HedraRAG: Co-Optimizing Generation and
Retrieval for Heterogeneous RAG Workflows

Zhengding Hul, Vibha Murthy', Zaifeng Pan’, Wanlu Li?,
Xiaoyi Fang?3, Yufei Ding', Yuke Wang*
1 Department of Computer Science & Engineering, UCSD
2 Nano and Chemical Engineering, UCSD

3 RegAilator Inc
4 Computer Science, Rice University

Speaker: Chao Bi
SOSP’ 25

Retrieval-Augmented Generation (RAG)

* RAG is widely used in the era of LLM to

* Avoid retraining, reduce hallucination, preserve data privacy

/’ Direct Generation — Hallucination x
— New - H — Generation — V
knowledge —

Tell me about the RG today

Retraining . Extremely high f:OStS x
/’ Data leakage risks
Tell me the weight of Andy Private _, e— V
database

Query beyond cutting-of knowledge

Heterogeneous RAG Workflow

* Complex LLM tasks drive RAG evolution

Doc: First Nobel Prize winner is ... ,
| retrieval

Simple question ™~ :
One-shot , e : ion |
Who got the first Nobel prize in physics? Answer: Wilhelm Réntgen. | generation
| Subquestion: Who is did Li Longji’s father
Multistep Multi-hop reasoning Docl — Subquestion: When did Li Dan die? 2 retrieval a
When did Li Longji’s father die? A/ 3 generation
Doc2 < Answer: 716 AD. :
" Question: How is penicillin discovered.
—
Knowledge summary Docl — Penicillin was discovered by ... >3 retrieval
Iterative Discovery of penicillin and >3 seneration
subsequent impact. Doc2 “% | 1940s, a team at the Oxford ... 8
Doc3 < _, Docd — ... —»

RAG Serving

* |terative invocation between Inference & Vector Search

Complex . LLM . Vector . LLM . Vector
Query Generation Search Generation Search

e : ii\\\\ External e
! | Knowledge : .
- vLLM ! N Faiss
I I ! Chunking I o~
I 0 I —/\ (— :
I O : == Document - : ScanNN
*SGLI BE e PO e
LLM Inference + Indexing Vector Search
Framework Vector Library
(on GPU) Database (on CPU)
4

Motivation - Existing RAG Frameworks

* Functional Emphasis: Modular, Synchronized Design

__________________ : Retrieval | — Generation 3 \
Llamalndex) Generation | < / Generation 4

Generation 2 — Retrieval 2

Workflow Definition l

Batched Queries

\

GPU Gl G3 G2 G4

CPU RI R2
RAG /Agentic Timeline:

Frameworks

€® LangChain

Modular Execution

Motivation - Limitations of existing solutions

* System Level:
* Focus on Resource scheduling and disaggregated deployment strategies
* Lack of unified runtime support for coordinating multi-stage, heterogeneous flow

* Algorithmic Level:
* Accelerating generation by reusing document prefixes
* Early-terminated retrieval "' and speculative generation
* Missing generalizability and sometimes sacrificing output quality

Opportunity — Stage-level parallelism

* |st Observation: gaps between LLM generation & vector search

* LLM decoding: Continuous batching — Flexibly add new requests

* Vector search: Fixed batching — strongly depends on batch size

Request

Vector
database

(engine.add_request)

Q1

Q2

Q3

A 4

v

(

faiss.search

Batching Strategies

80 -

40 -

20 A

IVF4096 Throughput (QPS)

—8— nprobe = 128
—&— nprobe = 512

1 2 4 8 16 32 64 128256
Batch Size
Throughput of vector search

Opportunity — Stage-level parallelism

* Example: 3 request with variable generation lengths

Variable Variable
generation tokens context lengths
Draft 1: RAG and Retrieval 1: —
About RAG workflow deign. 1 RAG paper Sunﬂ;
' ...(50 tokens) - =
. ' 0 Medium-length
Draft 2: LLM, attention, Retrieval 2: es noeng
- c 2 LLM papers LI
and inference serving. [—]

About LLMs. ...(100 tokens) e

- . Lon;
1)rait 3 Machine learning, ?Eilﬁvzl :r.s Su mmi
About Machine different models and fields. —— —
Learning. ...(200 tokens) [—
—

