

METIS: Fast Quality-Aware RAG Systems with Configuration Adaptation

SOSP '25

**Siddhant Ray¹, Rui Pan², Zhuohan Gu¹, Kuntai Du^{1 3}, Shaoting Feng¹,
Ganesh Ananthanarayanan⁴, Ravi Netravali², Junchen Jiang^{1 3}**

¹University of Chicago, ²Princeton University,
³TensorMesh, ⁴Microsoft

Xiaoqi Li @Reading Group 2025/12/30

LLMs: A New Paradigm, But Not Perfect

❑ LLMs are enabling breakthroughs across many fields

❖ e.g. code generation, creative writing, conversations, ...

❑ However, they suffer from inherent limitations

❖ Hallucination, knowledge cutoff, high cost & latency, ...

Who is the first person to walk on Mars?

Commander Ivan Kuznetsov on the fictional Ares 7 mission in 2035....

The Hallucination Problem

What was the biggest news story of yesterday?

My knowledge cutoff is in early 2024...

The Knowledge cutoff Problem

.....

Σ \$ \$

High cost & Latency

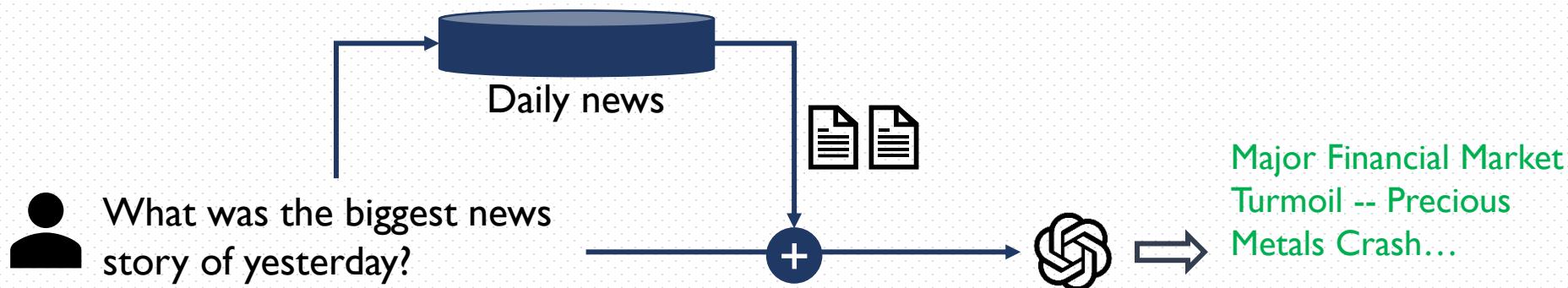
RAG: Augmenting LLMs with External Knowledge

❑ RAG (Retrieval Augmented Generation)

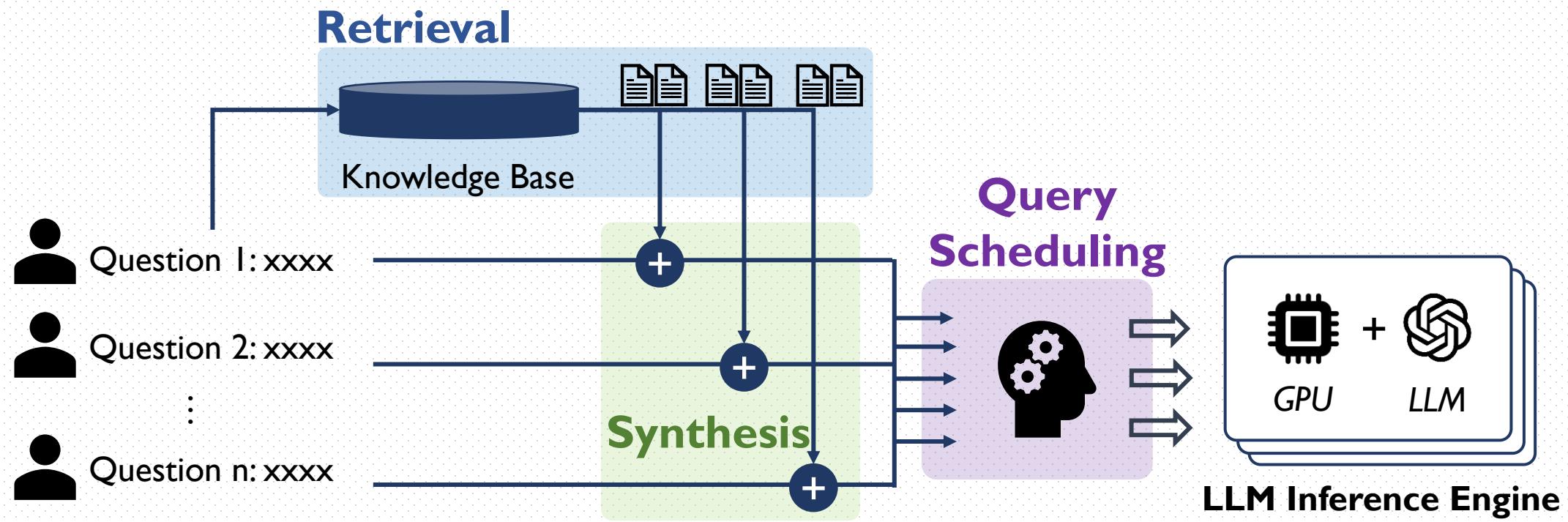
- ❖ Retrieves relevant information from external knowledge bases
- ❖ Feeds this context to the LLM along with the user's query

❑ This approach makes LLM responses more:

- ❖ Factual & traceable
- ❖ Up-to-date & relevant

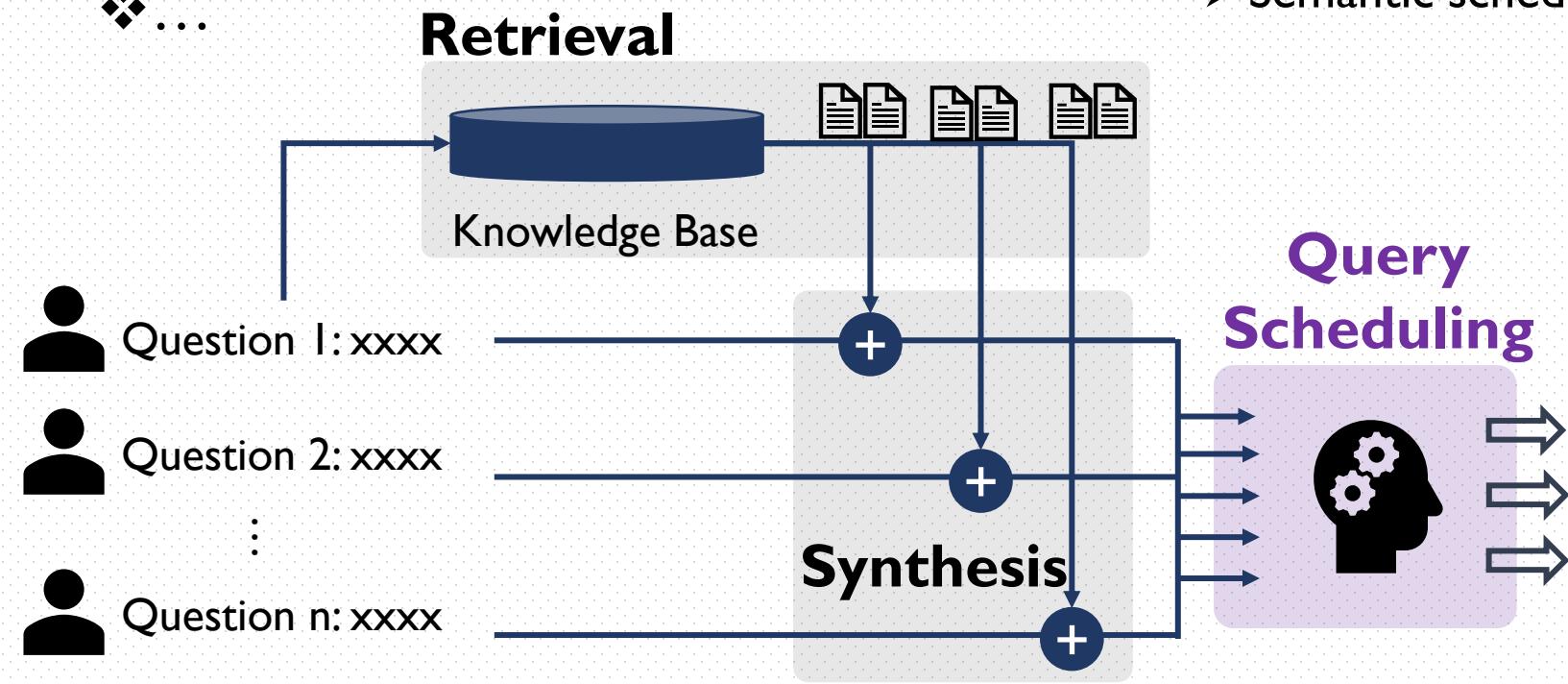


Optimization Opportunities in RAG Systems



Optimization Opportunities in RAG Systems

- ❑ Query scheduling
 - ❖ Batching strategy
 - ❖ Request reordering
 - ❖ Computation reuse
 - ❖ ...

