[RFC]: Hybrid Memory Allocator #11382

Jenga: Effective Memory Management
for Serving LLM with Heterogeneity

ITsinghua University 2UC Berkeley 3University of Chicago
Presented by Mingxuan Liu, Northwestern Polytechnical University
January 6, 2026

https://github.com/vlim-project/vlim/issues/11382.

SOSP 2025
The 315t Symposium on Operating Systems Principles

2026-1-6

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Background: Architecture of LLMs

Transformer Block '

Output i y

E

Multi-Head
Attention Output

/ Linear .
.'JJ - -
[Matmul
d A 1
! i — |

=)

Masked
Attention[]

| “
Transformer Block i
Input

Multi-Head
Attention Input

OPT-2 Architecture

2026-1-6 2

Z) FhHIErS

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Background: Decoding in LLM Inference

* Prefill: Generate KV cache & first token -> Compute-bound

Read Il embedding]
g M —> I
Group N

Embedding

- R
— pro j ect '

Generate KV Cache 5

I
I !
[E—
Embedding Q K A\

& others _
Soitmax X X =
SBER ~ -

L SE—

\% O Embedding
~

. " x

October 15

s | [OSDI'24] InfiniGen: Efficient Generative Inference of Large Language Models with
D_Y“F‘j‘_m'CGKV CaJC_he Miﬁjge”;e”t " Next token embedding

* 4, Ping Gong, Jiawei Yi, Juncheng Zhang .

= [slides, = Q&A summary, B video Embeddlng

2026-1-6

2 ThI4rY

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Background: Prefill in LLM Inference

* Decode: Fetch KV cache & generate next token

embedding
e
Is i —
Embedding
Fetch KV Cache From HBM
4 o | A
project 1 :
: !
g ——
R
Embedding Q K i
< - XN
others
softmax X X — —
1
o
K Q KT Vv O Embedding -)
October 15 Decode
s | [OSDI'24] InfiniGen: Efficient Generative Inference of Large Language Models with - X
Dynamic KV Cache Management Next token embedding
* /., Ping Geng, Jiawei Yi, Juncheng Zhang Embedding

= [slides, = Q&A summary, B video
2026-1-6 4

q) Tl 24K

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Background: LLM Inference Engine

e Startup?:
 S1: Init model structure (.config)

_ - Init Load Load Init Capture
* 52 Load WEIgh_tS str::ﬁ:(tjs:-e weights tokenizer KVcache]_{ (g:g?)ﬁ
* S3: Load tokenizer >~ — —. — o
* S4: Init KV Cache Memory ' ' ' ' '

* Memory Profiling to calculate Available KV Cache Memory and reserve
 Fixed-sized during the lifestyle of LLM Engine (vLLM, SGLang, etc.)
e S5: CUDA Graph Capturing
* Inference: Scheduling + Computing

* Scheduling: Continues batching, Chunked Prefill, etc.
* Computing: FlashAttention v3, etc.

* Efficient Available KV Cache Memory management
* maximize request batch size

1. Zeng, Shaoxun, et al. "Medusa: Accelerating serverless LLM inference with materialization." Proceedings of the 30th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 1. 2025.

5

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Background: Paged Attention (1)

Traditional PG s
KVCache Alloc! prompt2 Today she
for 3 Requests prompt3 o

Physical KV blocks o
(onGPU DRAM) DlOCK_size = 4

Block 0
A Outputs: “fathers” — “brought” — ... [0] @ @®

Request Prompt: “Four score and seven years ago our”

Block 1 | "years | ago our @f)arhers

Logical KV blocks Block 2
® o) @ ® Block Table ?
. Block 0 | Four | score and seven : Block 3 | brought
Physical block

PagedAttention - - = = \K (Sica 010K\ #filled

KVCache Alloc2 Block 1 | years | ago our | fathers E{. oF; o Block 4
@ D3

for 1 Request Block 2 c?nougm o @; ";}1 4L Block 5
Block 3 - - Block 6

@
Block 7 |~ Four ®score ®and .seven

Block 8

1. Figure source: https://zhuanlan.zhihu.com/p/691038809.
2. Kwon, Woosuk, et al. "Efficient memory management for large language model serving with pagedattention." Proceedings of the 29th symposium on operating g
systems principles. 2023.

