DiffKV: Differentiated Memory Management for Large

Language Models with Parallel KV Compaction

Yanqi Zhang, Yuwei Hu, Runyuan Zhao, John C. S. Lui, and Haibo Chen

Presenters: Chengru Yang, Jiawei Yi



6 Insights and Challenges

0 System Design

0 Evaluation and Conclusion




6 Insights and Challenges

\o‘ System Design

P
0 Evaluation and Conclusion




Background

JAutoregressive LLM inference
“*Generate new tokens step by step
“*Each step’s generation relies on all the input and generated tokens

“* Attention is computed from Query, Key and Value, all derived from tokens

t
o = B & <EOS> [ Matviul |

I I Y Y |

Co)\ GO\ O\ 0\ G &
L .

EERE— tHERE— tHENE— HEWE2— tERmE? (Tz 1T< v
: thiE] e rhE &R P S

I
Tokens — X




Background

JKVCache: trade memory for inference efficiency
“*Cache KV vectors to eliminate redundant computations

A core component for LLM inference

t
Prefill Phase Decoding Phase [ MatMul ]
T A
KVCache [ SoftMax ]
A A T
Initialize Append 1 Append l Append l | Append [ Scale ]
— D 5
Step 0 ‘[ Step 2 J "[ Step 3 ] "[ Step 4 [ MatMul
\_____ J

P

q [k, KCache] [v, VCache]

&> <> <wo> Lot

KVCache

.
Input: “Jt5RE2
. HRE? »

N




Background

dProblem: high GPU memory footprint of KVCache
‘*May exceed GPU memory capacity

“*High attention computation latency in bandwidth-bound decoding phase

Chain-of-Thought Prompting

Serving LLM Inference Qs e Qwen2.5-14B-1M-Instruct

Q: Roger has 5 tennis balls. He buys 2 more cans of 140

tennis balls. Each can has 3 tennis balls. How many

tennis balls does he have now? 120 @ Model Welght o KVCache
2 A: Roger started with 5 balls. 2 cans of 3 tennis balls a 100
£ gach is 6 tennis balls. 5 + 6 = 11. The answer is 11.
3 O 80
£ Q: The cafeteria had 23 apples. If they used 20 to o
g make lunch and bought 6 more, how many apples N 60
‘= do they have? )
s - J 40
Gz) (e - Mol oup ~ 2 J I I
! A: The cafeteria had 23 apples originally. They used
GPT-4 | Claude 3 Gemini 15Pro 20 to make lunch. So they had 23 - 20 = 3. They. 0
--------------------------- bwshlslguf/apple&wﬂlwhave3+6 =9. The 128K 256K 512K
= > Context Length
Longer context window Longer model outputs KVCache scales linearly with #tokens




KV Cache memory footprint reduction approaches

“*KVCache offloading with sparse attention

‘*KVCache compression

Attn

PCI

.

Host Memory

Key

Value

J

Offloading + Sparse attention

1 2 3 4

Headl l----' __LIEEEE ' Key
1123 4 ' -
Head2|1234: :_1234 :
““““““ Value
(a) Quantization
T | e )
Head1 ! ! '
“CAEEE | . KR
H 2' 1 2 3 4 I 1 3 |
ead21 , , F 1y |
______ L —— = — |
(b) Token Pruning
Compression




Background

This paper focuses on KVCache compression
“*How to compress KVCache?
» Combine quantization and token pruning to form a hierarchical compression strategy

‘*How to manage compressed KVCache?

» Adapt to paged KVCache, a must for industrial practices




\,o-‘ Insights and Challenges

\9‘ System Design

iy
\0‘ Evaluation and Conclusion




Insights and Challenges

1Q1: How to compress KVCache?