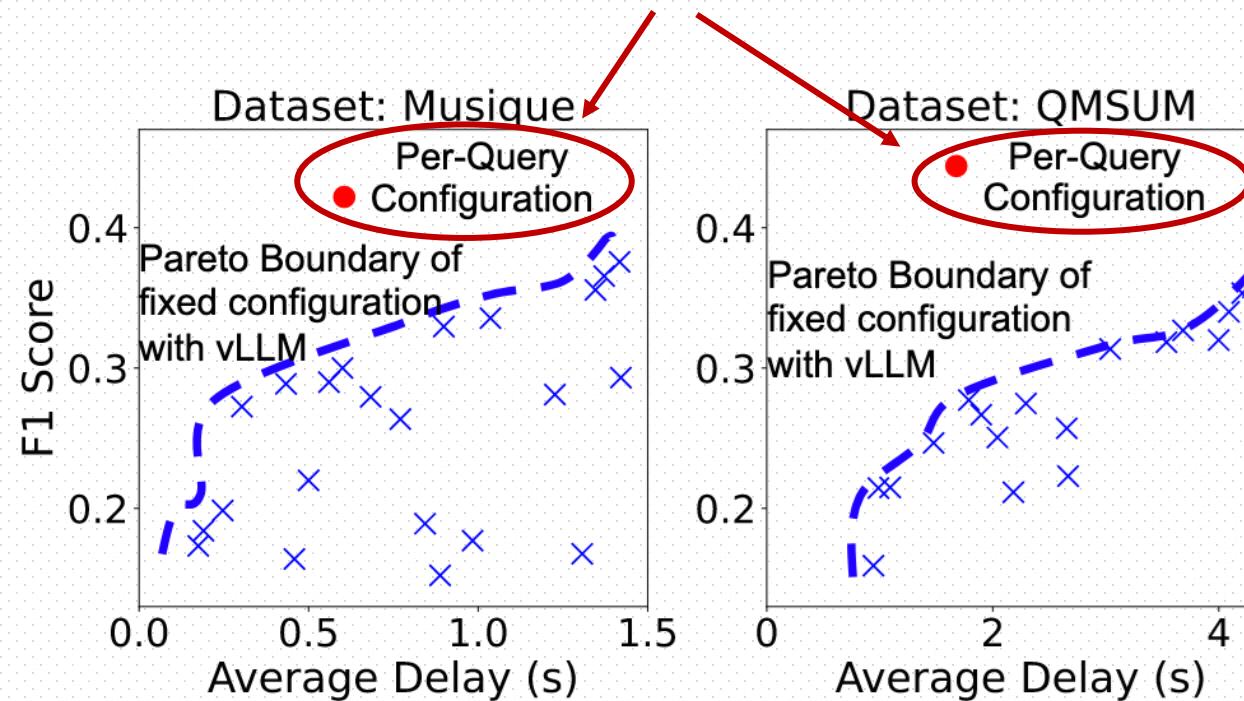


- ❑ Prior work
 - ❖ vLLM (SOSP '23)
 - Continuous batching with PagedAttention
 - ❖ Parrot (OSDI '24)
 - Semantic scheduling with semantic variable

Optimization Opportunities in RAG Systems

□ Per-query RAG configuration

Per-query configuration can achieve significantly better quality-delay tradeoffs

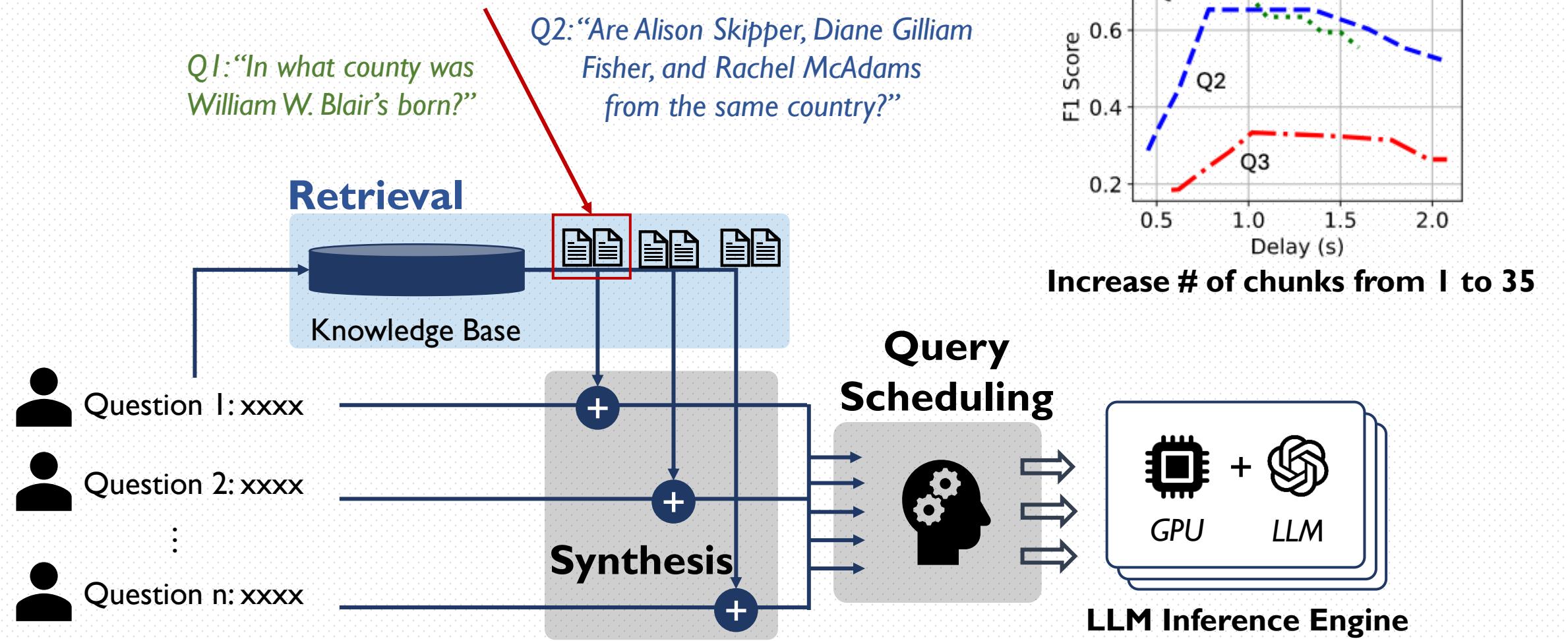


Per-query configuration vs. static configuration

Optimization Opportunities in RAG Systems

❑ Per-query RAG configuration

- ❖ How many text chunks to retrieve?