Stage-level Heterogeneity

Opportunity — Stage-level parallelism

* Example: 3 request with variable Generation/Retrieval costs

Variable Variable P

generation tokens context lengths ' | epu) T e GPU idle |i] .
Draft 1: RAG and Retrieval 1: . Short |) A
- ummar
About RAG. workflow deign. —* 1 RAG paper sy - : \
...(50 tokens) &= b CPU CPU idle Intra-stage
o E - e workload variation
e —— Retrieval 2: Medium-length | (a) Modular and Sequential stages (General RAG frameworks)
. o C 2 LLM papers Summary R o e e e L
About LLMs. 2 mfil(‘)e‘;l::ks:;:;ng. N % o | E - Request 1 improved ot ‘
— i | GPU) Small-batch]
b t search call
b ()i
Retrieval 3: Long . :
: i i 1 CPU <+ = I
. Qraﬁ ~* Machine learning, 4 LLM papers Summa; vl Retrieval 2. 3 delaved : i
About Machine different models and fields. . £ e P Sl 2 o (L hy/s — ;
Learning. ...(200 tokens) [—1 e e e e e
= ! (b) Dynamic-batched generation stages + Fixed-batched retrieval stages (VLLM + Faiss)
Stage-level Heterogeneity ' t

Stage-level Batching & Scheduling:
CPU/GPU under-utilization ’

Opportunity - Intra-Request Semantic Similarity

« 2nd Observation: Similarity between stages in iterative workflows

Complex LLM Vector LLM Vector
—_— . —_— —_— . —_—
Query Generation Search 1 Generation Search 2

1 Top-1 B Top-20

1 Top-5 [0 Last retrieval

(a) Inter-retrieval Similarity
0.4 A

|
|

Successive retrievals
yield Close Vectors

in the embedding space

L2 distance
(@]
N

o
=

o
o

wikiQA hotpotQA

Opportunity - Intra-Request Semantic Similarity

« 2nd Observation: Similarity between stages in iterative workflows

Complex LLM Vector LLM Vector
—_— . —_— —_— . —_—
Query Generation Search 1 Generation Search 2

(b) Intra-generation Similarity [] Top-1 [EEE Top-20

0.8 1 1 Top-5 [0 Last retrieval
(a) Inter-retrieval Similarity
v 0.6 0.4 -
|9
G
B 0.4 © 0341 —
i %
2o © 0.2
©
q
Partial generationis 0.0 1, : . . ; 0.1-
close to the final result 0.00 0.25 0.50 0.75 1.00

. . Tok ti 0.0
in the embedding space oken ratio wikiQA hotpotQA

Oppo rtun ity — Inter-Request Retrieval Skewness

« 3rd Observation: skewed cluster access among queries

Everyday Question
about basketball

e

Scientific Problems

Various query types

[Michael Jordan

Kobe Bryant]

0
»
»
.
.
"
"
=
.
.
.
.
.
.
-
.
%
»
g3

~

N .
0000
s .
a, .
.........

Protein folding
Quantum Chemistry

Climate Modeling

Frequently accessed
IVF clusters

-
R

LET T
"
"
.,...
.
.
3
3
g
.
.
] »
-
3
.

o

Frequency (per retrieval)

15% A

10% A

5% A

One-shot, NQ

0% -

69% computation

—_

0

1000 2000 3000 4000

Cluster ID

60% -

40% A

20% A

MultiStep, wikiQA

0% -

0

89% computation ‘
—
el |

1000 2000 3000 4000
Cluster ID

A small number of clusters (20%)
dominate the overall access frequency.

- .
, graph.add_generation(1, ...)
\ | graph.add_edge(0, 1, ...)

Design - overview

* System Overview

* User interface: Graph-based Workflow Definition

~

' @é ;.2__. Different User Tasks
‘ I

Heterogeneous RAG workflows

[One—shot] [Multistep] [HyDE]

|

Graph-based primitives

1 (\
m ' | graph.add_retrieval(0, ...)

