
1Tsinghua University 2UC Berkeley 3University of Chicago
Presented by Mingxuan Liu, Northwestern Polytechnical University

January 6, 2026

2026-1-6 1

https://github.com/vllm-project/vllm/issues/11382.

2026-1-6 2

Background: Architecture of LLMs

OPT-2 Architecture

Background: Decoding in LLM Inference
• Prefill: Generate KV cache & first token -> Compute-bound

2026-1-6 3

• Decode: Fetch KV cache & generate next token

2026-1-6 4

xx

Fetch From HBM

Background: Prefill in LLM Inference

5

• Startup1:
• S1: Init model structure (.config)
• S2: Load weights
• S3: Load tokenizer
• S4: Init KV Cache Memory

• Memory Profiling to calculate Available_KV_Cache_Memory and reserve
• Fixed-sized during the lifestyle of LLM Engine (vLLM, SGLang, etc.)

• S5: CUDA Graph Capturing
• Inference: Scheduling + Computing

• Scheduling: Continues batching, Chunked Prefill, etc.
• Computing: FlashAttention v3, etc.

• Efficient Available_KV_Cache_Memory management
• maximize request batch size

Background: LLM Inference Engine

1. Zeng, Shaoxun, et al. "Medusa: Accelerating serverless LLM inference with materialization." Proceedings of the 30th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 1. 2025.

6

Background: Paged Attention (1)

Traditional
KVCache Alloc1
for 3 Requests

1. Figure source: https://zhuanlan.zhihu.com/p/691038809.
2. Kwon, Woosuk, et al. "Efficient memory management for large language model serving with pagedattention." Proceedings of the 29th symposium on operating

systems principles. 2023.

PagedAttention
KVCache Alloc2

for 1 Request

block_size = 4

7

Background: Paged Attention (2)

1. Kwon, Woosuk, et al. "Efficient memory management for large language model serving with pagedattention." Proceedings of the 29th symposium on operating
systems principles. 2023.

Available_KV_Cache_Memory

block_size = 4
PagedAttention
KVCache Alloc1

for 2 Requests

8

Background: Prefix Caching
• Cached page pool

• all Available_KV_Cache_Memory not allocated to running requests
• Add Page: immediately after paged are freed
• Cache Eviction: Free queue & LRU
• Cache Hit: Determine the prefix of the new request that skip the recomputation of prefill

Cache Hit Prefix [AB..KL] All Cache Miss

1. Figure source: https://zhuanlan.zhihu.com/p/707228704.

Background: Heterogeneous LLMs (1)
• Heterogeneous LLM architecture

• Different attention mechanism across layers
• Models often have embeddings (e.g. KV Cache) with different sizes
• Example: NVIDIA Hymba model1

• Sliding Window (SW) Layer: only attend to a sliding window of tokens
• Mamba Layer2: use a large, fixed-size tensor to capture the information of all tokens

9

Prefill Decoding

1. Hymba Hybrid-Head Architecture Boosts Small Language Model Performance. Nov. 2024. https://developer.nvidia.com/blog/hymba-hybrid-head-architecture-boosts-
small-language-model-performance/

2. Mamba represents State space models, or linear attention. Mamda layers can viewed as SW layers with window_size 1.

For shorter request: Mamba layers dominate mem.
For longer request: Full-att. layers dominate mem.

Background: Heterogeneous LLMs (2)
• Heterogeneity comes from new types of attention:

• 1) Sparse attention:
• Type 1: (mixed) sliding-window attention (SWA), e.g. Gemma-3 and Ministral
• Type 2: token dropping, e.g. Pyramid

• 2) Linear attention: a tensor to capture the information of all tokens
• Examples: Kimi Linear1

10
1. Ping Gong (Presenter), and Xin Ren (Presenter). “Kimi Linear: An Expressive, Efficient Attention Architecture.” ADSL Reading Group 2025 Fall, 2 Dec. 2025, adsl-

rg.github.io/2025fall.html.