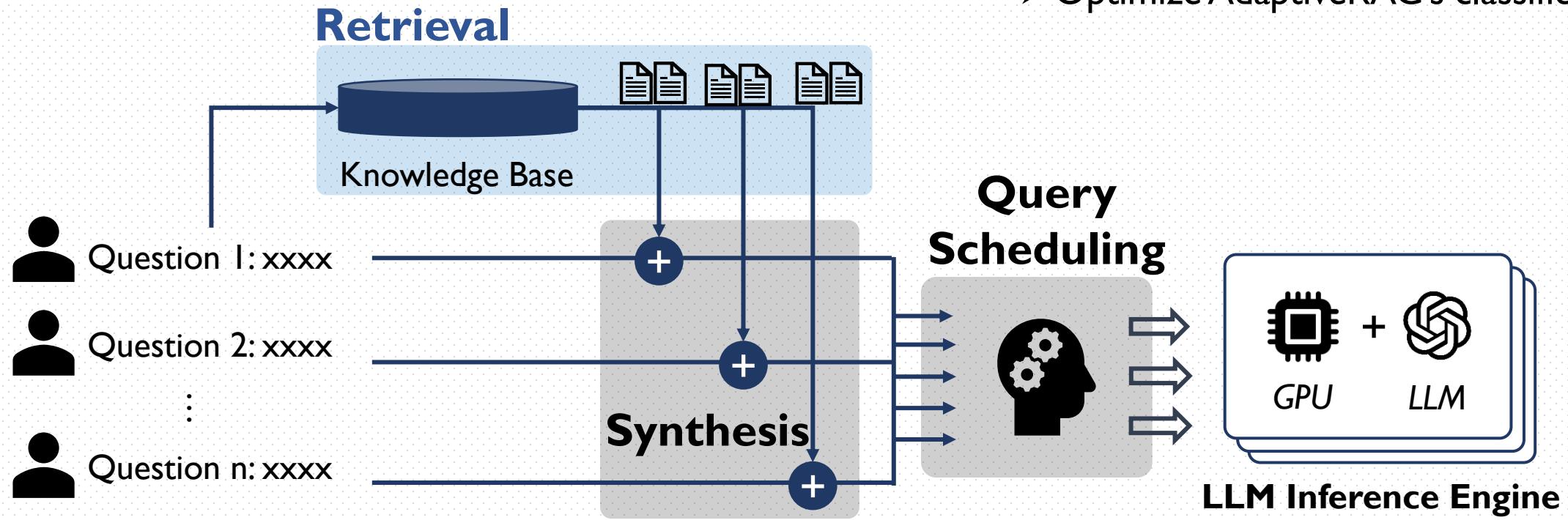
Optimization Opportunities in RAG Systems

❑ Per-query RAG configuration

- ❖ How many text chunks to retrieve?

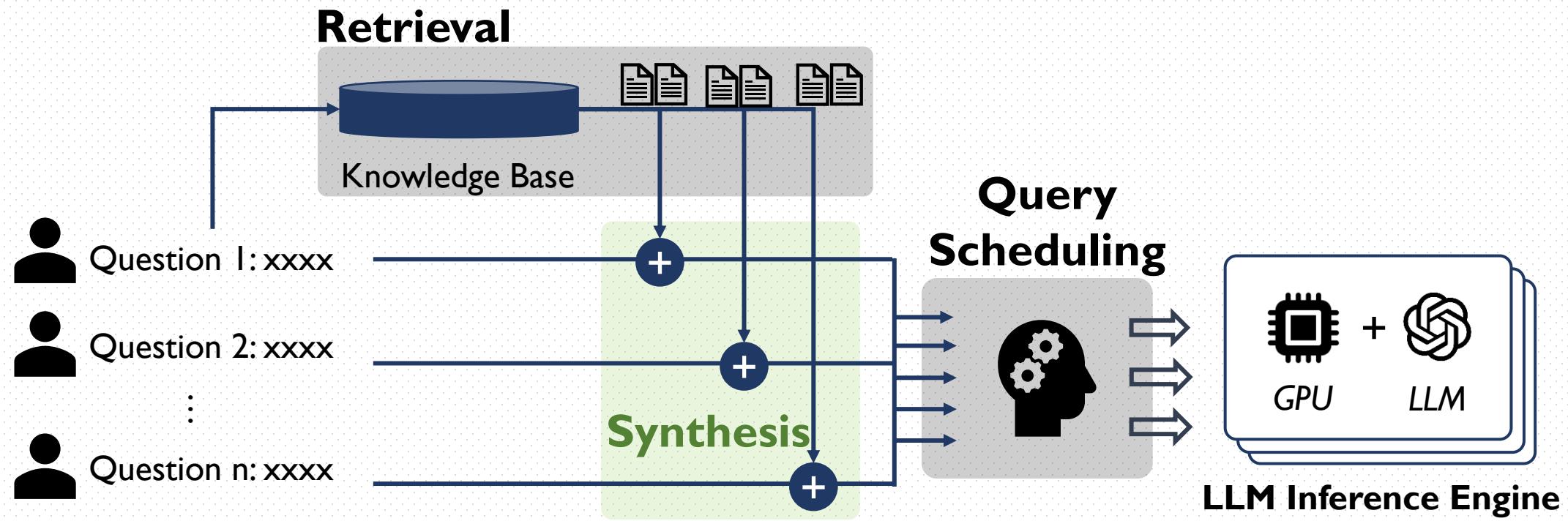
❑ Prior work

- ❖ AdaptiveRAG (NAACL '24)
 - Use a classifier to decide #chunks
- ❖ MBA-RAG (COLING '25)
 - Optimize AdaptiveRAG's classifier



Optimization Opportunities in RAG Systems

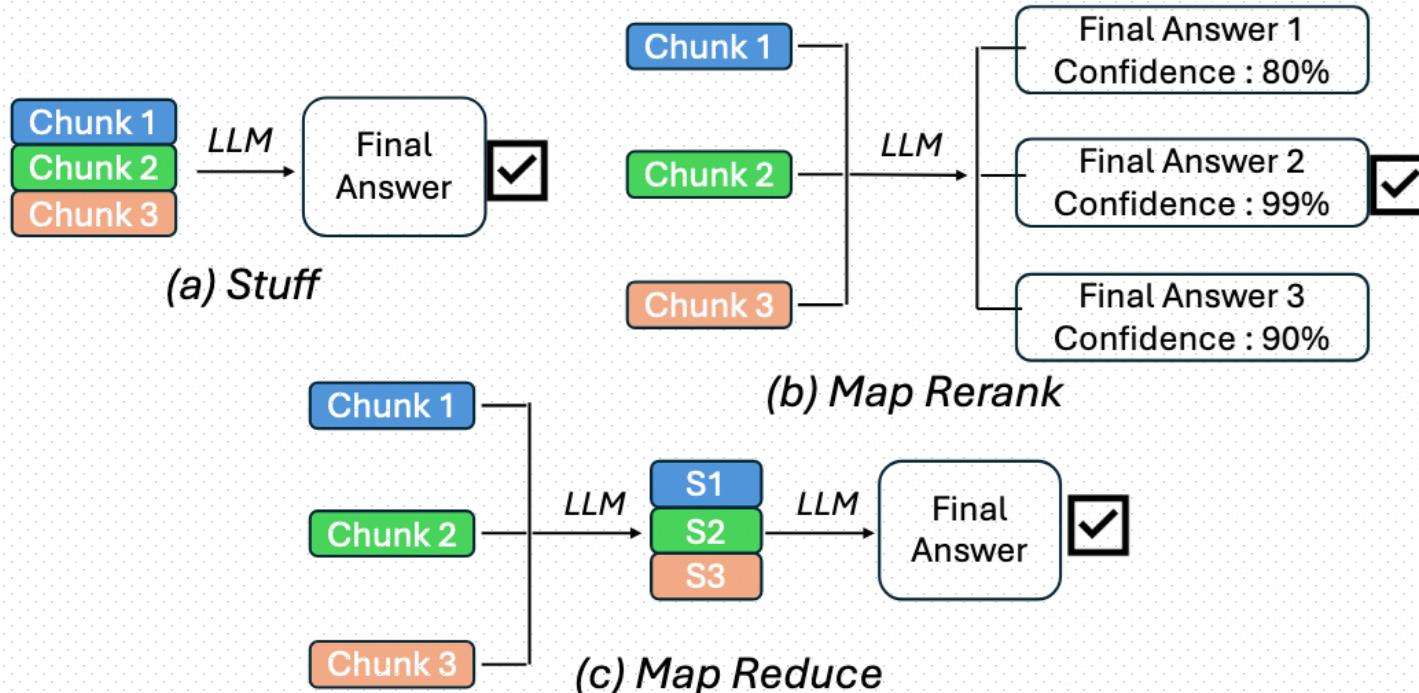
- ❑ Per-query RAG configuration
 - ❖ How to synthesize the retrieved chunks?



Optimization Opportunities in RAG Systems

❑ Per-query RAG configuration

- ❖ How to synthesize the retrieved chunks?