[

Open-framework | ------

compatibility k /

Compatible with
Open-sourced frameworks

[

HedraRAG

~

| RAGraph1 | | RAGraph2 | | RAGraph3 |

4

4 4

/

RAGraph Transformation

’

\

4

4 4

\
\

Dynamic Scheduler

\

3

GPU | HyDE | Multistep | One-shot

cpu | Oneshot | HyDE | Multistep

PCle

.

[

GPU cache update

]
]
)

Efficient hybrid-system execution

~

J

~

~

~

~

[Generation]—'[Retrieval]—'[Generation]—*

N
|
1
1

BEEmearnn e nns
Y Fcorering e Speculaion 5.3 N

Speculative execution Similarity-based reordering

2 P{3 1 - M }-[]}—>§

Design - overview

* System Overview

* Backend server: Multiple RAG Workflow Co-execution

s I . 0, v em em em e n e e e en e e en G e e G G S e e G S G n em e e e e e e e e e
: (.draRAG) 1
@g ;‘2_-, Different User Tasks) Hedraltac //: [Generation]—'[Retrieval]—'[Generation]—* '
) | | | RAGraph1 | | RAGraph2 | [RAGraph3 | | ,/ | :
/] = . o .
N / =
Heterogeneous RAG workflows 4 d 4 / !] [] [!
[0 h t] [Multist] [HVDE] RAGraph Transformation k, i [H QMI]_> E
ne-shot } Multistep) {_Hy Y '
S l g . ‘ ‘ ‘\ : Speculative ex%:ution 11111 ity-based reordering :
\
" """" : (G s — ‘c — (N L F LM 3 M1 1 H M }_' :
00 . . - |
‘ m N graph.add_retrieval(0, ...) ol erv | HyDE | Multistep | One-shot | Vol 3 !
: graph.add_generation(1, ...) cpu (Omeshot | FyDE | Multistep) ! !
__________) graph.add_edge(0, 1, ...) " |
Open-framework \ .. PCTe v tf:[.ld_mte“pdmdo J \i :
compatlblhty / \ cient hybrid-system execution j 1

Throughput & Latency Optimization
via Graph-based Transformation

Design - RAGraph

* RAG Specific Abstraction

» Graph AP
* add_generation()
* add_retrieval()
* add_edge()

» Server API

* Server()
* add_request()

O 00 NN N R W N =

NI SR I R o e e e e o o e
AW N =R O 0 0NN TR W N RO

Listing 1. Construct RAG workflows with graph primitives.

from HedraRAG import RAGraph, START, END
from HedraRAG import Server
HyDE-style workflow
gl = RAGraph()
g1.add_generation(@, prompt="Generate a hypothesis
for {input}.", output="hypopara")
gl.add_retrieval(1, topk=5, query="hypopara", output="docs")
gl.add_generation(2, prompt="Answer {query} using {docs}.")
g1.add_edge(START, 0); gl.add_edge(@, 1)
gl.add_edge(1, 2); gl.add_edge(2, END)
Multistep-style workflow
g2 = RAGraph()
g2.add_generation(@, prompt="Decompose {input} into
subquestions.", output="subquestion")
g2.add_retrieval(1, topk=2, query="subquestion",
output="docs")
g2.add_generation(2, prompt="Answer {subquestion}
using {docs}.")
g2.add_edge(START, 0); g2.add_edge(@, 1); g2.add_edge(1, 2)
g2.add_edge(2, lambda s: 1 if s.get("subquestion") else END)
Server initiating and execution
s = Server(generator="Llama3-8B", index="IVF4096")
s.add_request("What is RAG?", g1)
s.add_request ("Compare RAG with long-context models.", g2)

(9]

Design - Fine-grained stage partition

* Partition

* In generation, each sub-stage comprises several decoding steps.
* In retrieval, each sub-stage involves searching across one or more clusters

Variable
generation tokens

Draft 1: RAG and

workflow deign.
About RAG. ...(50 tokens)
Draft 2: LLM, attention,
and inference serving.
About LLMs. ...(100 tokens)
1Dralt 20 Machine learning,
About Machine different models and fields.
Learning. ...(200 tokens)