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Background: Paged Attention (2)

PagedAttention
KvCache AllOc*r Physical KV blocks block_size = 4
I
for 2 Requests Block 0 .
Reguest I I Request
A ! I B
Block 1 | years | ago our | fathers |,
' I
|
Logical KV blocks Block3 | of times , Logical KV blocks

Block 0 | Four | score and seven IE!~I|::-::I('.:\l brought
|
Block 1 | years ago our | fathers Bluck¢1

Block 0 It was the best

Block 1 of times

I
Block 2 | brought Block 9 It was the best Block 2
I

Block 3 B|Dﬂkﬁl
|

Bluck?: Four score and seven
I

Bluckq

Available KV Cache Memory

1. Kwon, Woosuk, et al. "Efficient memory management for large language model serving with pagedattention.” Proceedings of the 29th symposium on operating
systems principles. 2023. 7

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Background: Prefix Caching
e Cached page pool

* all Available KV Cache Memory not allocated to running requests

* Add Page: immediately after paged are freed

e Cache Eviction: Free queue & LRU

* Cache Hit: Determine the prefix of the new request that skip the recomputation of prefill

seq0
0 A B C D hash_str = hash(A~D), num_tokens =4
1 E F G H hash_str = hash(A~H), num_tokens =8
2 I J K L hash_str = hash(A~L), num_tokens =12
3 M N hash_str = hash(A~N), num_tokens = 16

Cache Hit Prefix [AB..KL] All Cache Miss

seqi seq1
0 A B | ¢ D hash_str = hash(A~B), num_tokens =4 0 X0 | X1 A B hash_str = hash(X0~B), num_tokens =4 X
1 | E | F [& H | hash_str = hash(A~H), num_tokens =8 1 C D E F hash_str = hash(X0~F), num_tokens =8 X
2 1 J K L hash_str = hash(A~L), num_tokens =12 2 G H I J hash_str = hash(X0~J), num_tokens =12 X
a3 M | X0 | hash_str = hash(A~X0), num_tokens =16 X 3 | K [L | M | N | hashstr=hash(X0~N), num_tokens =16 X

1. Figure source: https://zhuanlan.zhihu.com/p/707228704.

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Background: Heterogeneous LLMs (1)

* Heterogeneous LLM architecture
 Different attention mechanism across layers
* Models often have embeddings (e.g. KV Cache) with different sizes
* Example: NVIDIA Hymba modelt

 Sliding Window (SW) Layer: only attend to a sliding window of tokens
* Mamba Layer?: use a large, fixed-size tensor to capture the information of all tokens

KV cache of full . KV cache of sliding Large mamba state e 1.0 < 1.0
D attention layer window attention (only (only needed by = layer 2 S sliding window
needed for last 4 tokens) last token) g layer 1 g fall attention

__________ 1 i e e e W Rl = o
Model E A boy ran to ! Model E A boy ran to the park! E 0.5 layer 0 % 0.5 mamba
layero ((JC) (] sliding window | o | o o o 2 S

| 1 1 1 =

I I I 1 L L

- - mamba | [:] | 0.0 . . 0.0 - -
el | alnle D: i | =000 2500 so00 = %% 2500 5000
layer 2 :D [:] [j D: full attention ' OO OO 3! Number of tokens Number of tokens

I I I I vy

| . | a) Traditional LLMs b) Heterogeneous LLMs

wers (DOOO; mebe J; @ {5y Hetero

e N Prefilt ‘-Decoding For shorter request: Mamba layers dominate mem.
(a) Traditional LLMs (b) Heterogeneous L1.Ms (Hymba model) For longer request: Full-att. layers dominate mem.

1. Hymba Hybrid-Head Architecture Boosts Small Language Model Performance. Nov. 2024. https://developer.nvidia.com/blog/hymba-hybrid-head-architecture-boosts-
small-language-model-performance/ 9

2. Mamba represents State space models, or linear attention. Mamda layers can viewed as SW layers with window_size 1.

2) hHIi S

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Background: Heterogeneous LLMs (2)

° Heterogeneity comes from new types of attention:
e 1) Sparse attention:
* Type 1: (mixed) sliding-window attention (SWA), e.g. Gemma-3 and Ministral
* Type 2: token dropping, e.g. Pyramid
 2) Linear attention: a tensor to capture the information of all tokens
* Examples: Kimi Linear?