Different RAG synthesis methods

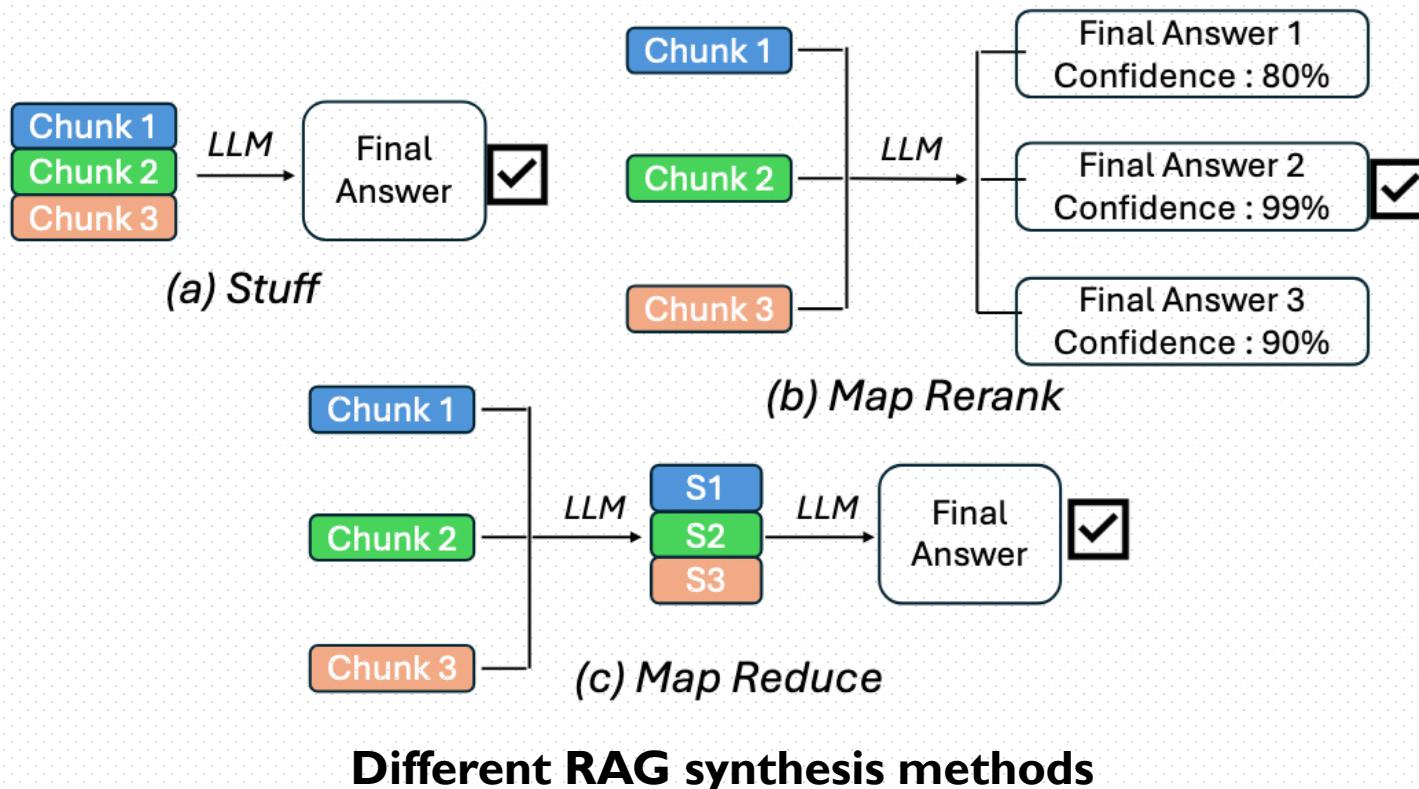
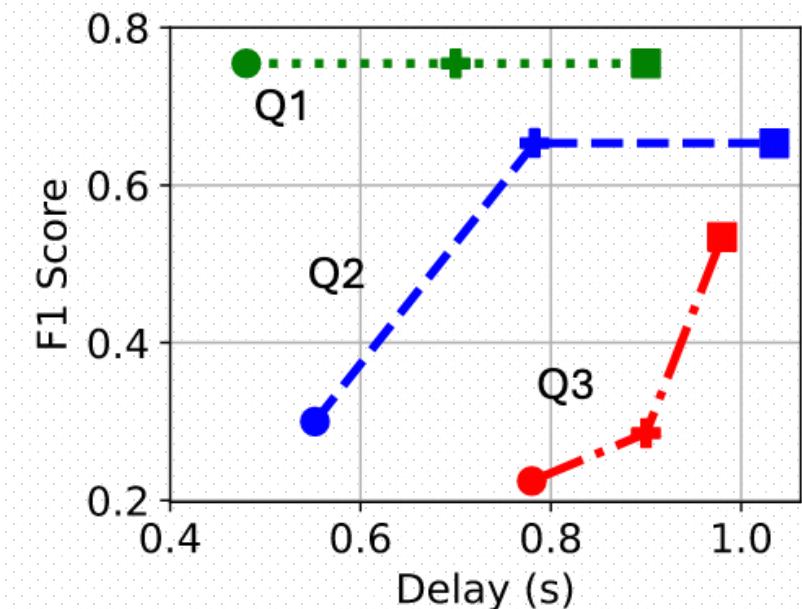
	Stuff	Map Rerank	Map Reduce
Quality	★ ★	★	★ ★ ★
Speed	★ ★ ★	★ ★	★
Scalability	★	★ ★ ★	★ ★ ★

Comparison of different RAG synthesis methods

Optimization Opportunities in RAG Systems

❑ Per-query RAG configuration

- ❖ How to synthesize the retrieved chunks?

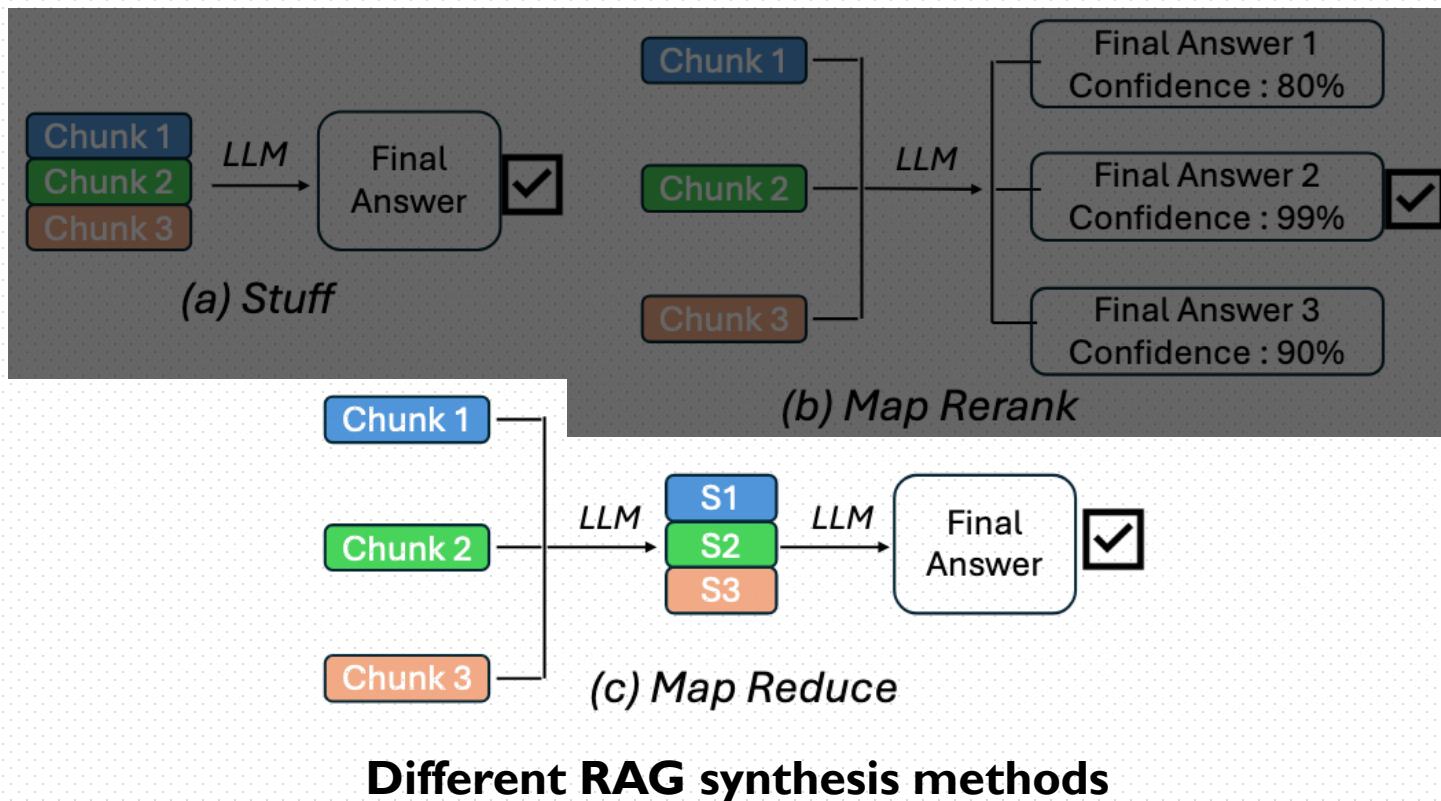
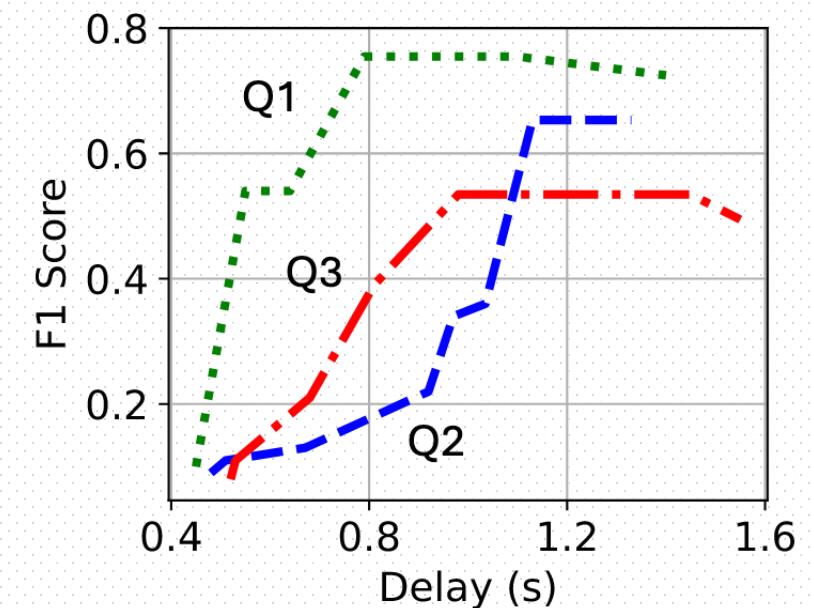


