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• (Traditional) GPU Multiplexing
• NVIDIA: Time slicing, MPS, stream Priority, and MIG
• Papers: REEF@OSDI22, TGS@NSDI23, Orion@Eurosys24, LithOS@SOSP25
• However, they just focus on compute resouce sharing.

• Systems serving multiple LLMs (Serverless Style)
• Optimized model loading: ServerlessLLM, HydraServe@NSDI26
• DRAM preloading: DeepServe@ATC25
• Fine-grained autoscaling: BlitzScale@OSDI25, Aegaeon@SOSP25
• However, the goal is to reduce cold start latency.
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Background: GPU Multiplexing 



• Virtual Memory in OS Kernel
• Isolation, mem. expansion like mmap, simple programming, IPC like shm, etc.

• CUDA VMM API1 (CUDA 10.2, 2019)
• Core API: cuMemAddressReserve, cuMemCreate and cuMemMap, etc.
• Example: vectorAddMMAP2 

• mem_ptr is distributed across multiple GPU devices

• CUDA VMM-based LLM
• PyTorch Expandable Segments3 (2023)
• vAttention@arXiv24, vTensor@arXiv24/GMLake@ASPLOS24

• However, just improve kernel efficiency for serving a single model
• vLLM sleep mode: Offload model weights to CPU Mem.

• sleep()
• wake_up()
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Background: CUDA VMM for LLM 

1. https://developer.nvidia.com/blog/introducing-low-level-gpu-virtual-memory-management/
2. https://github.com/NVIDIA/cuda-samples/tree/master/Samples/0_Introduction/vectorAddMMAP
3. Expandable blocks in allocator. https://github.com/pytorch/pytorch/pull/96995



• SLO Attainment %: TTFT and TPOT
• Goal: Max{Thpt w/ or w/o SLO Attainment} + Min{Mem wasting}
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Background: Metrics of LLM Serving

1. GPU Pooling can be divided into two types roughly: GPU Multiplexing or GPU Auto-scaling (Aegaeon@SOSP25)
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Observation & Insights
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• I#1: Diverse latency SLOs
• I#2: Multiple low-demand models can space share GPUs
• I#3: No fixed sharing policies work well across Industrial workload.
• I#4: The frequent long idle periods allow time sharing:

• evicting idle models from GPUs and reloading upon new request arrivals.

A detailed analysis of four production multi-LLM serving traces.



Limitations of Existing Approaches
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Existing systems allocate memory statically or use fixed 
sharing policies (Space-sharing or Time-sharing), lacking the 
flexibility to adapt to workload fluctuations at runtime.

1. I guess. 

• S-Partition (MIG1): Hardware-based space sharing, casuing the lowest mem. %
• QLM: Time sharing by model swapping, but unstable 
• MuxServe:  based on offline profiling, cannot adjust based on workload changes.

• Lack model evication: when a model becomes idle, it continues occupying memory.
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Common Challenges Existing Solutions Design Intuitions Special Challenges

• Goal: Dynamically adjust memory allocation facing various workload 
• Flexibly combine space and time sharing

• low-demand models share a GPU during steady periods (space sharing)
• When one becomes idle, it can be swapping (time sharing)

• Challenges:
• C#1: How to enable flexible cross-model memory coordination?

• PagedAttention manages KV Cache within pre-allocated memory.
• Requiring dynamic memory redistribution across multiple models.

• C#2: How to coordinate memory allocation to maximize SLO attainment?
• Scheduling Problem

Opportunity: Space-sharing + Time-sharing



Overview of Prism
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• Flexible Cross-Model Memory Coordination
• kvcaced: a shim layer for on-demand memory allocation
• Fast model activation

• Memory Sharing to max SLO Att.: a two-level resource scheduling 
• Global Model Placement Scheduling (Alg. 1)
• GPU-Local Request Scheduling (Alg. 2)



Cross-Model Memory Coordination
• PagedAttention: Static memory allocation & cannot support multiple models
• KVCached: A shim layer for on-demand cross-model memory allocation

• Only virtual memory is reserved when LLM Inference Engine startups.
• Physical memory is allocated and mapped on demand
• Implemented as a runtime library

• Provides APIs like alloc_kvcache and free_kvcachefor KV cache management
• With minimal code changes (e.g., ~20 lines in SGLang)
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Fast Model Activation
• Existing model swapping: often within just a few seconds, too slow!
• Reusable engine pools

• Maintains an engine pool on each GPU
• Engines are pre-initialized with virtual address space and distributed contexts
• Model activation: selects an available engine from the pool
• Model eviction: physical memory is released, virtual address space is returned 

to the engine pool

• Parallel model weight loading
• Chunking model weights into smaller segments
• Loading them in parallel across multiple GPUs on the same node
• Aggregating them to the target GPU via high-speed NVLink interconnects

2026-1-6 38



Two-Level Demand-Aware Scheduling
• How to coordinate memory allocation to maximize SLO attainment?

• The Scheduling Problem

• Level 1 Global Model Placement Scheduling
• KV pressure ratio (KVPR): the degree of KV cache pressure on a GPU
• Assign the model to the GPU with the lowest KVPR

• Level  2 GPU-Local Request Scheduling
• GPU-level shared request queues

• replace independent queues for each engine
• avoid memory contention between co-located models

• Priority-based admission control
• employs the Moore-Hodgson algorithm to sort requests by deadline
• prioritizing high-priority requests (such as those with urgent TTFT SLOs)
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Implementation
• The backend for LLM Serving

• kvcached library: provides standard KV 
cache allocation APIs

• Extended SGLang (only 22 LOCs)
• Configured MPS to 100% per model

• The frontend
• a Redis queue to cache requests
• GPU-Local scheduler (a Python process)

• For TP Models, runs only on 1st rank
• Global scheduler (a Python process)

• Communicates with engines by ZeroMQ
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Evaluation: Setup
• Test bed: 4 GPU servers with {8 H100-80GB GPUs/NVLINK} connected with 

100Gbps Ethernet network
• Traces and models: Hyperbolic and Arena-Chat, which also be scaled to simulate 

a variety of scenarios.
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• Metric:  TTFT/TPOT SLO Attainment
• Baseline:

• Static Partition - NVIDIA MIG
• MuxServe++ - ported MuxServe from vLLM to SGLang
• QLM - Model swapping-based time sharing

Total 58 Models used in evaluation.



E1 SLO attainment
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E2-1 Cross-model memory coordination
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• a simplified two-model trace extracted from Arena-Chat
• Per-model Static: each model use 50% of total memory



E2-2 Model activation speed
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• The activation time for models with different sizes. 
• Data is measured on H100 GPUs.



E2-3 Scheduling
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• Global model placement scheduling
• Used two GPUs to serve eight models

• GPU local request scheduling
• Fix the SLO scale of Model1 to eight and vary the SLO scales of Model2
• Model1 consistently maintains high attainment
• enabling our GPU-local scheduling improves the SLO attainment of Model2 by more than 40%

The effectiveness of global model placement scheduling The effectiveness of GPU local request scheduling.



• Goal: Max Tenants Density
• CUDA VMM API

• cuMemAddressReserve
• cuMemCreate
• cuMemMap
• Example: vectorAddMMAP

• kvcached: support virtual Tensor
• Prism = kvcached + Scheduling
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Summary 



Mingxuan Liu
PhD student at Northwestern Polytechnical University

January 6, 2026

2026-1-6 47