A boy ran to A boy ran to A boy ran to A boy ran to

Layer1 () JCJC] OO ad] L) CJOI(L
Layer2 ()] . | L SN :]

Lyer3 (JOOO L1200 OO ooda O
Layer4 ()OO . [OO0 AR

Laver 5. (DN JOJaJd UUuydd o ¢
== . L arge Mamba cache

D K;tzfi]:; i}illl-l_ [:] / L_‘s:li;l[zljgil’;;;ﬂw a_,l Dropped tokens :] (glﬂi neled to store

or the last token)

(*) Traditional LLMs (a.1) LLMs with sliding (2.2) LLMs with (b) LLMs with Mamba

window attention Pyramid token dropping

1. Ping Gong (Presenter), and Xin Ren (Presenter). “Kimi Linear: An Expressive, Efficient Attention Architecture.” ADSL Reading Group 2025 Fall, 2 Dec. 2025, adsl-
rg.github.io/2025fall.html. 10

) Y74 ¥

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Background: Heterogeneous LLMs (3)

* Heterogeneity comes from new types of attention:

e 3) VLMs: {Images, texts} -> texts, e.g. Llama 3.2 Vision
* Vision Embedding Cache. Vision Embedding also called image token.
* Text Full Attention Layer: text_hidden -> text_hidden
* Text-image Cross Attention Layer: { , K_image, V_image} -> text_hidden

* 4) An Engine serving multiple models: Speculative decoding

"the vision ' | ! R husr e 2% 1 mawk! .
- ; |+ Model 1 Text token Image token ' —r | - by o 1o I
embedding cache vision === ~=C—-==-~== i3/ I i : small | O O O |) !
can be treated as cpcode [W (] (] (w ;,:/ failo 1 D D I model :r | (D (O () ()
another type of | | W - 1 \ 1 :
o ! 7' leross0 DOOO: - |

= I I 1

: Large :U [_,l [_] l_,l :

: |

| |

I I

| |

1

I
I
layer with a : ;4 S
specific hidden : Sggggggg: il + OO
size” LIM - | i Al model
N | E:11 o
| LLMKvVcache v _ ful2 ! (JO OO0
i il T g e : £ KV cache of the small modoe
KV cache of full- : ; . cache e s e
D angifm;?ﬁ}; D Vision embedding D KV cache of image token Speculated tokens
(c.1) Vision language model (c.2) Vision language model (d) Speculative decoding with

(cross attention based) two different-size models

11

@ Vltz4H %

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Limitations of PagedAttention (1)

* Analyzes PagedAttention’s fragmentation
* For simplicity, set tokens per page =1 (Block size = 1)
e Llama 3.2 11B Vision: 32 full attention layers + & cross attention layers
* Thus, one KV_cache_size of text_token = 4x KV_cache_size of image_token
* Image tokens: vision encoder that takes images as input and generates vision embeddings.

e toten| | tontioken | | Wested | [Unallocated * Request Length = text_tokens# + image_tokens#
\ * text_tokens#: T
KV Cache Mem tul i * image_tokens#: |
_______ I
q_ﬁit’fgil'a_gﬁnﬂ x{K_text, V_text} * KV Cache per layer per token: E bytes

_______ * Policy of PagedAttention:
_______ x{K_image, V_image} e Demand: T*32*E + I*8*E

image tnkLn __________

* Allocated: (32*E+8*E). (T+1)
e

one kv_cache _slot size

<IMG= Hello Wiorld
(a) PagedAttention. It always reserves the memory space for all
tokens and for all layers, thus wastes memory when the token

does not need to store KV cache for that layer.

2026-1-6 12

Limitations of PagedAttention (2)

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

 Max Page: Allocated max(32*E, 8*E) * (T+l), still wastes.

 Static Partition: cannot adapt to dynamic workload changes

different ratio of text tokens (Full Att. Layers) and image tokens (Cross Att. Layers) in VLMs
* This can be solved by analysing model in initialization?.
different request length (text_tokens# + image_tokens#) in sparse attention

Used by

image token|

Used by
text token

Wasted Unallocated

A page

L} 3

Memory per {

image token Memory per

text token

<IMC> Hello World

(b) Max page. It sets the page size to the maximum of the 2
types, thus wastes some memory for the smaller image tokens.

