;‘" T (t l J J g
itz NORTHWESTERN POLYTECHNICAL UNIVERSITY

e° kvcached

Prism: Unleashing GPU Sharing for
Cost-Efficient Multi-LLM Serving

IUCLA 2UC Berkeley 3Rice University “Harvard University °CMU ¢Intel ’Stanford
University 8LMSYS

Presented by Mingxuan Liu, Northwestern Polytechnical University
January 6, 2026

1V > cs > arxiv:2505.04021

2026-1-6 29

Background: GPU Multiplexing

* (Traditional) GPU Multiplexing
* NVIDIA: Time slicing, MPS, stream Priority, and MIG
* Papers: REEF@0OSDI22, TGS@NSDI23, Orion@Eurosys24, LithOS@SOSP25
* However, they just focus on compute resouce sharing.

» Systems serving multiple LLMs (Serverless Style)
* Optimized model loading: ServerlessLLM, HydraServe @NSDI26
* DRAM preloading: DeepServe @ATC25
* Fine-grained autoscaling: BlitzScale@OSDI25, Aegaeon@SOSP25
* However, the goal is to reduce cold start latency.

2026-1-6 30

q) Tl 24K

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Background: CUDA VMM for LLM

* Virtual Memory in OS Kernel
* Isolation, mem. expansion like mmap, simple programming, IPC like shm, etc.

 CUDA VMM API! (CUDA 10.2, 2019)

e Core APIl: cuMemAddressReserve, cuMemCreate and cuMemMap, etc.
* Example: vectorAddMMAP?2

* mem_ptris distributed across multiple GPU devices
* CUDA VMM-based LLM
e PyTorch Expandable Segments3 (2023)
* vAttention@arXiv24, vTensor@arXiv24/GMLake @ASPLOS24
* However, just improve kernel efficiency for serving a single model
* VLLM sleep mode: Offload model weights to CPU Mem.

* sleep()
» wake_up()

1. https://developer.nvidia.com/blog/introducing-low-level-gpu-virtual-memory-management/
2. https://github.com/NVIDIA/cuda-samples/tree/master/Samples/0_Introduction/vectorAddMMAP

3. Expandable blocks in allocator. https://github.com/pytorch/pytorch/pull/96995 31

OE2EEEY |

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Background: Metrics of LLM Serving

e SLO Attainment %: TTFT and TPOT
* Goal: Max{Thpt w/ or w/o SLO Attainment} + Min{Mem wasting}

GPU Exclusive 1e6
0 245000
375
=3
. _ 3 5.0 -
Single Tenant Single Tenant o
Batching Tracing 745" AR
|_
Jenga@SOSP25 0.0- Models
Heavy Industrial (a) Long-tail model popularity over a 4-month period
Workload Workload & :
. . 3 750 1 —— Modell = —— Model 2
Multi Tenants Multi Tenants é BRI O
Batching Tracing %%
72]
Prism@arXiv25 5 230
§ ol _ I \
GPU Pooling? 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00

(b) Request rates over a 4-hour period in a day.
1. GPU Pooling can be divided into two types roughly: GPU Multiplexing or GPU Auto-scaling (Aegaeon@SOSP25)

2026-1-6 32

Observation & Insights

* |#1: Diverse latency SLOs
e |#2: Multiple low-demand models can space share GPUs
* |#3: No fixed sharing policies work well across Industrial workload.

* |#4: The frequent long idle periods allow time sharing:
* evicting idle models from GPUs and reloading upon new request arrivals.

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Trace name Service provider # models Time span
Hyperbolic Hyperbolic [26] 24 4 months
Novita Novita Al [4] 16 1 month
Arena-Battle Chatbot Arena [14] 129 16 months
Arena-Chat Chatbot Arena [14] 84 11 days

2026-1-6

1 o
= { == ArenaBattle / =125 . Arena-Battle
~ 10 {—— Arena-Chat L4 = — Arena-Chat
g - Hgﬂﬁ;bﬂllt o~ = 1001 — Hyperbolic
S . _ E 75— Movita
.E 10 1 A |
s / ——— Arena-Battle - E 50 1
w 02549 ~=— Arena-Chat .2 .
8 / // — Hyperbolic E 10° 1 ;:'-_.-' 25 4 .
0.00 1 I/ -—INowta : s , | . E 01 ! |
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Model percentage Model percentage Model percentage
(a) Long-tail model popularity. (b) Median request interval. (¢) Number of intervals per hour.

A detailed analysis of four production multi-LLM serving traces.