Change synthesis method from map_rerank (circle), stuff (plus) to map_reduce (square)

Optimization Opportunities in RAG Systems

❑ Per-query RAG configuration

- ❖ How long is each summary if Map-Reduce is selected?



Increase summary length from 1 to 100 with map_reduce

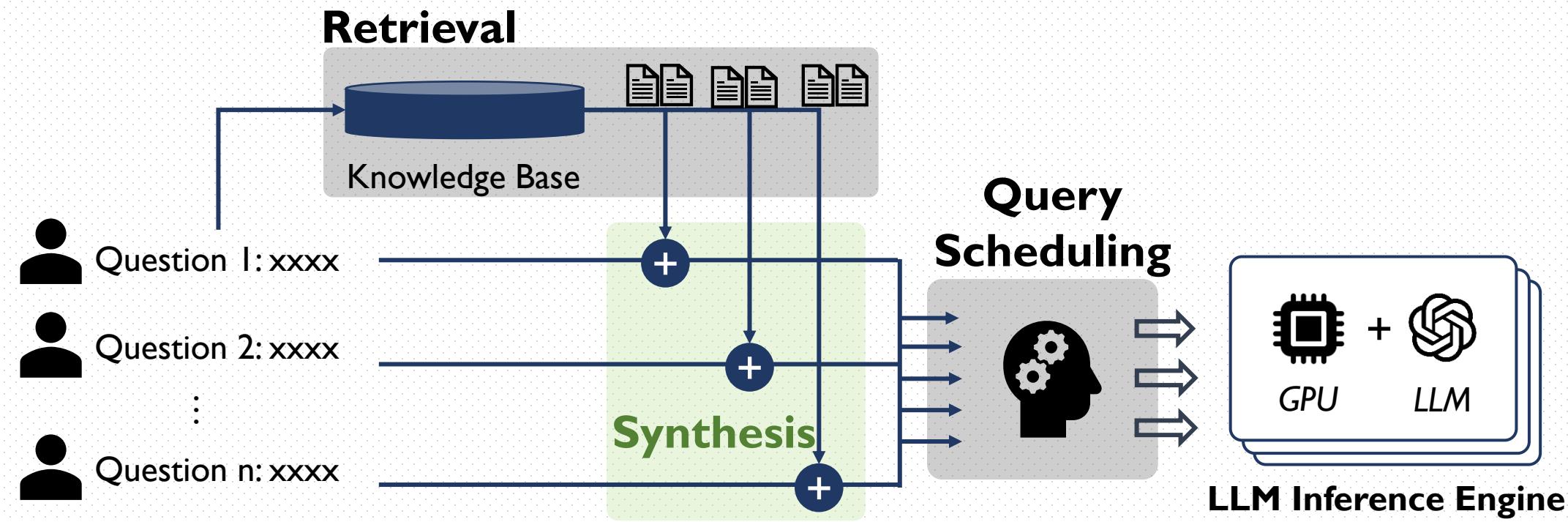
Optimization Opportunities in RAG Systems

❑ Per-query RAG configuration

- ❖ How to synthesize the retrieved chunks?
- ❖ How long is each summary if Map-Reduce is selected?

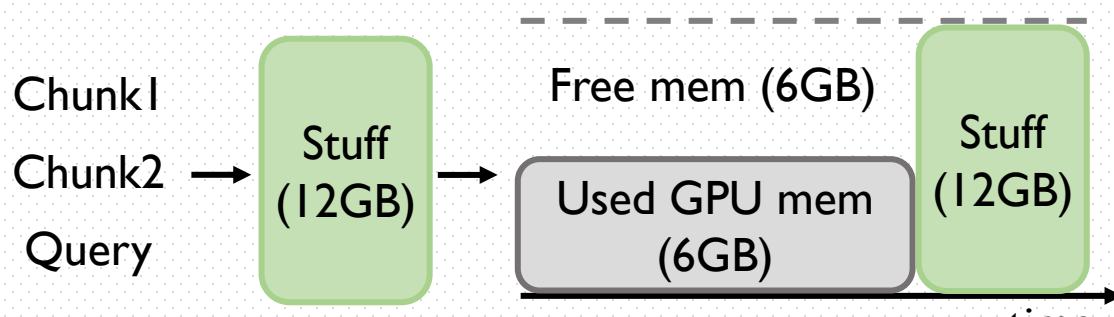
❑ Prior work

- ❖ Perhaps none :(

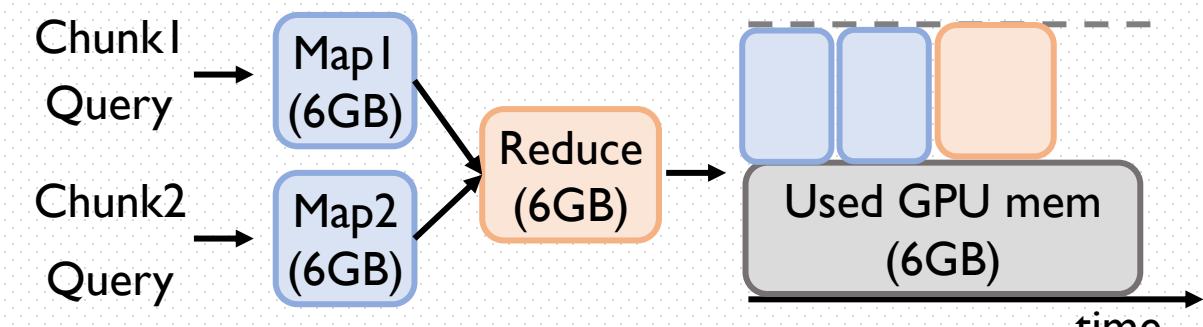


Overlooked Optimization Opportunities

- ❑ Existing work either:
 - ❖ Selects a static config then optimize scheduling
 - ❖ Tunes individual config only
- ❑ Multiple configuration should be tuned together to achieve optimal quality-delay tradeoffs
- ❑ The RAG configuration should be tuned jointly with scheduling