1. | guess.

A text page
b bl

An mage page
- »-

Hello World

(c) Static partition with two fixed-size memory pools for image
and text tokens. It works well on specific workloads, but cannot

e e — e e e e e T e e e oy e e e e e e e — =

dlfferent request length

13

q) W Z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Limitations of Prefix Caching

* SWA (sliding window Attention) Model: two types layers
* Full-attention layer
 Sliding window layer

 Existing Prefix Caching in SWA Model

* Only caching tokens inside sliding window
 Maximizes batch size Vv
e Causes cache miss for common tokens x

Requests running in parallel:

L (request 1) |~~~ Tokens in sliding window Just Caching all layers {K, V}: EF, GH, JK
ABHCHGHH] (request2) Token not cached The decoding will have more free slot
\ T J ‘ (request 3) TOkeI‘l CaChed

New request:

. issing!
1B CHL HMHN] (request 4, no cache hit) All cache missing!

If cached full-att. layer {K, V} of ABC, it will hit!

2026-1-6 14

Overview of Jenga

e KV Cache of 1 token = ZL_typel{K, V} + 2L type2{K, V} +... + ZL typeniK, V}
* 1 Small Page = 2L _typeiK, V}

* Two-level
e LCM allocator
* Layer-specific allocator

1
I
1
1
1
I
i
i
1
I
I
\

1 Full-attn

property

1
Page size

Active page

Possible |,

<fequest>———> Scheduler

/ Jenga’s Memory Manager

v

LCM allocator

| full-attn f‘;gc‘;f;n
il allocator manager

!E!@EE

B

LCM
, page

SWA
SWA
‘
manager

\ Customized pages for the request

4

Figure 7. Overview of JENGA

f
1
I
I
1
I
T
I
I
I
I
\

property

Possible

e T e i

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Page 1
(a) Memory layout of PagedAttention
First, partitions memory into layers

Then, partitions each layer into pages
vLLM, SGLang, TGlI, FlashAttention, Flashinfer

KV_cache_start_ptr page_size_exec

S FIE CEOGE E DR

0 4 12 14

pageid_exec [0,4, 12, 14]
(c) Memory allocated for layer cross. 1

First, partitions the memory into pages
Then, partitions each page into layers

15

Overview of Jenga

* Unified LayerProperty Interface for a
Request
» Page size: KV size per token in type of layer
* Active_pages: used to compute future token
* Possible_prefix:

* input: a boolean list marking which pages are
cached

e output: return all valid prefixes of that layer

 Sliding Window Layer as an example
* Active_pages:
e tokens in sliding window
* Possible_prefix:
e caching sliding_window_size tokens

FIHZ24HY

NORTHWESTERN POLYTECHNICAL UNIVERSITY

class LayerProperty:

def page_size();

def active_pages(r: Request, length: int) -> list[Page];
def possible_prefix(is_hit: list[bool]) -> set[int];

(a) Layer properties that JENGA is aware of

class SlidingWindowProperty(LayerProperty):

def page_size(): return KV_hidden_size

def active_pages(r: Request, length: int) -> list[Page]:
return r.pages[length-sliding: length]

def possible_prefix(is_hit: list[bool]):
1 = len(is_hit)
return {p|0 < p <IAVx € [0,sliding),is_hit[p-x] = True}

(b) Example implementation of sliding window layer

16

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

LCM Allocator & Memory Layout

* Assume Llama vision model = 3 full attention layers + 2 cross attention layers
* KV size per token of each layeris 128
* KV size per text token 128x3 =384, KV size per _token 128x2 = 256
 LCM (256, 384) =768