33

Norm.
Reqg-rate

KV Cache

Mem.%

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

1.0 1
= Model 2
- Model 1
0.5 1
0.0
— MuxServe
05 - S-Partition
— QLM
i —
00 T T T T T
0 180 360 540 720
Time (s)

Dedicated 5-Pa. Muxs. QLM Ours

Space sharing by model colocation X A
Time sharing by model swapping X X X
Runtime sharing policy adaptation X X X X
Cost saving & meeting SL()s X X X X
(PUs needed for 8 models 8 7 - 8
SLO attainment with 2 GPUs - 3% 51% 45%

Existing systems allocate memory statically or use fixed
sharing policies (Space-sharing or Time-sharing), lacking the
flexibility to adapt to workload fluctuations at runtime.

e S-Partition (MIG1): Hardware-based space sharing, casuing the lowest mem. %

 QLM: Time sharing by model swapping, but unstable

* MuxServe: based on offline profiling, cannot adjust based on workload changes.
* Lack model evication: when a model becomes idle, it continues occupying memory.

1. | guess.

34

Opportunity: Space-sharing + Time-sharing

* Goal: Dynamically adjust memory allocation facing various workload

* Flexibly combine space and time sharing
* low-demand models share a GPU during steady periods (space sharing)
 When one becomes idle, it can be swapping (time sharing)

* Challenges:

e C#1: How to enable flexible cross-model memory coordination?
* PagedAttention manages KV Cache within pre-allocated memory.
* Requiring dynamic memory redistribution across multiple models.

* C#2: How to coordinate memory allocation to maximize SLO attainment?
* Scheduling Problem

> Design Intuitions >

2026-1-6 35

Overview of Prism

* Flexible Cross-Model Memory Coordination
» kvcaced: a shim layer for on-demand memory allocation
* Fast model activation

* Memory Sharing to max SLO Att.: a two-level resource scheduling

e Global Model Placement Scheduling (Alg. 1)
* GPU-Local Request Scheduling (Alg. 2)

2026-1-6

appﬁtgfions §6.2 Global scheduler
<> i //4\
Requests ; DD_ ifﬁicﬁf(zj
rontena || (osen] hoae)
cpy §5.1 Flexibly shared memory

§5.2
Fast model
activation

—)

CPU DRAM
Model 1

Model 2

) ¥HZEHY

NORTHWESTERN POLYTECHNICAL UNIVERSITY

G Fhris
Cross-Model Memory Coordination = ==

* PagedAttention: Static memory allocation & cannot support multiple models

* KVCached: A shim layer for on-demand cross-model memory allocation
* Only virtual memory is reserved when LLM Inference Engine startups.
* Physical memory is allocated and mapped on demand
* Implemented as a runtime library

* Provides APIs like alloc_kvcache and free_kvcachefor KV cache management
* With minimal code changes (e.g., ~20 lines in SGLang)

\ >
[Model 1 Model 2]
J L
Model t PagedAttention t PagedAttention Model APITs for inference engines | Corresponding kvcached functions
weights kvcached il OOM i kvcached WEightS alloc_kvcache (size, shape) J alloc_virtual_tensor (size, shape)

Virtual avoidance v free_kvcache (size, shape) J free_virtual_tensor (size, shape)
memory S < Memory alloc_kv (num_tokens) | map (tensor, offset)

_________________ 17T~ .- pages

Physical 5 i free_kv ([ids_to_free]) J unmap (tensor, offset)
memory

Table 3: APIs and functions provided by Prism’s kvcached.

Figure 6: Flexible memory sharing in Prism.

2026-1-6 37

Fast Model Activation

 Existing model swapping: often within just a few seconds, too slow!

* Reusable engine pools
* Maintains an engine pool on each GPU
* Engines are pre-initialized with virtual address space and distributed contexts
* Model activation: selects an available engine from the pool

* Model eviction: physical memory is released, virtual address space is returned
to the engine pool

* Parallel model weight loading
* Chunking model weights into smaller segments
* Loading them in parallel across multiple GPUs on the same node
* Aggregating them to the target GPU via high-speed NVLink interconnects

Two-Level Demand-Aware Scheduling

* How to coordinate memory allocation to maximize SLO attainment?
* The Scheduling Problem

* Level 1 Global Model Placement Scheduling

e KV pressure ratio (KVPR): the degree of KV cache pressure on a GPU
* Assign the model to the GPU with the lowest KVPR

* Level 2 GPU-Local Request Scheduling

* GPU-level shared request queues
* replace independent queues for each engine
e avoid memory contention between co-located models