Variable
context lengths

Retrieval 1:
1 RAG paper

Retrieval 2:
2 LLM papers

D

Retrieval 3:
4 LLM papers

N N

Stage-level Heterogeneity

Short

Summar

==

Medium-length |

Summary
| S—]
| S—

[s—

Long

Summa%

| S—
—
{s—

GPU | GPU idle | — b W
)i)
: CPU idle Intra-stage\
CPU) N workload variation
(a) Modular and Sequential stages (General RAG frameworks)
i [l _ Request 1, 2 improved :
'\ GPU L I) >
' | O | O O O O B
: (|
i1 CPU
' |

(c) Fine-grained sub-stage partitioning and Dynamic-batched pipelining (HedraRAG)

16

Latency (ms)

Design — Fine-grained stage partition

* Dynamic time-budgeting method based on retrieval requests

* Before executing a sub-stage, clusters from each retrieval request are incrementally
added until a maximum time budget mb is reached.

(a) vLLM, LIama3-8B

(b) Faiss search, IVF4096

40k
IRetri —mb IRetrieval
. v 30k mb = argmax(Al), A = Retrieval __ [Retrieva ,3
N 2 mb
[i | .
.| g 20k) « Al: expected latency improvement
S .
3 10k - /////// B:denotes the CPU overhead of request scheduling
7 - 0- ' * tRetieval: denotes the average time of retrieval stage
0 1000 2000 0 2000 4000

Context Length Cluster ID (sorted)

Design — Similarity-Aware Search Optimization

* 3 locality-based observations related to semantic similarity:

 The search results of v'tend to be included within the search results of v with
a larger top-k

« When the search results of v are in a cluster set Hv, the results of v'also tend
to be located in Hv

 The search results of v'tend to be located in clusters of CnC’.

. EZ2 v Top-20 Z32 H, B CnC
Previous search for v P

(a) v/ Results Distribution

C, - (2] (3) 4] Multistep | IRG

s lad

Original search order for v’
wikiQA hotpotQA wikiQA hotpotQA 8

©
<
X

o
o
X

N
o
X

Query Proportion

¢,y 00 (2] (5] [3]

\Hv’/

N
<
X

Design — Similarity-Aware Search Optimization

* Cache search information
* For each retrieval in a request, a set of larger top-k results of v (20 in practice)

* Reorder of search flow for v’

* Local cache of v

* Cluster
 Hvn ('
*c (C—Hv)nC(C
* Remaining clusters

Previous search for v

¢, @ (=) () (4]
[

Original search order for v’

¢,y (2] (5] (3]

l \Hv’/

Optimized search order for v’

Local cache Reordere:i clusters

ooo (GG

S

I
Early termination :

10

Search Time Rat

80% A

60% A

40% A

20% -

(b) Reduced Search Time
Multistep IRG

wikiQA hotpotQA wikiQA hotpotQA

19

Design — Similarity-Aware Search Optimization

* Speculative Execution
* Non-overlapping execution (Each stage with 4 sub-stages)

J) OCJ &Y LJ UJ OJ O
cru (] (OJ O CJ LJ OJ CJ CJ
) I O B) CJ CJ .
12 sub-stages
J J &J cach
CPU J OJ CJ
(0 I O O B

Generation sub-stage (] Retrieval sub-stage C] Speculative sub-stage

20

Design — Similarity-Aware Search Optimization

* Speculative Execution
* Generation with partial retrieval (lower search costs)

Speculative generation

))) T C] 9 sub-stages
geUu(1 C) C) C C) () 10 sub-stages
) O C))) 7)) () [) 12 sub-stages

[
New top-k docs found,
[regeneration

CPU (

Generation sub-stage (] Retrieval sub-stage (] Speculative sub-stage

21

Design — Similarity-Aware Search Optimization
* Speculative Execution

* Retrieval with partial generation (with caching & cluster reordering)

Semantic variation < §;
KT %

L) | [
GrU () CJ}(
] O

) (O]

[
)) O
([

[J J)

Speculative (
retrieval

]) O [
CPU)) I O
) O O |

Local cache

& reordering
Generation sub-stage (] Retrieval sub-stage (] Speculative sub-stage

22

Design - Partial GPU indexing

* Dynamic GPU cluster cache

GPU memory

LLM Weight

CPU memory

|
CPU index !