1Insights for KVCache compression
“*Differentiated impacts of Keys and Values
“*Differentiated token importance

‘s Differentiated attention head sparsity patterns




Insights and Challenges

Differentiated impacts of Keys and Values

( )

Vj Attention output is determined by:

i QKT
Attn(Q,K, V); = Z softmax( ) Vil
j=1 ij

Vd vl »> Attention scores (impacted by Keys)
~ -

—_—

. > Norm of Values (impacted by Values
Coefficient Unit vector s (imp y ) )




i
KT Vi
Attn(Q,K,V); = Z softmax (Q ) vl _J
j=1 Vd ij lv j|
~ —~— _ N——
Coefficient Unit vector

,,,,,

Attention score vs. Value Norm in Llama3-8B
1| r

—— score-layer-0

| ===- v-norm-layer-0
—— score-layer-15

1 =-=--- v-norm-layer-15

0.6
e —— score-layer-31
80_4- ---- v-norm-layer-31
'I
J”’

Insights and Challenges

Differentiated impacts of Keys and Values

-
Attention output is determined by:

» Attention scores (impacted by Keys)
» Norm of Values (impacted by Values)

0.0 106 10~4 102
Numerical Value

p
> Attention scores spans from 1078 to 10°

> V-norm spans only from 1072 to 101

Higher quantization precision for Keys!

\.




Insights and Challenges

Differentiated token importance

[ )

E 10_1 o o o e 0
S » High precision for the critical ones
%]
C 10_2 L3 L3 L3 L3
S > Low precision for less-critical ones
C .n-3
o 10
2 » Pruning for the least-critical ones

0 250 500 750 1000 1250 1500 1750 2000 \| J

Token index




Differentiated token importance

Insights and Challenges

'_I
o
A

'_I
o
N

3

'_I
9

Attention score

250 500

750 1000
Token index

1250

1500

1750

2000

Differentiated, dynamic attention head sparsity patterns

‘© 1250

Number of Critic

Number of Critical Tokens per KV Head in Llama3-8B

¢
(]
¢

layer-0
layer-15
layer-31

:

——

KV Head

( )
» High precision for the critical ones
» Low precision for less-critical ones
» Pruning for the least-critical ones
\. J
[ )

Sparsity patterns vary across requests, heads
» A dynamic, head-wise compression

strategy is required




Insights and Challenges

1Q1: How to compress KVCache?

1Insights for KVCache compression
“*Differentiated impacts of Keys and Values

» Different quantization precision for keys and values
“*Differentiated token importance

» Hierarchical compression strategy for tokens of different importance

“*Differentiated, dynamic attention head sparsity patterns

» Dynamic, head-wise compression




1Q2: How to manage compressed KVCache?

_1Challenge for adaption to paged KVCache

“*Differentiated memory layout of Keys, Values, tokens and attention heads

: 0 1 2 4 7 9
Headl |
I
I
I
I 0 1 3 6 11
Head2 Key

|
|
|
|
|
|
|
|
|
L 1 3 6 11 - Value |

“*How to design a scalable, GPU-based page management mechanism that
minimizes memory fragmentation?




6 Insights and Challenges

0 System Design

P
0 Evaluation and Conclusion




System Design

KV Compaction Policy (prefill)

“*Compute attention score

» Recent window to keep all token’s KV in window
“*Compute token significance

» Token significance is calculated by averaging the following tokens’ attention socre to it
“*Choose compaction strategies

» Alow and Ahigh are analyzed offline for each model
» For ith token, Alow and Ahigh are devided by i




KV Compaction Policy (prefill)

x1
x2
x3
x4

x5
window

(64 in paper)-

x6

JYSIOM Uonudje

—/

compute
attention score

System Design

al

a2

a3

a4

a5

a6




System Design

JKYV Compaction Policy (prefill)

x1
x2
x3
x4

x5
window

(64 in paper)-
x6

E |
al | s1 =007 |
| |
a2 s2 =02 |
= |
(=
S| a3 s3 =015 |
S |
=
§D a4 s4 =0.01 |
0 |
=
- I
a5 |
| |
a6 | |
compute I compute ]
attention score "] token significance




KV Compaction Policy (prefill)
— [ -

_____ L T e ]
| y |
x1 al s1 =007 | | 0.05<0.07<0.2

I I I "g I
x2 a2 s2 =0.2 I I ‘g 0.2/2<0.2 high precision ] :