* Request: Hello world

|:| For image tokens I:I For text tokens |:| unused] @110 | @55_0 | “_] | @ss.l I E@l“-z |
Large page Large PO Large P1 Large P2 Large P3 Page 1
Small page for 2o (a) Memory layout of PagedAttention
. k PO | P1 | P2 P6 | P7 | P8 . fr .
1mage tokens * First, partitions memory into Iayers
Small page for 256 * Then, partitions each layer into pages
text tokens P2 | P3 * vLLM, SGLang, TGlI, FlashAttention, Flashinfer
384
KV_cache_start_ptr page_size_exec
lcrossO | cross | I Image tokens H Pl PI P3 | P4 | PS Pﬂ P8 | P9 |P10|PII
—— 0 4 12 14
Image tokens PO’ Pl \‘P_2’l P6 | P7 | P8 pageid exec [0,4, 12, 14]
256 (c) Memory allocated for layer cross. 1
Text tokens P2 P3
384 " * First, partitions the memory into pages

| fullo | full1 | full2 |
(b) Memory layout of JENGA

* Then, partitions each page into layers

17

Customized Cache Eviction

* Evict the page (whelelayer {K, V}) of a token

* Prioritize eviction for unimportant pages
* e.g., pages outside sliding window
* Balanced eviction across layers

* Update last_access_time of

* active_pages (e.g., pages in sliding window)

* pages for saving the generated KV cache
* Evict the the least last_access_time

Step Request Full attention Sliding window

1 1’s prefill ABCD->E ABCD->E SW_size=4
2 1'sdecode ABCDE->F DE->F SW size=2
3 2’s prefill ABCDG->H CDG->H SW_size=3

Note that the generated token does not have KV cache.

1 1 1 1
step 1 |]AHBHCHD

=) $, 3, . 9,
step 2 |[AHBHCHDHE

3 3 3 3
step 3 |[AHBHCHD}-

(b) Full-attention layer

FIHZ24HY

NORTHWESTERN POLYTECHNICAL UNIVERSITY

(c) Sliding window layer

18

<) T2 4H ¥

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Customized Cache Hit

e Cache hit rules differ across layer types
* possible prefix: All valid prefixes of a layer for a request
e get_possible_prefix for each layer type to identify valid prefixes.
e (KV) Cache hit prefix: the longest common prefix valid across all layers.

cached evicted possible prefix
window - * SW Layer
full B D] e possible_prefix returns {4, 9, 10}
* The possible prefixes: {ABCD, ABCDEFGHI, ABCDEFGHIJ}
(a) The KV cache

* Full attention Layer
possible_prefix * possible_prefix returns {1, 2, 3, ..., 9}

* The possible prefixes in Full Layer: {A}, {AB}, ..., {ABCDEFGHI}.
window -

full BHCHD|] * The cache hit prefix is {ABCD}, {ABCDEFGHI}.
(b) The possible prefixes for request ABCDEFGHIJ

19

2) FhIir

NORTHWESTERN POLYTECHNICAL UNIVERSITY

More Optimization

* Customization for Different Layers
* Sliding Window Layer
* Mamba Layer

e only caches the state of every 512 tokens
* active_pages only returns the page of the last cached token

e Local Attention (e.g., Llama 4)
* arequest is divided into 8192-token chunks
* active_pages includes the pages belonging to the same chunk

* Vision Embedding Cache and Vision Cross Attention Cache
* evict all tokens from one image
e active_pages include all pages of the same image

« Common Page Pool: future imporve cache hit rate
* alongside the regular cached page pool, separately.

Evaluation: Setup

<) T2 4H ¥

NORTHWESTERN POLYTECHNICAL UNIVERSITY

* Testbed 1: one NVIDIA H100 80GB GPU, 2 Intel Xeon Platinum CPUs, CUDA 12.4

* Testbed 2: one NVIDIA L4 24GB GPU, 2 AMD EPYC 7F52 CPUs, CUDA 12.4
* Model:

Llama 3.2 vision with cross attention layers
* Gemma-3, Ministral and Character.ai with sliding window layers

* Llama 4 with local attention layers

e Jamba-1.5 with Mamba |ayers Model Dataset H100 HO00-TP L4

° PyramIdKV drops some tokens Llama 3.2 Vision MMMU-pro 11B 1 11B*

- . Gemma-3 Xiv-QA 12B 1 4B

* Llama 3.1: Traditional Full attention model e e By © B
° . Llama 4 arXiv-QA 109B 8 OOM
Dataset: Jamba-1.5 MMLU-pro 52B 4 OOM
 MMLU-pro for text-only models (length <= 3076) characterai ~ MMLU-pro 70B* 1 SB

* MMMU-pro for multi-modality models PyramidkV ~ MMLU-pro 70B* 1 8B

* arXiv-QA, a long-context dataset Dpmadl MMLDge 0B 4 8B

e Baseline: vLLM, SGLang, TGI * means with FP8 quantization.