Stuff may be slower when GPU memory is limited



MapReduce achieves faster response time

The Challenge: A Combinatorial Explosion

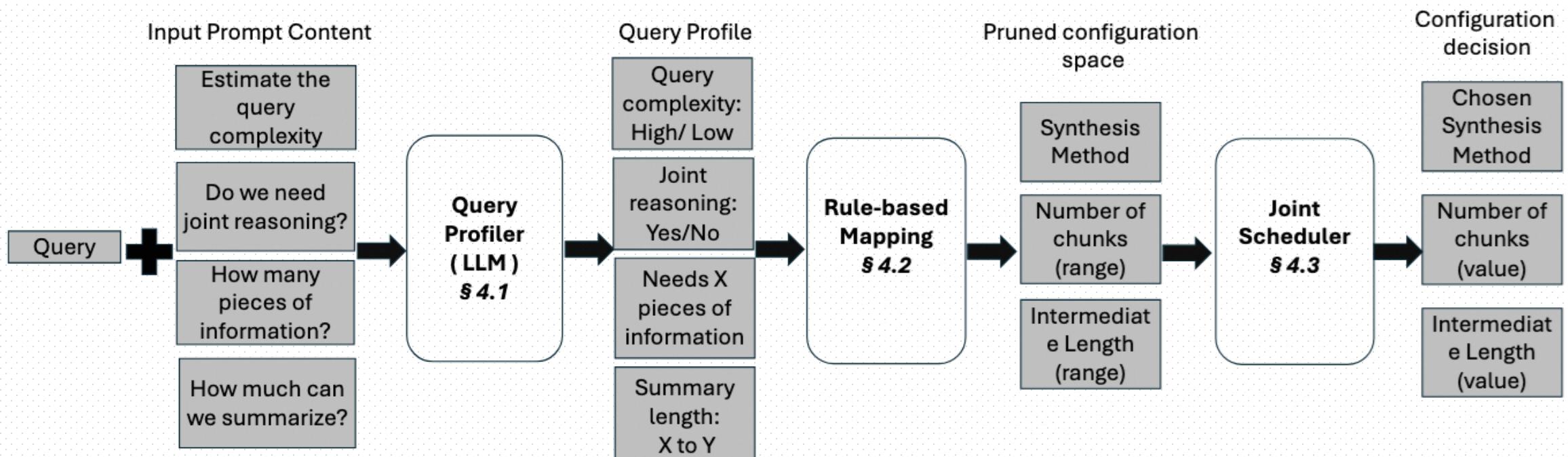
- ❑ Just for Map-Reduce, the options explode:
 - ❖ Tuning 30 values for num_chunks and 50 values for intermediate_length
 - ❖ Leads to $\sim 1,500$ configurations per query

- ❑ Exhaustive search is infeasible

- ❑ How to efficiently find a small set of "good enough" configurations?

The METIS Workflow

1. Estimate each query's profile using LLM
2. Map profile result to a pruned configuration space
3. Select the optimal configuration that fits the current batch



Query Profiler

❑ Four dimensions to profile:

1. Query complexity
2. Joint reasoning requirement
3. Pieces of information required
4. The length of the summarization

❑ The metadata of the database is also provided

❑ Profiler is a larger LLM than the serving LLM, but **the cost is cheap**

- ❖ Only query and metadata are provided

"""

For the given query = {get.query()}: Analyse the language and internal structure of the query and provide the following information :

1. Does it needs joint reasoning across multiple documents or not.
2. Provide a complexity profile for the query:

Complexity: High/Low \n \

Joint Reasoning needed: Yes/No \n "

3. Does this query need input chunks to be summarized and if yes, provide a range in words for the summarized chunks.
4. How many pieces of information is needed to answer the query?

database_metadata = {get.metadata()}
chunk_size = {get.chunk_size()}

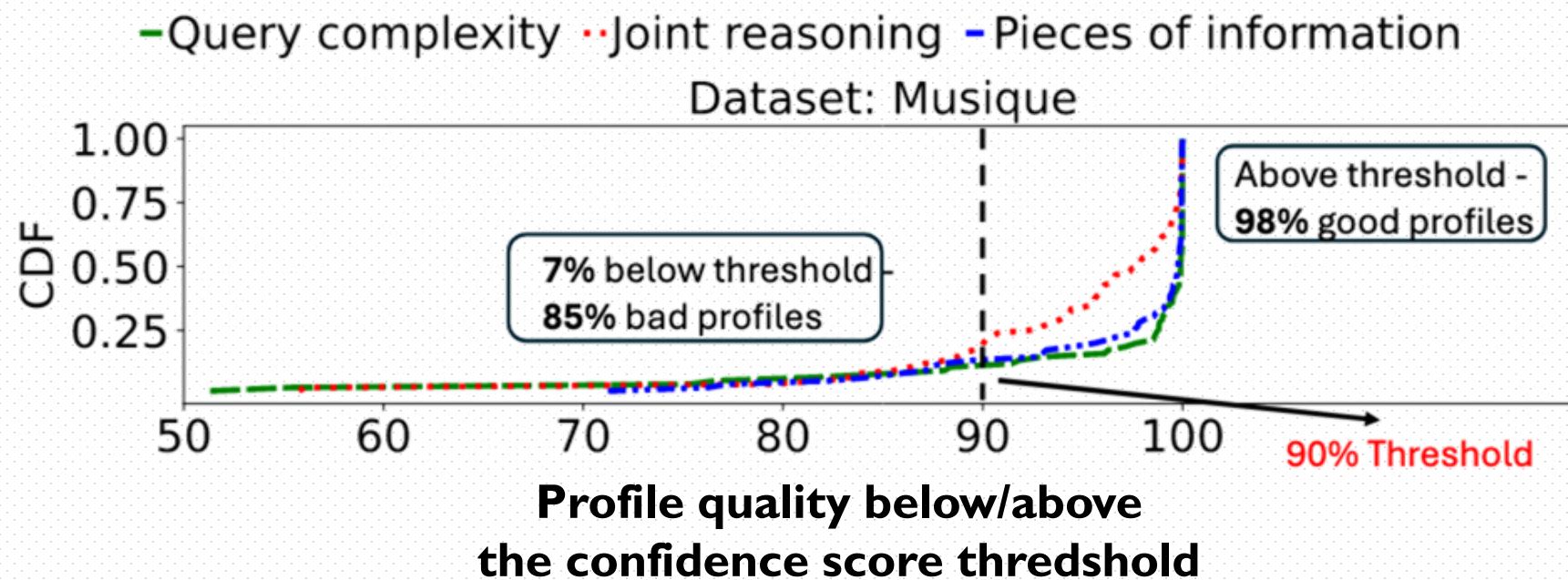
Estimate the query profile along with the database_metadata and chunk_size to provide the output.

"""

Prompt for METIS' profiler

Is The Quality Profile Reliable?

- ❑ Use a confidence score threshold (90%) to decide
 - ❖ If confidence > 90%: accept the generated profile
 - ❖ Else: fallback to the space of recent 10 queries



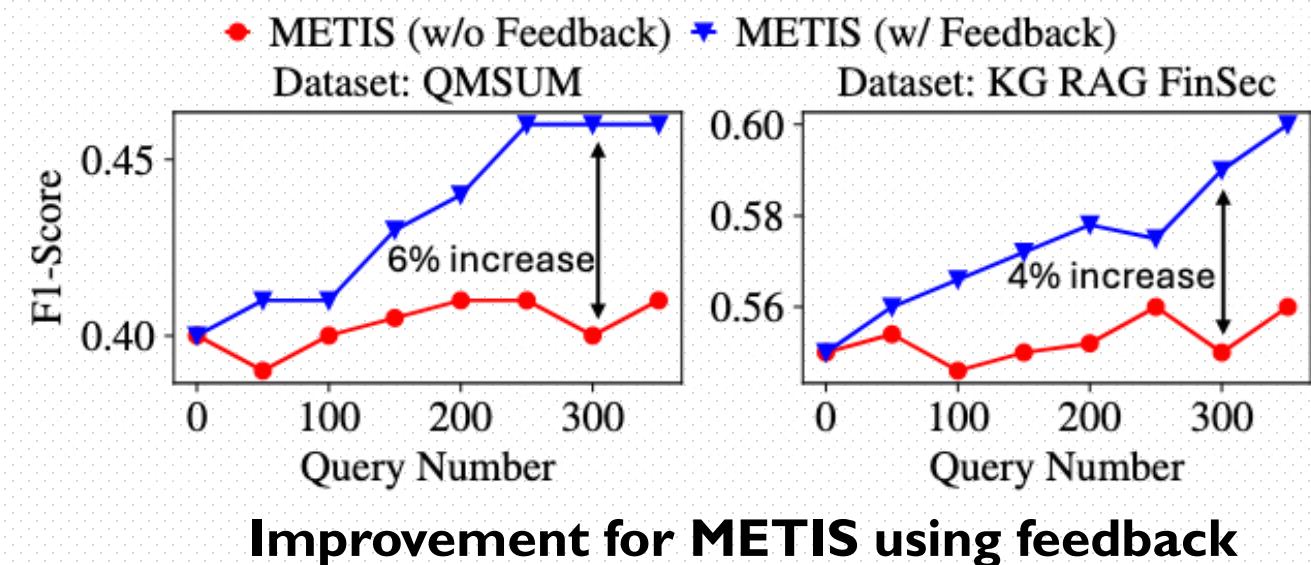
How to Improve The Profiler Over Time?