& >
5 g |
3 |2| a3 s3 =015 || : 0.2/3<0.15 |
S | = low precision ]I

—
x4 é. a4 s4 =0.01 | || < 0.03<0.05/4 I

- - UE. ]

45 45 | = pruned |

window | | | L
(64 in paper) I I ) I
x6 a6 | | | |
| | |

— I —/

compute | compute ] I choose compression |
attention score "] token significance T ] strategies R




System Design

KV Compaction Policy (decode)

Algorithm 1: KV compression policy (generation)

x1 1: Input: Parameters oy, 0;; High & low precision P, & P,
2: Input: Candidate token 7.; Sequence length N
3: Input: High & low precision KV cache KV, & KV,
x2 4: Function: Significance Score; Quantization Quant;
5. if Score(z,) > % then
X3 6: KVh.add(Quant(tc, Py))
7. 1, = argmincgy, (Score(t))
[ high precision ] 8 if % < Score(r,) < % then
x4 9: KV),.remove(t,), KV;.add(Quant(zt,, P;))
10:  else if Score(r,) < 3 then
11: KV, .remove(t,)
new KV need I8 [ low precision ] 12: endif
to compress 13: else if Score(z.) > 5 then
_ 14:  KVj.add(Quant(z., P))
x6 15: 1, = argmin,cgy,(Score(r))
window | [ pruned ] 16:  if Score (1,) < % then
(64 in paper) 17: KV,.remove(t,)
x7 18:  end if
- 19: end if




System Design

KV Compaction Policy (decode)

Algorithm 1: KV compression policy (generation)

x1 1: Input: Parameters oy, 0;; High & low precision P, & P,
2: Input: Candidate token 7.; Sequence length N
3: Input: High & low precision KV cache KV, & KV,
x2 4: Function: Significance Score; Quantization Quant;
5. if Score(z,) > % then
X3 6: KVh.add(Quant(tc, Py))
7. 1, = argmincgy, (Score(t))
[ high precision ] 8 if % < Score(r,) < % then
x4 9: KV),.remove(t,), KV;.add(Quant(zt,, P;))
10:  else if Score(r,) < 3 then
11: KV, .remove(t,)
new KV need I8 [ low precision ] 12: endif
to compress 13: else if Score(z.) > 5 then
_ 14:  KVj.add(Quant(z., P))
x6 15: 1, = argmin,cgy,(Score(r))
window | [ pruned ] 16:  if Score (1,) < % then
(64 in paper) 17: KV,.remove(t,)
x7 18:  end if
- 19: end if




System Design

KV Compaction Policy (decode)

Algorithm 1: KV compression policy (generation)

x1 1: Input: Parameters oy, 0;; High & low precision P, & P,
2: Input: Candidate token 7.; Sequence length N
3: Input: High & low precision KV cache KV, & KV,
x2 4: Function: Significance Score; Quantization Quant;
5. if Score(z,) > % then
X3 6: KVh.add(Quant(tc, Py))
7. 1, = argmincgy, (Score(t))
[ high precision ] 8 if % < Score(r,) < % then
x4 9: KV),.remove(t,), KV;.add(Quant(zt,, P;))
10:  else if Score(r,) < 3 then
11: KV, .remove(t,)
new KV need I8 [ low precision ] 12: endif
to compress 13: else if Score(z.) > 5 then
_ 14:  KVj.add(Quant(z., P))
x6 15: 1, = argmin,cgy,(Score(r))
window | [ pruned ] 16:  if Score (1,) < % then
(64 in paper) 17: KV,.remove(t,)
x7 18:  end if
- 19: end if




System Design

KV Compaction Policy (decode)