2026-1-6

21

E1-1 End-to-end Thpt

e vLLM: traditional PagedAttention
 Static Partition: Partition KV cache memory by layer type. Each layer receives an equal number of pages.
* Max Page: All layers adopt a common page size equal to the largest among them

Throughput (req/s)

Throughput (req/s)

LI EEEY

NORTHWESTERN POLYTECHNICAL UNIVERSITY

X0 vLIM E=3 Static Partition = [Z—A Max Page T Jenga
73 10_________1.39;5 R V- 02 === 71.50)5 10+ 1.00x
2 V] =] | % NEI
NEV = N = v
5' /| 1—: 0'1' L/ 5-\:/
NEZ RNES MNEZ MNEZ
0- 0.0 B 0 — 0.0 — o =ls
Llama4 Jamba Character PyramidKV Llama3.1
(a) H100 GPU
___________ 2.16x| A0 ———— L O 1.76x | 1.00x |
f/ 0.5 \ 7
0.5 0.1 oAl
= - I=le —— 0.5 34 021 Z NI=|%
NEZ MNEZ WP L7 MNEZ WNEZ
0.0/ /f 00N] 0.00 % = 0> / 0.0 < 00153 -
Llama3.2 Gemma3 Ministral Character PyramidKV Llama3.1
(b) L4 GPU

2026-1-6

22

FIHZ24HY

NORTHWESTERN POLYTECHNICAL UNIVERSITY

E1-2 End-to-end Latency

e vLLM: traditional PagedAttention
 Static Partition: Partition KV cache memory by layer type. Each layer receives an equal number of pages.

* Max Page: All layers adopt a common page size equal to the largest among them

vLLM Static Partition Max Page Jenga
20 -
~ 20 - = — 0.04 4
n - e
10
& 104 = z
& = 4 0.02 -
L] L] L) L 0 " L] L] T L] T T T T
1 2 3 -+ 1 2 3 4 1 2 3 4
Request Rate (req/s) Request Rate (req/s) Request Rate (req/s)
(a) End-to-end latency (b) Time to first token (c) Time per output token

Averaged Latency for the Llama Vision Model /

The TPOT of Jenga is larger than vLLM because Jenga batches more

requests and has more computation in each step. (details in next slide)
Jenga can achieve the same TPOT if scheduling the same number of

requests in each step.

2026-1-6 23

O T PECE]
@ }, v v 3
ai NORTHWESTERN POLYTECHNICAL UNIVERSITY

E2-1 Decode batch size

* Workload: simulates the typical long document question-answering
» 20 requests arriving at the inference engine all at once
* input length ~55-110 thousand tokens
e output length ~50-100 tokens

vLLM -—— SGLang TGI Jenga
Avg. Decode
g Batch Size
‘g P VLLM 2.63
_c-':: " SGLang 2.74
= [T [] *
l Jenga 5.39

0 100 200 300 400 500 600 , _
Scheduler step *TGI does not support the --ignore-eos flag (proposed in

vLLM v0.6.0), and thus generates fewer tokens compared to
the other inference engines.

Timeline of decode batch size for Ministral model

2026-1-6 24

E2-2 Fragmentation Analysis (Breakdown)

 Static trace: the request length distribution does not change over time

* Dynamic trace: the average length forms a uniform distribution over time

* Metrics:
* reserve: model activations and cuda graphs

* wasted: memory that is allocated but not storing useful KV cache
e unallocated

* VvLLM wastes 38.2% KV cache memory on average, while Jenga only has 0.04%

FIHZ24HY

NORTHWESTERN POLYTECHNICAL UNIVERSITY

weight used unallocated used-window
reserve wasted used-full
80 80 20 80
@ 60 @ 601 @ 601 @ 60
540 %‘40 gum- 540
5 D
S 20 S 20 g 20 § 20
0 : : : 0 : : : 0 . : 0
0 2500 5000 7500 0 2500 5000 7500 0 2000 4000 6000 0
Forward step Forward step Forward step
(a) vLLLM (static) (b) vLLM (dynamic) (c) Jenga (static)
Timeline of memory usage for Ministral model
2026-1-6

2000 4000 6000
Forward step

(d) Jenga (dynamic)

25

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

E2-3 Prefix Caching

* When the number of articles is small (e.g., <= 3), both systems can cache all articles.