* Priority-based admission control

* employs the Moore-Hodgson algorithm to sort requests by deadline
 prioritizing high-priority requests (such as those with urgent TTFT SLOs)

2026-1-6 39

Implementation

* The backend for LLM Serving

* kvcached library: provides standard KV
cache allocation APIs

» Extended SGLang (only 22 LOCs)
* Configured MPS to 100% per model

 The frontend

* a Redis queue to cache requests

* GPU-Local scheduler (a Python process)
* For TP Models, runs only on 1st rank

* Global scheduler (a Python process)
 Communicates with engines by ZeroMQ

2026-1-6

e-kvcache

® Pythom 357% #® C++ 3.5%

Shell 5.7%

ITLM. §6.2 Global scheduler
applications
< [\ P
<P —Z
§6.3 Local
Requests — 8 DD—| scheduler
I)]
Erontend [Modell H 4-[Model2]
GPU §5.1 Flexibly shared memory I

§5.2
Fast model
activation

—)

7)) FhIE) Y

NORTHWESTERN POLYTECHNICAL UNIVERSITY

CPU DRAM

Model 1
Model 2

Figure 5: The system architecture and design overview of Prism.

40

Evaluation: Setup

* Test bed: 4 GPU servers with {8 H100-80GB GPUs/NVLINK} connected with
100Gbps Ethernet network

* Traces and models: Hyperbolic and Arena-Chat, which also be scaled to simulate
a variety of scenarios.

Model size 1B-3B 4B-8B 9B-30B 31B-70B

#LLMs 43 8 3 4

Total 58 Models used in evaluation.

 Metric: TTFT/TPOT SLO Attainment

* Baseline:
* Static Partition - NVIDIA MIG
* MuxServe++ - ported MuxServe from vLLM to SGLang
* QLM - Model swapping-based time sharing

2026-1-6 41

E1 SLO attainment

20:

SLO attainment SLO attainment

SLO attainment

TTFT (Hyperbolic)

o
(=1

o
in

=
(=1

1.00

0.75 1

1.001

0.751

0.50

0.251

0.00

12 16 20 24 28 32

Rate scale

20 30 40

5L0 scale

10

Num GPUs

TPOT (Hyperbolic)

1.0

0.5 1

!]
| [
= I

—s— S-Partition
—t— MuxServe++
— QLM

—e— (Qurs

N

—

4 8 12 16 20 24 28 32

Rate scale

1.00 4

I
0.75 -
| =
' :
0.50 1 —a— S-Partition
—— MuxServe++
0.25 1 —— QLM
—s— (urs
0.00 4= ; , v .
10 15 20 25 30
5L0 scale
1.00 1

0.75 1
0.50 1 | [S-Partition
| —+— MuxServe++
0.25 1 : —— QLM
| —e— Ours
0.00 += } . - .
4 5 6 7 8
Num GPUs

ITFT (Arena-chat)

TltZ LK%

NORTHWESTERN POLYTECHNICAL UNIVERSITY

TPOT (Arena-chat)
]

-E' 1.0 - 1.0
]
E
20511 ~=— S-Partition
© | 0.6- | —4+— MuxServe++
Q | : | ——Qw
7 i | —e— QOurs
oo 4+— v 1 . e
6 8 10 12 14 16 18 20 6& 8 10 12 14 16 18 20
Rate scale Rate scale
1.00 ————+]| 1.00
t /r/k 1
@ 1
£ 0.751 i 0.75 1
c " r) L = 4
'Enm-/q_.f" : 0.50 - L
£ : ' S-Partition
etk —— MuxServe++
Qo251] 0.251 —— QLM
ul | —e— Qurs
DuDD T T T ! T T T D T T T T T T L] T
2 4 6 8 10 12 14 16 101520 25 3.0 3.54.045
SLO Scale SLO Scale
1.00 # - - & - i
- '{ 1.00- 1 ’
]
£ 0.751 0.95 1 .
E | |
m 11 I :
£ 207 0.901 | —a— S-Partition
I —— MuxServe++
Q02571 0.851 | —— QLM
] | 1 —e— Qurs
0.00 44 - — .80 1= | : - .
4 5 & 8 4 5 & 7 8
Num GPUs Num GPUs 42

E2-1 Cross-model memory coordination

e asimplified two-model trace extracted from Arena-Chat
* Per-model Static: each model use 50% of total memory

2026-1-6

Norm. req/s

MNorm. KV size

Norm. tput

=t
=]
1

=
L
1

e
o
1

1.0

05

nn

1.0+

—
— -
-

A
VAR ATy

Hf-,‘_,u\v’ -

L ——

—= Modell ~—— Meodel2

S
“f"'_‘r\\.f‘\-’\;’ -"--u"\;

20

30 40 50
Time (s)

TTotal KV pool size

|Static limif—m\

'_____'__....-__.__._____..