Algorithm 1: KV compression policy (generation)

x1 1: Input: Parameters oy, 0;; High & low precision P, & P,
2: Input: Candidate token 7.; Sequence length N
3: Input: High & low precision KV cache KV, & KV,
x2 4: Function: Significance Score; Quantization Quant;
5. if Score(z,) > % then
X3 6: KVh.add(Quant(tc, Py))
7. 1, = argmincgy, (Score(t))
[ high precision ] 8 if % < Score(r,) < % then
x4 9: KV),.remove(t,), KV;.add(Quant(zt,, P;))
10:  else if Score(r,) < 3 then
11: KV, .remove(t,)
new KV need I8 [ low precision ] 12: endif
to compress 13: else if Score(z.) > 5 then
_ 14:  KVj.add(Quant(z., P))
x6 15: 1, = argmin,cgy,(Score(r))
window | pruned ] 16:  if Score (1)) < % then
(64 in paper) 17: KV,.remove(t,)
x7 18:  end if
- 19: end if




System Design

dData structure for memory management

Unified Pages

Quantized Keys
Keys metadata
Quantized Values
Values metadata
Token Position

scores

a )

GPU memory is partitioned in to:
> Six data sigments for Keys and Values

> Tokens per page vary with quantization settings

\. J




System Design

dData structure for memory management

Quantized Keys
Keys metadata
. Quantized Values

Unified Pages Values metadata
Token Position
scores

Bidirectional

Page Table

High-precision pages —

«— Low-precision pages

f

L

GPU memory is partitioned in to:
> Six data sigments for Keys and Values

> Tokens per page vary with quantization settings

f

L

Page Table for per-head and per-request:
» Avoid duplicated metadata for different precisions

» Entry size uses high-precision pages to prevent overflow

J




System Design

dData structure for memory management

Quantized Keys
Keys metadata
. Quantized Values

Unified Pages Values metadata
Token Position
scores

Bidirectional

Page Table

Circular Free
Page List

-

High-precision

-precision pages

2

10 9 12

end ptr start_ptr
(recycle) (alloc)

f

L

GPU memory is partitioned in to:
> Six data sigments for Keys and Values

> Tokens per page vary with quantization settings

f

L

Page Table for per-head and per-request:
» Avoid duplicated metadata for different precisions

» Entry size uses high-precision pages to prevent overflow

J

f

L

Circular page list for parallel KV compaction:
» Two pointers for page allocation and recycling

» Use parallel prefix-sum to alloc and recycle

~\




System Design (workflow)

Request:
x1
x2
x3
x4
x5
x6
x7

x8

«—end_ptr

7 | <start_ptr

8
9
10
11
12
13

Initial State

- high-precision page

low-precision page

available

- unavailable




Request:
x1
x2
x3
x4
x5
x6
x7

x8

o=
2
)

11
12
13

2 g iy gy . g S e, S,

2

Initial State

Head A

Page Allocation

- high-precision page

low-precision page

available

unavailable




Request:
x1
x2
x3
x4
x5
x6
x7

x8

o
»
T

11
12
13

2 g iy gy . g S e, S,

2

Initial State

Page Allocation

- high-precision page

low-precision page

available

unavailable



Request:
x1
x2
x3
x4
x5
x6
x7

x8

o
»
T

11

12

2 g iy gy . g S e, S,

13

2

Initial State

2 | «start_ptr

o0

[P JEE—

13 J(—end _ptr

-
L]
|
|
1

Page Recycling

- high-precision page

low-precision page

available

unavailable




6 Insights and Challenges

\9‘ System Design

sy
0 Evaluation and Conclusion




Evaluation

dEvaluation Setup

*Models: Llama3-8B/70B. Qwen2.5-7B/32B . QwQ-32B. RI1-Distill-Qwen-14B., R1-
Distill-Llama-8B

‘*Device: NVIDIA L40GPU (48GB)
**Evaluation metrics: accuracy / score + throughput / latency