Cl 0.15
C3 0.10

C5 0.09
pund BN 07/

LLM & Index cluster
memory coordination

23

Design - Partial GPU indexing

* Dynamic GPU cluster cache

GPU memory

LLM Weight

Index
Cache

L

.................................)

CPU memory

|
CPU index !

—

P —

GPU / CPU collaborated
vector search

Cl 0.15
C3 0.10
C5 0.09

Retrieval 1

[[c1][cz][c3][c4]}

Retrieval 2

(EE))

LLM & Index cluster
memory coordination

PCle [C7 J

transfer

r Retrieval 1 reduction
oy | (0D EEED +
= e |) (D @ ——

cru D) 2 \WIN e\
retrieval []<

Design - Put them together

* Sub-graph extraction with Node Wavefronts

* Multiple-graph transforming & scheduling

Node Wavefront

s N
One-shot |]—llb[
I /

— Graph
r . N Transform
RECOMP :]—H +[}
il s— -
Multistep |]'T[JH]

Concurrent Requests

RAGraph Abstraction

——
GPU 2-1{2-2
Dynamic
Scheduling ﬁ
1-111-2|1-3
CPU 2-3|2-42-5] - - -
R
3-1(3-2
— A

GPU-CPU Pipeline

25

Evaluation - setup

* 5 heterogeneous RAG workflows

i HyDE : Hyper- mmgmph—’[Retrieval H Generation]

_____________ Generation

i RECOMP *—’[Retrieval]—* LT

Compression

—b[Generation]

(o Sub-questi (.) Sub-questi
I Multi-step ! UH-qUESION Lol Retrieval | T dUeSHOR L)
_____________ Decomposition L J Answering

) I

Answer]

L Summary

i IRG i [Retrieval]—’ Generation

—'[Retrieval]—{

Generation]—-V

* Baseline: LangChain, FlashRAG (vLLM + Faiss)
* Platform: NVIDIA H100 80GB + AMD EPYC 9534 64-core CPU

Evaluation - setup
* Model: Llama 3.1 (8B)/ Llama2 (13B)/ OPT (30B)

* Corpus
* Primary retrieval corpus: Wikipedia passages (38M documents)

* Embedding mode: e5_large (1024-dimensional)
* Index: IVF4096
* Nprobe: 128/256/512
e Top-k: |
* Query dataset:
* NaturalQuestions (NQ)
* 2WikiMultiHopQA (wikiQA)
* HotpotQA

Latency (s/query) Latency (s/query)

Latency (s/query)

Evaluation - overall

* Online:
o Offline:

(a) One-shot, nprobe=128

—e— LangChain

(b) HyDE, nprobe=128

—4— FlashRAG

(c) RECOMP, nprobe=128

~4— HedraRAG

(d) Multistep, nprobe=128

(e) IRG, nprobe=128

0

10 20 30 40 50
Request Rate (req/s)

10 20 30 40
Request Rate (req/s)

5 10 15 20
Request Rate (req/s)

Online

0 5, 10 15
Request Rate (req/s)

0

0 10 20 30 40 50 60 0 10 20 30 40 50 60 O 5 10 15 20 25 0 5 10 15 20 25 0 5 0 15 20 25

(f) One-shot, nprobe=256 (g) HyDE, nprobe=256 (h) RECOMP, nprobe=256 (i) Multistep, nprobe=256 (j) IRG, nprobe=256
20 40 60 20 40 60 0 5 10 15 20 25 0 5 10 15 00 25 50 75 100 125

(k) One-shot, nprobe=512 (1) HyDE, nprobe=512 (m) RECOMP, nprobe=512 (n) Multistep, nprobe=512 (o) IRG, nprobe=512

2 4 6 8
Request Rate (req/s)

10

Total time Total time

Total time

[LangChain

N
|

[any

HedraRAG reduces request latency by 2.2x-18.2%, 3x higher request rates
Achieving speedups of 3.5% and |.3% over LangChain and FlashRAG

X3 FlashRAG
(a) nprobe = 128

[ZA HedraRAG

Y |§a Y |§a

(b) nprobe = 256

N

[
1

o

N

Y |§a IV |§ﬂ

(c) nprobe = 512

One-shot

i 111’

HyDE

RECOMP Multistep

_ 28
Offline

IRG

Latency (s/query)

Latency (s/query)

