝒂𝟐

𝒂𝟑

𝒂𝟒

𝒂𝟓

𝒂𝟔

𝒔𝟏

𝒔𝟐

𝒔𝟑

𝒔𝟒

= 0.07

= 0.2

= 0.15

= 0.01

compute

attention score

compute

token significance

window

(64 in paper)



21

System Design

❑KV Compaction Policy (prefill)

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

a
tten

tio
n

 w
eig

h
t

𝒙𝟓

𝒙𝟔

𝒂𝟏

𝒂𝟐

𝒂𝟑

𝒂𝟒

𝒂𝟓

𝒂𝟔

𝒔𝟏

𝒔𝟐

𝒔𝟑

𝒔𝟒

= 0.07

= 0.2

= 0.15

= 0.01

p
o
lic

y
: A

lo
w

 =
 0

.0
5

 A
h

ig
h

 =
 0

.2

0.05<0.07<0.2

0.2/2<0.2

0.2/3<0.15

0.03<0.05/4

high precision

low precision

pruned

compute

attention score

compute

token significance

choose compression 

strategies

window

(64 in paper)



22

System Design

❑KV Compaction Policy (decode)

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔
window

(64 in paper)
𝒙𝟕

new KV need 

to compress

high precision

low precision

pruned



23

System Design

❑KV Compaction Policy (decode)

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔
window

(64 in paper)
𝒙𝟕

new KV need 

to compress

high precision

low precision

pruned



24

System Design

❑KV Compaction Policy (decode)

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔
window

(64 in paper)
𝒙𝟕

new KV need 

to compress

high precision

low precision

pruned



25

System Design

❑KV Compaction Policy (decode)

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔
window

(64 in paper)
𝒙𝟕

new KV need 

to compress

high precision

low precision

pruned



26

System Design

❑Data structure for memory management

Quantized

Keys

Keys 

metadata

Quantized

Values

Values 

metadata

Token 

scores
Position

Unified Pages

GPU memory is partitioned in to:

➢ Six data sigments for Keys and Values

➢ Tokens per page vary with quantization settings



27

System Design

❑Data structure for memory management

Quantized

Keys

Keys 

metadata

Quantized

Values

Values 

metadata

Token 

scores
Position

Unified Pages

Bidirectional 

Page Table

GPU memory is partitioned in to:

➢ Six data sigments for Keys and Values

➢ Tokens per page vary with quantization settings

Page Table for per-head and per-request:

➢ Avoid duplicated metadata for different precisions

➢ Entry size uses high-precision pages to prevent overflow
High-precision pages → ← Low-precision pages



28

System Design

❑Data structure for memory management

Quantized

Keys

Keys 

metadata

Quantized

Values

Values 

metadata

Token 

scores
Position

Unified Pages

Circular Free 

Page List

Bidirectional 

Page Table

6 2 10 9 12

GPU memory is partitioned in to:

➢ Six data sigments for Keys and Values

➢ Tokens per page vary with quantization settings

Page Table for per-head and per-request:

➢ Avoid duplicated metadata for different precisions

➢ Entry size uses high-precision pages to prevent overflow

Circular page list for parallel KV compaction:

➢ Two pointers for page allocation and recycling

➢ Use parallel prefix-sum to alloc and recycle

High-precision pages → ← Low-precision pages

start_ptr

(alloc)

end_ptr

(recycle)



29

System Design (workflow)

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔

𝒙𝟕

𝒙𝟖

1

2

3

7

8

9

10

11

12

13

←start_ptr

←end_ptr

Initial State

high-precision page

low-precision page

available

unavailable

Request:



30

System Design (workflow)

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔

𝒙𝟕

𝒙𝟖

1

2

3

7

8

9

10

11

12

7

8

9

10

11

12

13

1

13

2

3 ←end_ptr

←start_ptr

←start_ptr

←end_ptr

Initial State Page Allocation

high-precision page

low-precision page

available

unavailable

Request:

Head A

Head B



31

System Design (workflow)