**Weights are stored in FP16 precision




Evaluation

Differentiated KV Compression Policy
‘»Differentiated KV Quantization

[ FP16[XF K8VAEEA KAVEE= K8V2[EXN KAV2EE K2V4E=43 K4Vl

GSM8K HumanEval+
80 70 1 N
< °Y7 N & |
PE N [ 60 N 5 N
60 11 DB 1N 501 K N
> N | ]
% E E - 40_ A \\ B E
| - - Y - N i \ 0
S 50 - N N | ] 2071 ¢ N L N
= N [N H N 10 - N [ N
NN 0 N N [ |
0 T = T = r b :
Lama3-88en2 5] Fma3- 108 Liama3-88 en2.5- Bma3- 108

(
> K8V4 = FP16

» K8V4 > K4V8 (Qwen2.5-7B)
» K4V2 can keep some acc
» Lower bound for V is 2 bit

Choose K8V4 for high precision

\_ K4V?2 for low precision

J




Evaluation

Differentiated KV Compression Policy

“*Dynamic Sparsity for heads and requests

Llama3-8B GSM

Llama3-8B HEval

807 501
60 401
~— 40 30
(=]
:‘3“ —— Dynamic 20
— 20 101
---- Static
> 0 - - 0 - - -
% 0 20 40 60 80 0 20 40 60
— Qwen2.5-7B GSM Qwen2.5-7B HEval
= 80 :
g ‘-""'1..._ 50
60 |
":E 40
40 301
v 201
20/ 10
0 ——— 0 - - -
0 20 40 60 80 0 20 40 60

Fraction (%) of tokens pruned

Dynamic: DiffKYV sets different pruning rate
for per-request and per-head under total
pruning rate of a static value

Static: DiffKV set same pruning rate for all
requests and heads

Dynamic always perform better than Static

when pruning rate less than 50%

~




Evaluation

System Performance

Throughput normalized to vLLM

s o/ CJ VLLM [N SnapkV EZI KIVI - 2.4
| IZ32 Quest E=1 Atom Bl DiffkV
2.5 2.0 1.9

0.0-

Llama3 8B Llama3 70B Qwen2.5-7BQwen?2.5- 328 QwQ- 328

(" )
DiffKV achieves highest throughput than

others
» Quest only compute significant attention
» SnapKYV pruns insignificant token

» Atom use 4-bit quantization

» KIVI use 2-bit quantization
\_ W,




Conclusion

JProblem:

*KYV cache dominates GPU memory; existing quantization/pruning is coarse-
grained and inefficient, limiting batch size and throughput.

1Key Findings:
*»Keys matter more than values for quality

“*Different requests, heads and tokens matter

JSolution:

‘»Differentiated KV compression (K/V mixed precision + per-head and per-
request dynamic compaction strategy)




Thank you!

Presenters: Chengru Yang, Jiawei Yi



	幻灯片 1
	幻灯片 2: Agenda
	幻灯片 3: Agenda
	幻灯片 4: Background
	幻灯片 5: Background
	幻灯片 6: Background
	幻灯片 7: Background
	幻灯片 8: Background
	幻灯片 9: Agenda
	幻灯片 10: Insights and Challenges
	幻灯片 11: Insights and Challenges
	幻灯片 12: Insights and Challenges
	幻灯片 13: Insights and Challenges
	幻灯片 14: Insights and Challenges
	幻灯片 15: Insights and Challenges
	幻灯片 16: Insights and Challenges
	幻灯片 17: Agenda
	幻灯片 18: System Design
	幻灯片 19: System Design
	幻灯片 20: System Design
	幻灯片 21: System Design
	幻灯片 22: System Design
	幻灯片 23: System Design
	幻灯片 24: System Design
	幻灯片 25: System Design
	幻灯片 26: System Design
	幻灯片 27: System Design
	幻灯片 28: System Design
	幻灯片 29: System Design (workflow)
	幻灯片 30: System Design (workflow)
	幻灯片 31: System Design (workflow)
	幻灯片 32: System Design (workflow)
	幻灯片 33: Agenda
	幻灯片 34: Evaluation
	幻灯片 35: Evaluation
	幻灯片 36: Evaluation
	幻灯片 37: Evaluation
	幻灯片 38: Conclusion
	幻灯片 39