Evaluation - Overall: hybrid workflows

* >3.3x throughput for multiple workflows ¢ Achieving up to 5.6 x latency reductiotion

10

—&— FlashRAG HedraRAG

(a) One-shot + RECOMP (b) HYDE + RECOMP

[HedraRAG I FlashRAG

[
o

RPS=8 RPS=16

=
o
1
1

Latency (s/query)
(9]

20 40 20 40

Average Latency
(9]

Request Rate (req/s) Request Rate (req/s)
(c) Multistep + RECOMP _ (d) Multistep + IRG L_L_L_L_
01g > 10 0- -
g 1 1:2 1:3 1:4 1:5 1:2 1:3 1:4 1:5
O . .
3 Ratio Ratio
9
@ . :
, , : g 0l , , , Capability under different
10 20 30 10 20 30 40 Multistep : One-shot query ratios
Request Rate (req/s) Request Rate (req/s)

Online Throughput improvement
29

Evaluation - Breakdown

Latency (s/query)

Latency (s/query)

* > | .5x Throughput * Achieving a reduction of 1.09x to |.77x%
—8— LangChain —4— FlashRAG HedraRAG
6 (a) Llama2-13B, Multistep " (b) OPT-30B, Multistep
77 71 —e— Faiss HedraRAG
51 51 (a) nprobe = 128 (b) nprobe = 512
] | EO'SOHH/’\/" 2=
0 T T T T T T o T T T T T T g g
2 4 6 8 10 12 2 4 6 8 10 12 o 915
Request Rate (req/s) Request Rate (req/s) § 0.45 1 § '
20 (c) Llama2-13B, IRG 20 (d) OPT-30B, IRG % %
L S 0.40 1 £ 1.0-
15 - 15 - z 2
10 10 - 4 8 12 16 20 24 28 4 8 12 16 20 24 28
o) 5 Arrival Rate (req/s) Arrival Rate (req/s)
0 T T T T T T 0 T T T T T T
2 4 6 8 10 12 2 4 6 8 10 12
Request Rate (req/s) Request Rate (req/s)
Other LLMs Dynamic partitioning and pipelining

30

* Speedup ranging from .06 to |.62X%

Average Latency (s)

Average Latency (s)

Evaluation - Reordering and Speculation

(a) MultiStep, RPS=4

1.8 Non-spec @
1.7 .RaLMSpec
1.6 A
1.5 RAGCache @
1.4 HedraRAG (O
0.4 0.6 0.8 1.0
Speculation Accuracy
(b) MultiStep, RPS=8
Non-spec @
2.5
RAGCache @
2.0 - .RaLMSpec
HedraRAG)
0.7 0.8 0.9 1.0

Speculation Accuracy

Average Latency (s)

Average Latency (s)

(c) IRG, RPS=4

Non-spec @
RaLMSpec
2.0 A ®
1.8 RAGCache @
HedraRAG)
0.4 0.6 0.8 1.0
Speculation Accuracy
(d) IRG, RPS=8
3.5 1 Non-spec @
3.0 .RaLMSpec RAGCache.
2.5 1
HedraRAG)
2.0 T T T T
0.7 0.8 0.9 1.0

Speculation Accuracy

Reordering and Speculation

Speedup

Speedup

* Speedup ranging from

* Nprobe: 512

Speedup, RPS=8

|.12% to 1.49%

Onload Ratio, RPS=8

1.6

1.4+

1.2 4

1.0-

1.6

Multistep IRG

Speedup, RPS=12

0.6
Multistep IRG

0.4

0.2 A

Onload Ratio

Onload Ratio, RPS=12

1.4+

1.2 4

1.0-

Multistep ! IRG

NQ \N'\\C\QP‘“owotQP‘ NQ \N\K\Qp‘“owo’cQP‘

0.6

Multistep IRG

0.4

0.2

Onload Ratio

NQ \N\\C\Qp‘“owo’cQP‘ NQ \N'\\C\Qp‘ho‘potQP‘

Partial GPU indexing 31

Summary

* Our contribution
* A serving framework to coordinate LLM and vector search
* Graph-based workflow definition, optimizing and scheduling
* 3 key techniques to optimize complex & concurrent RAG workflows