— On-demand
- = Parmodel static

— -

——— e —
e e p—

— On-demand
== Parmodel static

30 40 50
Time (s)

60

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

43

Z) FhHIErS

NORTHWESTERN POLYTECHNICAL UNIVERSITY

E2-2 Model activation speed

 The activation time for models with different sizes.
 Datais measured on H100 GPUs.

70B jum rerapsy _ 7.25
(TP=8) e
148 . : oo 4,15 AL
5.0s

BB s .‘ 5 l £.£45

p e 3.65s g Naive model loading
D.35 - M <+ Pre-inited Engine

1By .55 ' B + Parallel loading

0 1 2 3 4 5 6 7 8
Activation Latency (seconds)

2026-1-6 44

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

E2-3 Scheduling

* Global model placement scheduling
* Used two GPUs to serve eight models

* GPU local request scheduling
* Fix the SLO scale of Modell to eight and vary the SLO scales of Model2
* Modell consistently maintains high attainment
* enabling our GPU-local scheduling improves the SLO attainment of Model2 by more than 40%

1.01 w/ global'ﬁ : A 1.01 i —— w/ mod1
= 44 Y A L s - 60 !
€ os. : - - "’,,"-’J'W.I-"k'r Mﬁﬁ '#1 ; J‘J"ﬁ A0 G os s ! \ = w/ mod2
g - \.} 8 24 ; \ i L,, \ 3‘ ;_\%I | ‘[‘Q‘."r '_‘»'ﬁ_; *‘ = g; ' lIl T
£ 06 ":g___j:"--..__-__. - g y : " % 0.6 a 2 407 ‘ ‘,' ——- w/o mod2
o S, 90 B I O Gy nae - ° A N
£ 0.4 —o— TTFT (w) el =, [Wiogiolgl S e AN e e IV CA
@ —e - TTFT (w/o) c : fu‘f .-'“‘.‘." Vi -—— GPU1 o - =l i I T
d 024 —&— TPOT (W” g 2+ V‘r‘.; v I - Alll p-', 4y t 024 —* w/modl -®- w/o modl o !' -~ \\ \
—=- TPOT (w/o) VPN R R e T ol ol 0- >
4 : il i ! ik 0.0 T T T T T T r r
0.0 T T T T T T 0 ' T T y ' 1 2 3 4 5 0 10 20 30
5.0 7.5 lo,gaé;!—;c;i’é{) 17.5 20.0 0 200 400 TI?:'(; (58;)0 1000 1200 Modeld €10 scale Hme (5}
(a) Attainment with rate scales (b) GPU load status (a) Attainment with SLO scales (b) Queue length with time
The effectiveness of global model placement scheduling The effectiveness of GPU local request scheduling.

2026-1-6 45

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Summary

Before: Static, One Model per GPU kvcached

* Goal: Max Tenants Density R .
~70% !)

* CUDA VMM API o E =Y Cost Savings
* cuMemAddressReserve (S5 (= ! -l
* cuMemCreate { S
* cuMemMap

GPU 1 GPU2 GPUS3 GPU 1

« Example: vectorAddMMAP | Modeln [Model2 |
. PagedAttention I PagedAttention
° . Model I Model
kvcached: support virtual Tensor e e
: — : Virtual :
* Prism = kvcached + Scheduling e avoidance| .
ST IR 1 11-°F~1~ .- pages
ths'cal o e + - e - Ii//,
APIs for inference engines | Corresponding kvcached functions memory
alloc_kvcache (size, shape) | alloc_virtual_tensor (size, shape)
We impl d: f Pris ith ~10,400 lines of
free_kvcache (size, shape) | free_virtual_tensor (size, shape) SRR SR SRS o i Dl linesic

Python and 774 lines of C++ code. As the serving backend,

alloc_kv (num_tokens) | map (tensor, offset) we used SGLang [64], a widely adopted open-source infer-
ence engine, and extended it with our kvcached library to
support on-demand memory allocation. kvcached is imple-
mented using CUDA VMM APIs [36] and provides standard
KV cache allocation APIs (Table 3) accessible through Python

2026-1-6 46

free_kv ([ids_to_free]) | unmap (tensor, offset)

Table 3: APIs and functions provided by Prism’s kvcached.

Thanks for Listening

Mingxuan Liu
PhD student at Northwestern Polytechnical University
January 6, 2026

