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Background: GPU Multiplexing

* (Traditional) GPU Multiplexing
* NVIDIA: Time slicing, MPS, stream Priority, and MIG
* Papers: REEF@0OSDI22, TGS@NSDI23, Orion@Eurosys24, LithOS@SOSP25
* However, they just focus on compute resouce sharing.

» Systems serving multiple LLMs (Serverless Style)
* Optimized model loading: ServerlessLLM, HydraServe @NSDI26
* DRAM preloading: DeepServe @ATC25
* Fine-grained autoscaling: BlitzScale@OSDI25, Aegaeon@SOSP25
* However, the goal is to reduce cold start latency.
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Background: CUDA VMM for LLM

* Virtual Memory in OS Kernel
* Isolation, mem. expansion like mmap, simple programming, IPC like shm, etc.

 CUDA VMM API! (CUDA 10.2, 2019)

e Core APIl: cuMemAddressReserve, cuMemCreate and cuMemMap, etc.
* Example: vectorAddMMAP?2

* mem_ptris distributed across multiple GPU devices
* CUDA VMM-based LLM
e PyTorch Expandable Segments3 (2023)
* vAttention@arXiv24, vTensor@arXiv24/GMLake @ASPLOS24
* However, just improve kernel efficiency for serving a single model
* VLLM sleep mode: Offload model weights to CPU Mem.

* sleep()
» wake_up()

1. https://developer.nvidia.com/blog/introducing-low-level-gpu-virtual-memory-management/
2. https://github.com/NVIDIA/cuda-samples/tree/master/Samples/0_Introduction/vectorAddMMAP

3. Expandable blocks in allocator. https://github.com/pytorch/pytorch/pull/96995 31
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Background: Metrics of LLM Serving

e SLO Attainment %: TTFT and TPOT
* Goal: Max{Thpt w/ or w/o SLO Attainment} + Min{Mem wasting}
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(b) Request rates over a 4-hour period in a day.
1. GPU Pooling can be divided into two types roughly: GPU Multiplexing or GPU Auto-scaling (Aegaeon@SOSP25)
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Observation & Insights

* |#1: Diverse latency SLOs
e |#2: Multiple low-demand models can space share GPUs
* |#3: No fixed sharing policies work well across Industrial workload.

* |#4: The frequent long idle periods allow time sharing:
* evicting idle models from GPUs and reloading upon new request arrivals.

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Trace name Service provider # models Time span
Hyperbolic Hyperbolic [26] 24 4 months
Novita Novita Al [4] 16 1 month
Arena-Battle Chatbot Arena [14] 129 16 months
Arena-Chat Chatbot Arena [14] 84 11 days
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A detailed analysis of four production multi-LLM serving traces.
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Existing systems allocate memory statically or use fixed
sharing policies (Space-sharing or Time-sharing), lacking the
flexibility to adapt to workload fluctuations at runtime.

e S-Partition (MIG1): Hardware-based space sharing, casuing the lowest mem. %

 QLM: Time sharing by model swapping, but unstable

* MuxServe: based on offline profiling, cannot adjust based on workload changes.
* Lack model evication: when a model becomes idle, it continues occupying memory.

1. | guess.
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Opportunity: Space-sharing + Time-sharing

* Goal: Dynamically adjust memory allocation facing various workload

* Flexibly combine space and time sharing
* low-demand models share a GPU during steady periods (space sharing)
 When one becomes idle, it can be swapping (time sharing)

* Challenges:

e C#1: How to enable flexible cross-model memory coordination?
* PagedAttention manages KV Cache within pre-allocated memory.
* Requiring dynamic memory redistribution across multiple models.

* C#2: How to coordinate memory allocation to maximize SLO attainment?
* Scheduling Problem

> Design Intuitions >
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Overview of Prism

* Flexible Cross-Model Memory Coordination
» kvcaced: a shim layer for on-demand memory allocation
* Fast model activation

* Memory Sharing to max SLO Att.: a two-level resource scheduling

e Global Model Placement Scheduling (Alg. 1)
* GPU-Local Request Scheduling (Alg. 2)
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G Fhris
Cross-Model Memory Coordination = ==

* PagedAttention: Static memory allocation & cannot support multiple models

* KVCached: A shim layer for on-demand cross-model memory allocation
* Only virtual memory is reserved when LLM Inference Engine startups.
* Physical memory is allocated and mapped on demand
* Implemented as a runtime library

* Provides APIs like alloc_kvcache and free_kvcachefor KV cache management
* With minimal code changes (e.g., ~20 lines in SGLang)

\ >
[ Model 1 Model 2 ]
J L
Model t PagedAttention t PagedAttention Model APITs for inference engines | Corresponding kvcached functions
weights kvcached il OOM i kvcached WEightS alloc_kvcache (size, shape) J alloc_virtual_tensor (size, shape)

Virtual avoidance v free_kvcache (size, shape) J free_virtual_tensor (size, shape)
memory S < Memory alloc_kv (num_tokens) | map (tensor, offset)

_________________ 17T~ .- pages

Physical 5 i free_kv ([ids_to_free]) J unmap (tensor, offset)
memory

Table 3: APIs and functions provided by Prism’s kvcached.