Background: Heterogeneous LLMs (3)
• Heterogeneity comes from new types of attention:

• 3) VLMs: {Images, texts} -> texts, e.g. Llama 3.2 Vision
• Vision Embedding Cache. Vision Embedding also called image token.
• Text Full Attention Layer: text_hidden -> text_hidden
• Text-image Cross Attention Layer: {Q_text_hidden, K_image, V_image} -> text_hidden

• 4) An Engine serving multiple models: Speculative decoding

11

"the vision
embedding cache
can be treated as
another type of
layer with a
specific hidden
size"

Prefill Decoding

Limitations of PagedAttention (1)

2026-1-6 12

• Analyzes PagedAttention’s fragmentation
• For simplicity, set tokens_per_page = 1 (Block size = 1)
• Llama 3.2 11B Vision: 32 full attention layers + 8 cross attention layers

• Thus, one KV_cache_size of text_token = 4× KV_cache_size of image_token
• Image tokens: vision encoder that takes images as input and generates vision embeddings.

32×{K_text, V_text}

8×{K_image, V_image}

KV Cache Mem.

• Request Length = text_tokens# + image_tokens#
• text_tokens#: T
• image_tokens#: I

• KV Cache per layer per token: E bytes
• Policy of PagedAttention:

• Demand: T*32*E + I*8*E
• Allocated: (32*E + 8*E) * (T+I)

one kv_cache_slot_size

Limitations of PagedAttention (2)

13

• Max Page: Allocated max(32*E, 8*E) * (T+I), still wastes.
• Static Partition: cannot adapt to dynamic workload changes

• different ratio of text tokens (Full Att. Layers) and image tokens (Cross Att. Layers) in VLMs
• This can be solved by analysing model in initialization1.

• different request length (text_tokens# + image_tokens#) in sparse attention

1. I guess.

different request length

Limitations of Prefix Caching
• SWA (sliding window Attention) Model: two types layers

• Full-attention layer
• Sliding window layer

• Existing Prefix Caching in SWA Model
• Only caching tokens inside sliding window
• Maximizes batch size √
• Causes cache miss for common tokens ×

2026-1-6 14

Just Caching all layers {K, V}: EF, GH, JK
The decoding will have more free slot

All cache missing!
If cached full-att. layer {K, V} of ABC, it will hit!

Overview of Jenga
• KV Cache of 1 token = ΣL_type1{K, V} + ΣL_type2{K, V} + ... + ΣL_typen{K, V}
• 1 Small Page = ΣL_type{K, V}
• Two-level

• LCM allocator
• Layer-specific allocator

15

• First, partitions memory into layers
• Then, partitions each layer into pages
• vLLM, SGLang, TGI, FlashAttention, FlashInfer

• First, partitions the memory into pages
• Then, partitions each page into layers

Overview of Jenga
• Unified LayerProperty Interface for a

Request
• Page size: KV_size_per_token in type of layer
• Active_pages: used to compute future token
• Possible_prefix:

• input: a boolean list marking which pages are
cached

• output: return all valid prefixes of that layer

• Sliding Window Layer as an example
• Active_pages:

• tokens in sliding window
• Possible_prefix:

• caching sliding_window_size tokens

16

LCM Allocator & Memory Layout
• Assume Llama vision model = 3 full attention layers + 2 cross attention layers

• KV_size_per_token of each layer is 128
• KV_size_per_text_token 128×3 = 384, KV_size_per_image_token 128×2 = 256
• LCM (256, 384) = 768

• Request: Hello world

17

• First, partitions memory into layers
• Then, partitions each layer into pages
• vLLM, SGLang, TGI, FlashAttention, FlashInfer

• First, partitions the memory into pages
• Then, partitions each page into layers

Customized Cache Eviction

18

• Evict the page (wholelayer {K, V}) of a token
• Prioritize eviction for unimportant pages

• e.g., pages outside sliding window
• Balanced eviction across layers

• Update last_access_time of
• active_pages (e.g., pages in sliding window)
• pages for saving the generated KV cache

• Evict the the least last_access_time

Note that the generated token does not have KV cache.

SW_size=4
SW_size=2
SW_size=3

Customized Cache Hit
• Cache hit rules differ across layer types

• possible_prefix: All valid prefixes of a layer for a request
• get_possible_prefix for each layer type to identify valid prefixes.
• (KV) Cache hit prefix: the longest common prefix valid across all layers.

19

• SW Layer
• possible_prefix returns {4, 9, 10}
• The possible prefixes: {ABCD, ABCDEFGHI, ABCDEFGHIJ}

• Full attention Layer
• possible_prefix returns {1, 2, 3, ..., 9}
• The possible prefixes in Full Layer: {A}, {AB}, ..., {ABCDEFGHI}.