❑ The feedback mechanism (executed periodically)

1. Generate a golden answer with the most expensive configuration
2. Run profiling with query & answer both provided
3. In-context learning with query/answer/profile

❑ Cost control

- ❖ Low Frequency: 1/30
- ❖ Limited History: last 4



Rule-based Mapping

- ❑ Translate the query profile into an actionable configuration space
- ❑ The result: a pruned space of high-quality configurations

Algorithm 1: Rule based mapping algorithm

Input: *Query complexity, Joint reasoning required*

Input: *Pieces of information , Summarization length range*

Result: *synthesis_method, num_chunks, intermediate_length*

```

1 if Joint reasoning required == “no” then
2   | synthesis_method = map_rerank
3 else
4   | if Query complexity == “low” then
5     |   | synthesis_method = stuff
6   | else
7     |   | synthesis_method = stuff, map_reduce
8 num_chunks = [Pieces of information , 3× Pieces of information]
9 intermediate_length_range = Summarization length range

```

Joint Scheduler

- ❑ Select the best-fit configuration
 - ❖ Given a pruned range of good configurations
 - ❖ Choose the best configuration which fits in memory
 - ❖ Without considering quality anymore

- ❑ In the case that none of the configurations fits
 - ❖ Fall back to a cheaper configuration
 - MapRerank with as many chunks
 - Or Stuff with as many chunks

Evaluation Setup

Inference model

- ❖ Mistral-7B-v3 with 1 A40
- ❖ Llama3.1-70B with 2 A40

Datasets

- ❖ Squad
- ❖ Musique
- ❖ KG RAG FinSec
- ❖ QMSUM

Profiling model

- ❖ GPT-4o (OpenAI's Chat Completion API)
- ❖ Llama-3.1-70B (HuggingfaceAPI)

Metric

- ❖ F1-score
- ❖ Delay
- ❖ Dollar

Evaluation Setup

❑ Baselines

- ❖ vLLM (SOSP '23)

- A highly-optimized inference engine using a static RAG configuration

- ❖ Parrot* (OSDI '24)

- One of SOTA LLM schedulers (with static configuration) using semantic variable

- ❖ AdaptiveRAG* (NAACL '24):

- Always picks the best possible configuration for quality
 - But is system-unaware

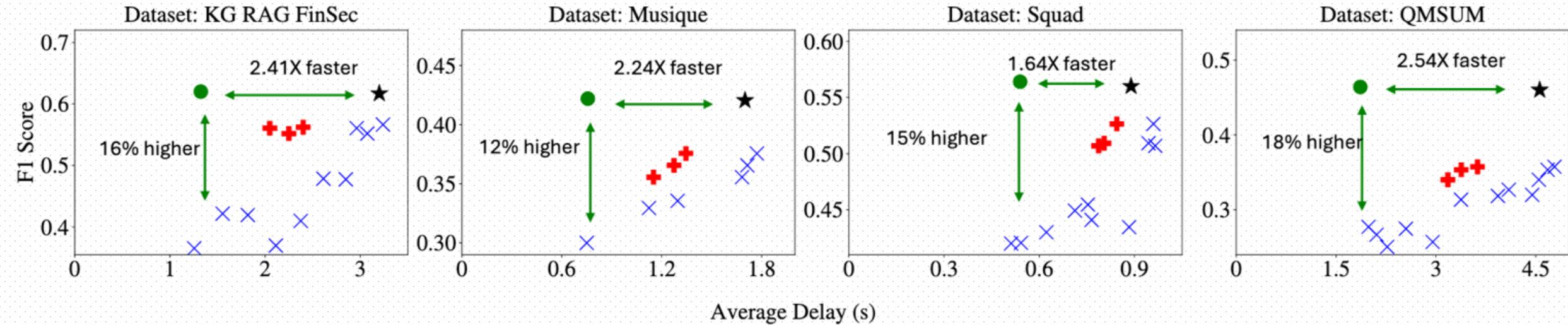
Delay and Throughput Improvement

❑ Lower delay without sacrificing generation quality

❖ 1.64-2.54x Lower delay

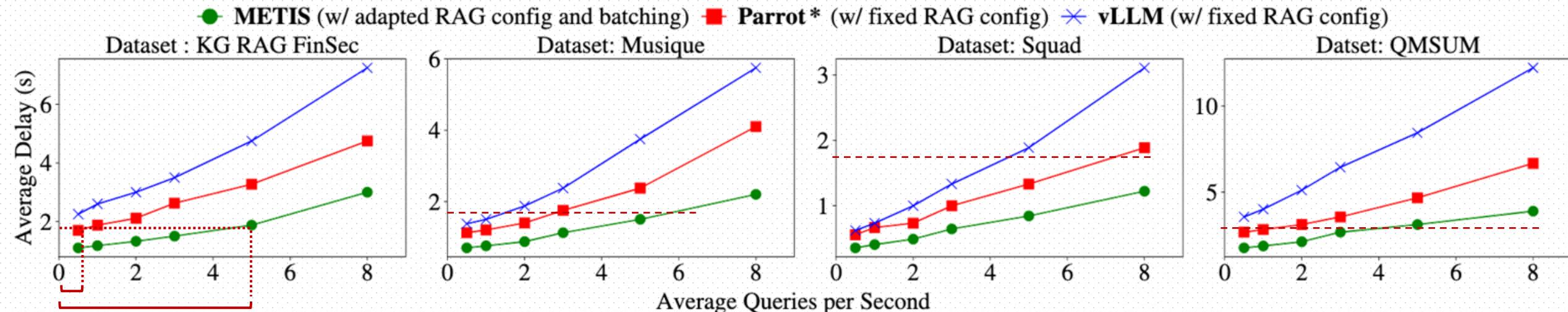
❖ 12-18% Higher F1-score

● METIS (w/ adapted RAG config and batching) + Parrot* (w/ fixed RAG config) ★ AdaptiveRAG* (selected config w/ Parrot) ✕ vLLM (w/ fixed RAG config)



Delay and Throughput Improvement

- Higher throughput at lower delay
 - ❖ 1.8-4.5x Higher throughput (at 1.8 seconds)
 - ❖ With higher quality