Figure 6: Flexible memory sharing in Prism.
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Fast Model Activation

 Existing model swapping: often within just a few seconds, too slow!

* Reusable engine pools
* Maintains an engine pool on each GPU
* Engines are pre-initialized with virtual address space and distributed contexts
* Model activation: selects an available engine from the pool

* Model eviction: physical memory is released, virtual address space is returned
to the engine pool

* Parallel model weight loading
* Chunking model weights into smaller segments
* Loading them in parallel across multiple GPUs on the same node
* Aggregating them to the target GPU via high-speed NVLink interconnects



Two-Level Demand-Aware Scheduling

* How to coordinate memory allocation to maximize SLO attainment?
* The Scheduling Problem

* Level 1 Global Model Placement Scheduling

e KV pressure ratio (KVPR): the degree of KV cache pressure on a GPU
* Assign the model to the GPU with the lowest KVPR

* Level 2 GPU-Local Request Scheduling

* GPU-level shared request queues
* replace independent queues for each engine
e avoid memory contention between co-located models

* Priority-based admission control

* employs the Moore-Hodgson algorithm to sort requests by deadline
 prioritizing high-priority requests (such as those with urgent TTFT SLOs)
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Implementation

* The backend for LLM Serving

* kvcached library: provides standard KV
cache allocation APIs

» Extended SGLang (only 22 LOCs)
* Configured MPS to 100% per model

 The frontend

* a Redis queue to cache requests

* GPU-Local scheduler (a Python process)
* For TP Models, runs only on 1st rank

* Global scheduler (a Python process)
 Communicates with engines by ZeroMQ
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Figure 5: The system architecture and design overview of Prism.
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Evaluation: Setup

* Test bed: 4 GPU servers with {8 H100-80GB GPUs/NVLINK} connected with
100Gbps Ethernet network

* Traces and models: Hyperbolic and Arena-Chat, which also be scaled to simulate
a variety of scenarios.

Model size 1B-3B 4B-8B 9B-30B 31B-70B

#LLMs 43 8 3 4

Total 58 Models used in evaluation.

 Metric: TTFT/TPOT SLO Attainment

* Baseline:
* Static Partition - NVIDIA MIG
* MuxServe++ - ported MuxServe from vLLM to SGLang
* QLM - Model swapping-based time sharing
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E1 SLO attainment
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E2-1 Cross-model memory coordination

e asimplified two-model trace extracted from Arena-Chat
* Per-model Static: each model use 50% of total memory
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E2-2 Model activation speed

 The activation time for models with different sizes.
 Datais measured on H100 GPUs.
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E2-3 Scheduling

* Global model placement scheduling
* Used two GPUs to serve eight models

* GPU local request scheduling
* Fix the SLO scale of Modell to eight and vary the SLO scales of Model2
* Modell consistently maintains high attainment
* enabling our GPU-local scheduling improves the SLO attainment of Model2 by more than 40%
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Summary

Before: Static, One Model per GPU kvcached

* Goal: Max Tenants Density R .
~70% ! )

* CUDA VMM API o E =Y Cost Savings
* cuMemAddressReserve (S5 (= ! -l
* cuMemCreate { S
* cuMemMap

GPU 1 GPU2 GPUS3 GPU 1

« Example: vectorAddMMAP | Modeln [ Model2 |
. PagedAttention I PagedAttention
° . Model I Model
kvcached: support virtual Tensor e e
: — : Virtual :
* Prism = kvcached + Scheduling e avoidance| .
ST IR 1 11-°F~1~ .- pages
ths'cal o e + - e - Ii//,
APIs for inference engines | Corresponding kvcached functions memory
alloc_kvcache (size, shape) | alloc_virtual_tensor (size, shape)
We impl d: f Pris ith ~10,400 lines of
free_kvcache (size, shape) | free_virtual_tensor (size, shape) SRR SR SRS o i Dl linesic

Python and 774 lines of C++ code. As the serving backend,

alloc_kv (num_tokens) | map (tensor, offset) we used SGLang [64], a widely adopted open-source infer-
ence engine, and extended it with our kvcached library to
support on-demand memory allocation. kvcached is imple-
mented using CUDA VMM APIs [36] and provides standard
KV cache allocation APIs (Table 3) accessible through Python
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free_kv ([ids_to_free]) | unmap (tensor, offset)

Table 3: APIs and functions provided by Prism’s kvcached.
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Mingxuan Liu
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