• The cache hit prefix is {ABCD}, {ABCDEFGHI}.

possible_prefix

More Optimization
• Customization for Different Layers

• Sliding Window Layer
• Mamba Layer

• only caches the state of every 512 tokens
• active_pages only returns the page of the last cached token

• Local Attention (e.g., Llama 4)
• a request is divided into 8192-token chunks
• active_pages includes the pages belonging to the same chunk

• Vision Embedding Cache and Vision Cross Attention Cache
• evict all tokens from one image
• active_pages include all pages of the same image

• Common Page Pool: future imporve cache hit rate
• alongside the regular cached page pool, separately.

20

Evaluation: Setup
• Testbed 1: one NVIDIA H100 80GB GPU, 2 Intel Xeon Platinum CPUs, CUDA 12.4
• Testbed 2: one NVIDIA L4 24GB GPU, 2 AMD EPYC 7F52 CPUs, CUDA 12.4
• Model:

• Llama 3.2 vision with cross attention layers
• Gemma-3, Ministral and Character.ai with sliding window layers
• Llama 4 with local attention layers
• Jamba-1.5 with Mamba layers
• PyramidKV drops some tokens
• Llama 3.1: Traditional Full attention model

• Dataset:
• MMLU-pro for text-only models (length <= 3076)
• MMMU-pro for multi-modality models
• arXiv-QA, a long-context dataset

• Baseline: vLLM, SGLang, TGI

2026-1-6 21

∗ means with FP8 quantization.

E1-1 End-to-end Thpt

2026-1-6 22

• vLLM: traditional PagedAttention
• Static Partition: Partition KV cache memory by layer type. Each layer receives an equal number of pages.
• Max Page: All layers adopt a common page size equal to the largest among them

E1-2 End-to-end Latency

2026-1-6 23

Averaged Latency for the Llama Vision Model

• vLLM: traditional PagedAttention
• Static Partition: Partition KV cache memory by layer type. Each layer receives an equal number of pages.
• Max Page: All layers adopt a common page size equal to the largest among them

The TPOT of Jenga is larger than vLLM because Jenga batches more
requests and has more computation in each step. (details in next slide)
Jenga can achieve the same TPOT if scheduling the same number of
requests in each step.

E2-1 Decode batch size

2026-1-6 24

• Workload: simulates the typical long document question-answering
• 20 requests arriving at the inference engine all at once
• input length ~55-110 thousand tokens
• output length ~50-100 tokens

Timeline of decode batch size for Ministral model

Avg. Decode
Batch Size

vLLM 2.63

SGLang 2.74

TGI 2.50*

Jenga 5.39

*TGI does not support the --ignore-eos flag (proposed in
vLLM v0.6.0), and thus generates fewer tokens compared to
the other inference engines.

E2-2 Fragmentation Analysis (Breakdown)

2026-1-6 25

• Static trace: the request length distribution does not change over time
• Dynamic trace: the average length forms a uniform distribution over time
• Metrics:

• reserve: model activations and cuda graphs
• wasted: memory that is allocated but not storing useful KV cache
• unallocated

• vLLM wastes 38.2% KV cache memory on average, while Jenga only has 0.04%

Timeline of memory usage for Ministral model

E2-3 Prefix Caching

2026-1-6 26

• When the number of articles is small (e.g., <= 3), both systems can cache all articles.
• When the number of articles is big:

• Jenga has up to 1.60× cache hit rate as being able to prioritize the eviction of KV cache
• The higher cache hit rate saves more computation, which birngs 1.77× throughput

Prefix caching with different number of articles in the arXiv-QA dataset

Cache hit rates of prefix caching optimizations for Gemma-3 model

+ +

the slight overhead of Jenga
is Jenga needs to allocate
memory twice

E3 Case 1-5

2026-1-6 27

• Case 1: VLM with Vision embedding cache
• Case 2: Speculative decoding

• vLLM-max: using a uniform page size as in the
PagedAttention

• vLLM-manual uses a manually-designed memory allocation
strategy for speculative decoding by SmartSpec

• Case 3: Multi-turn conversation
• 500-token common prefix for all conversations

• Case 4: Chain-of-thought
• the model produces long intermediate reasoning

• Case 5: Parallel sampling
• generates multiple outputs per request

LCM means least common multiple.2026-1-6 28

Summary

Mingxuan Liu
PhD student at Northwestern Polytechnical University

January 6, 2026

2026-1-6 47