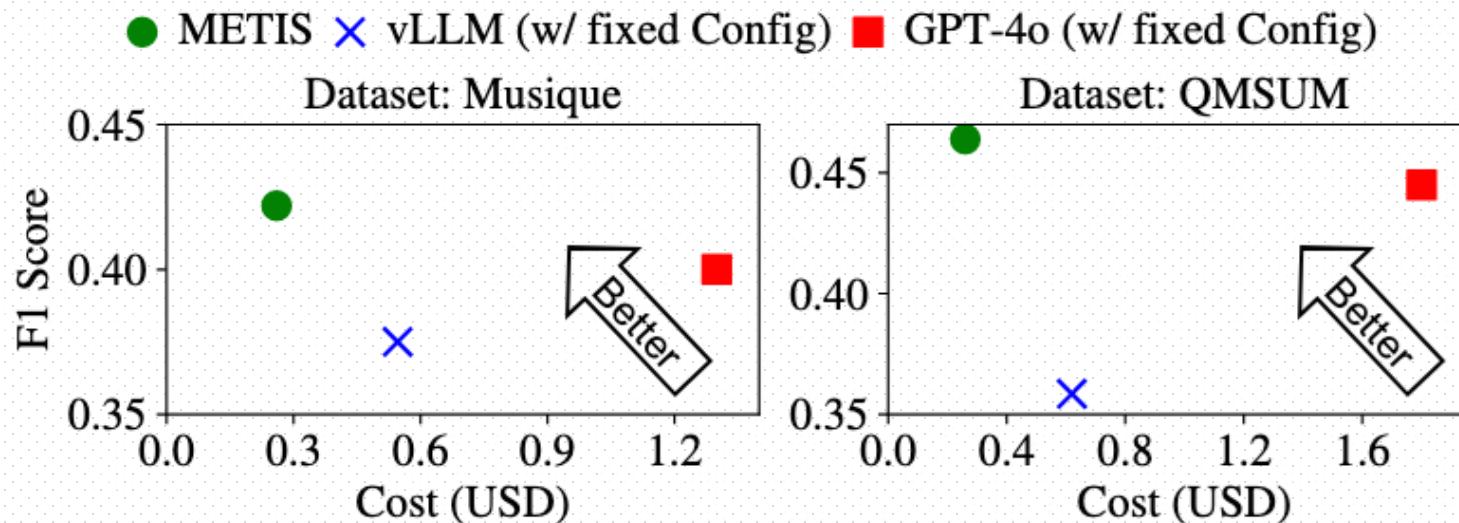


Cost Saving

❑ Significant lower dollar cost and higher F1-score

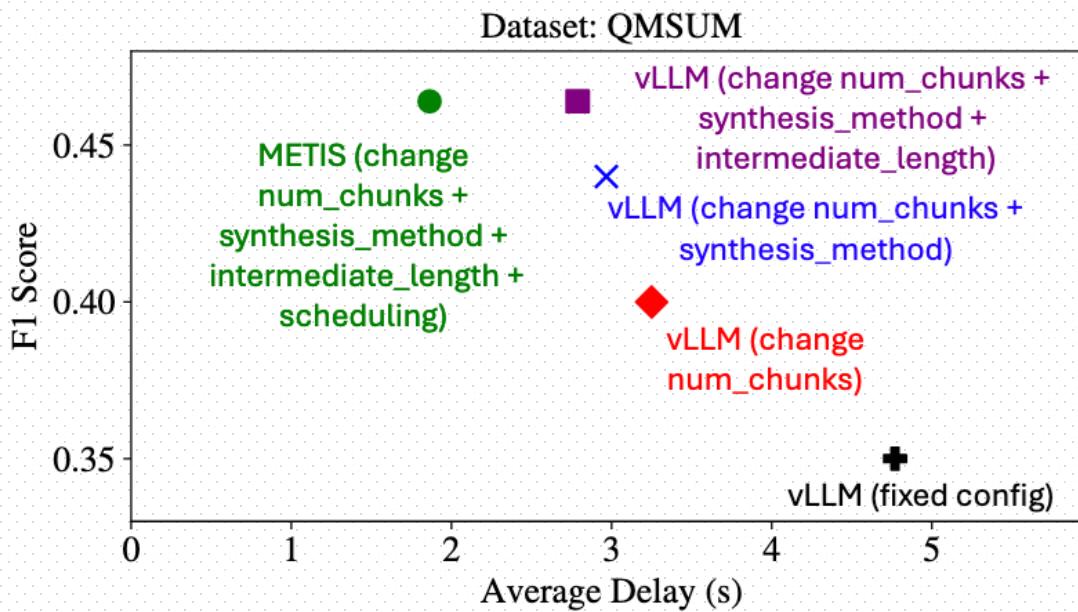
❖ METIS outperforms GPT-4o

- 6.8x Lower cost
- Higher F1-score

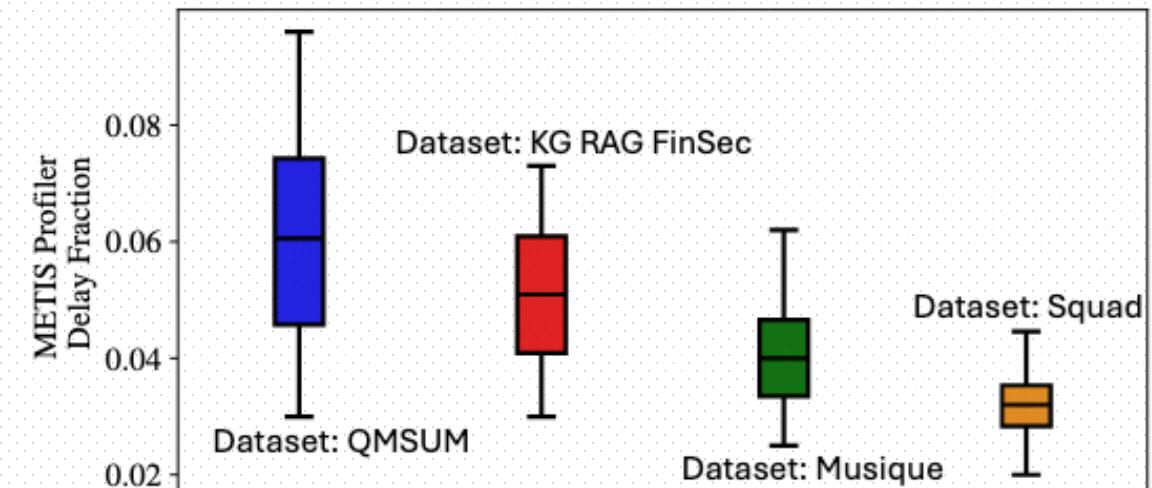


Breakdown Analysis

□ Enabling more knobs unlocks better trade-offs



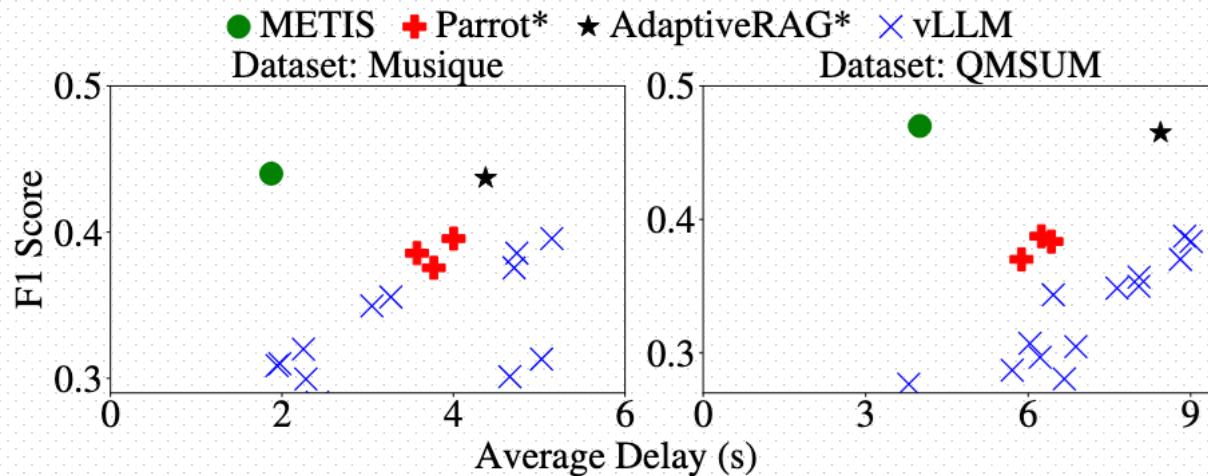
□ Profiler delay is at most 1/10 of end-to-end response delay



Sensitivity Analysis

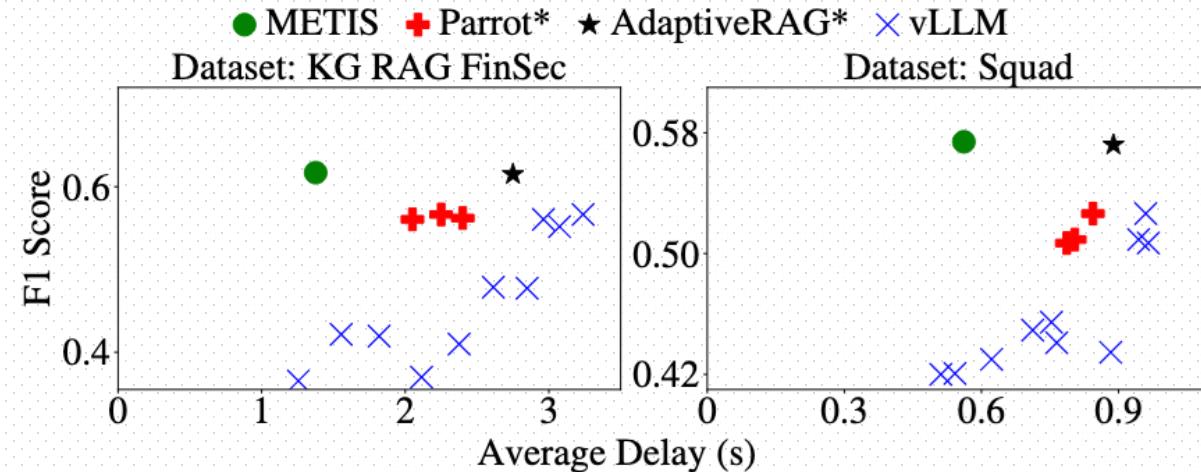
□ METIS's advantages persist with larger inference model

❖ Mistral-7B-v3 \Rightarrow Llama3.1-70B



□ Performance gains remain even with a smaller, low-cost profiler

❖ GPT-4o \Rightarrow LLama-3.1-70B



Conclusion

❑ Highlights

- ❖ A simple and efficient RAG optimization framework
- ❖ Extensive and insightful experimentation
- ❖ Clear and well-crafted story

❑ Potential problems

- ❖ The risk of quality collapse under high load