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔

𝒙𝟕

𝒙𝟖

1

2

3

7

8

9

10

11

12

7

8

9

10

11

12

13

1

13

2

3 ←end_ptr

←start_ptr

𝒙𝟏

𝒙𝟒

𝒙𝟏

𝒙𝟑

𝒙𝟕

𝒙𝟖

𝒙𝟖

𝒙𝟒

𝒙𝟓

𝒙𝟔

←start_ptr

←end_ptr

Initial State Page Allocation

high-precision page

low-precision page

available

unavailable

Request:

Head A

Head B



32

System Design (workflow)

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔

𝒙𝟕

𝒙𝟖

1

2

3

7

8

9

10

11

12

7

8

9

10

11

12

13

1

13

2

3 ←end_ptr

←start_ptr

𝒙𝟏

𝒙𝟒

𝒙𝟏

𝒙𝟑

𝒙𝟕

𝒙𝟖

𝒙𝟖

𝒙𝟒

𝒙𝟓

𝒙𝟔

2

3

8

9

13 ←end_ptr

←start_ptr

←start_ptr

←end_ptr

Initial State Page Allocation Page Recycling

high-precision page

low-precision page

available

unavailable

Request:

Head A

Head B



33

Agenda

Background1

Insights and Challenges2

System Design3

Evaluation and Conclusion4



34

Evaluation

❑Evaluation Setup

❖Models: Llama3-8B/70B、Qwen2.5-7B/32B 、QwQ-32B、R1-Distill-Qwen-14B、R1-

Distill-Llama-8B

❖Device: NVIDIA L40GPU (48GB)

❖Evaluation metrics: accuracy / score + throughput / latency

❖Weights are stored in FP16 precision



35

Evaluation

❑Differentiated KV Compression Policy

❖Differentiated KV Quantization

➢ K8V4 ≈ FP16

➢ K8V4 > K4V8 (Qwen2.5-7B)

➢ K4V2 can keep some acc

➢ Lower bound for V is 2 bit

Choose K8V4 for high precision

K4V2 for low precision



36

Evaluation

❑Differentiated KV Compression Policy

❖Dynamic Sparsity for heads and requests

➢ Dynamic: DiffKV sets different pruning rate 

for per-request and per-head under total 

pruning rate of a static value

➢ Static: DiffKV set same pruning rate for all 

requests and heads

➢ Dynamic always perform better than Static 

when pruning rate less than 50%



37

Evaluation

❑System Performance

DiffKV achieves highest throughput than 

others

➢ Quest only compute significant attention

➢ SnapKV pruns insignificant token

➢ Atom use 4-bit quantization

➢ KIVI use 2-bit quantization



38

Conclusion

❑Problem: 

❖KV cache dominates GPU memory; existing quantization/pruning is coarse-

grained and inefficient, limiting batch size and throughput.

❑Key Findings:

❖Keys matter more than values for quality

❖Different requests, heads and tokens matter

❑Solution:

❖Differentiated KV compression (K/V mixed precision + per-head and per-

request dynamic compaction strategy)



Thank you!


	幻灯片 1
	幻灯片 2: Agenda
	幻灯片 3: Agenda
	幻灯片 4: Background
	幻灯片 5: Background
	幻灯片 6: Background
	幻灯片 7: Background
	幻灯片 8: Background
	幻灯片 9: Agenda
	幻灯片 10: Insights and Challenges
	幻灯片 11: Insights and Challenges
	幻灯片 12: Insights and Challenges
	幻灯片 13: Insights and Challenges
	幻灯片 14: Insights and Challenges
	幻灯片 15: Insights and Challenges
	幻灯片 16: Insights and Challenges
	幻灯片 17: Agenda
	幻灯片 18: System Design
	幻灯片 19: System Design
	幻灯片 20: System Design
	幻灯片 21: System Design
	幻灯片 22: System Design
	幻灯片 23: System Design
	幻灯片 24: System Design
	幻灯片 25: System Design
	幻灯片 26: System Design
	幻灯片 27: System Design
	幻灯片 28: System Design
	幻灯片 29: System Design (workflow)
	幻灯片 30: System Design (workflow)
	幻灯片 31: System Design (workflow)
	幻灯片 32: System Design (workflow)
	幻灯片 33: Agenda
	幻灯片 34: Evaluation
	幻灯片 35: Evaluation
	幻灯片 36: Evaluation
	幻灯片 37: Evaluation
	幻灯片 38: Conclusion
	幻灯片 39