* When the number of articles is big:

. Jenga.has up to 1.6.0x cache hit rate as being al:.)le to pr-lorltl-ze the eviction of KV cache the slight overhead of Jenga
* The higher cache hit rate saves more computation, which birngs 1.77x throughput .
is Jenga needs to allocate
a3 memory twice
9 M| g d-0) sEiih
o Jenga £ Jenga
= 0.5 < S
= = o
= © 8 10K+
T =
0.0 v T 0 T '
10 20 10 20
Number of articles Number of articles
(a) Hit rate (b) Throughput

Prefix caching with different number of articles in the arXiv-QA dataset

Full Attention |+Customized LRU |[+Common Page Pool

arXiv-QA 2.4% 15.2% 34.6%
Mooncake 14.1% 15.5% 20.9%

Cache hit rates of prefix caching optimizations for Gemma-3 model

2026-1-6 26

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

E3 Case 1-5

e Case 1: VLM with Vision embedding cache =T VLM B Jenga
. . e J9x X :i 20 1
* Case 2: Speculative decoding i B :
* vLLM-max: using a uniform page size as in the %”é_g“" 35 “"‘ &
PagedAttention £ 2N ED |
* vLLM-manual uses a manually-designed memory allocation Ll NA N D 2 \,‘,\m m‘“w n\“‘“’
strategy for speculative decoding by SmartSpec A P ¥
(a) Thrc-ughput (b) E2E latency
* Case 3: Multi-turn conversation Figure 19. Vision language model with chunked prefill.
* 500-token common prefix for all conversations
FZd vLIM-max [EX] vLLM-manual 23 Jenga
4

3.30x

Case 4: Chain-of-thought

* the model produces long intermediate reasoning
0.97x

. 1 1.07x
Case 5: Parallel sampling ; i RS . N

* generates multlple outputs per request P —— Ministral* ahictir Fobivii
Figure 20. Speculative decoding. Amplified the throughput

of Ministral by 10 X for better visualization.

Throughput
{req/s)
=]

%0 EED vILM [Jenga [EN viLM [Jenga
_ vLLM -
w0 i 1.17x = 0.50 1.42x
e Jen = 1.0 - 4
= £s £2
E 2205 z 20251
“ oy e 1.62x o
= 20 - : = : 189% ﬁ Nrﬁbl 175
0 10 20 20 S = 0.0 H——1 I 0.00
4 R} 2P\ ey ST\ BA t‘!?b- ";1!'*-
'L | \ L Ap I\ I
Number of conversations ¥ A W S¥- W Q¥
(b) Chain of thought (c) Parallel sampling (n=3)

(a) Multi-turn conversation
27

2026-1-6

G z4HKE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Summary

Model E A b()y ran to i Model

layer 0 i[_] [_] [_] m i sliding window i
layer 1 i[)][_][]i mamba i

A boyran to the parki Model E Text token Image token

OO OO, DD

0000

cross.0
I

i full.0
: !
I 1
| I
COOoOOoOOoOoOm! ful.,l + OO |
: :
! I
. |
|

layer 2 i [_] m m m i full attention
layer 3 EU [_] [_] UE mamba

Sl al s A J full.2

EV eache ol il KV cache of sliding Large mamba state
window attention (only (only needed by
needed for last 4 tokens) last token)

cross.1

D KV cache of image token
attention layer

... (c.2) Vision language model
(a) Traditional LL.Ms (b) Heterogeneous LLMs (Hymba model) (cross attention based)

Data type 1
(full attn, size X)

Jenga’s Data type 2 Implementation JENGA is implemented with about 4,000
memory N (slidn{g window, size Y) lines of Python code in vLLM and is transparent to users
allocator LCM page S o of the inference engine. JENGA requires no configuration to
(size=TOMIEX, X; 7)) (n;amgi size Z) support new models as JENGA can parse all possible embed-
. . ding sizes from the model structure to initialize the memory
Figure 3. LCM allocator in JENGA management system.
v e LCM means least common multiple. -

Thanks for Listening

Mingxuan Liu
PhD student at Northwestern Polytechnical University
January 6, 2026

