
Zhengding Hu1, Vibha Murthy1, Zaifeng Pan1, Wanlu Li2, 
Xiaoyi Fang3, Yufei Ding1, Yuke Wang4

1 Department of Computer Science & Engineering, UCSD
2 Nano and Chemical Engineering, UCSD

3 RegAilator Inc
4 Computer Science, Rice University

Speaker: Chao Bi

HedraRAG: Co-Optimizing Generation and 
Retrieval for Heterogeneous RAG Workflows

SOSP’ 25



2

Retrieval-Augmented Generation (RAG)

•   RAG is widely used in the era of LLM to 
• Avoid retraining, reduce hallucination, preserve data privacy

Tell me about the RG today

Tell me the weight of Andy

Direct Generation

Retraining

Hallucination

Extremely high costs
Data leakage risks

New 
knowledge

Generation

Private
database

Generation

Query beyond cutting-of knowledge



3

Heterogeneous RAG Workflow

• Complex LLM tasks drive RAG evolution

One-shot

Multistep

Iterative

Simple question
Who got the first Nobel prize in physics?

Doc: First Nobel Prize winner is …

Answer: Wilhelm Röntgen.

1 retrieval
1 generation

Multi-hop reasoning
When did Li Longji’s father die?

Subquestion: Who is did Li Longji’s father 

Doc1
2 retrieval

3 generation
Subquestion: When did Li Dan die?

Doc2 Answer: 716 AD.

Knowledge summary
Discovery of penicillin and 
subsequent impact.

Question: How is penicillin discovered.

Doc1 >3 retrieval
>3 generation

Penicillin was discovered by …

Doc2 In 1940s, a team at the Oxford …

Doc3 … Doc4 …



4

RAG Serving

• Iterative invocation between Inference & Vector Search

LLM
Inference

Framework
(on GPU)

Vector
Database

…

External
Knowledge

Document
Passages

Chunking

Indexing Vector Search
Library

(on CPU)

Faiss

ScanNN

Complex
Query

LLM
Generation

Vector
Search

LLM
Generation

Vector
Search

…



5

Motivation – Existing RAG Frameworks

• Functional Emphasis: Modular, Synchronized Design

RAG / Agentic
Frameworks

Generation 1

Retrieval 1

Generation 2 Retrieval 2

Generation 3

Generation 4

Workflow Definition

G1

R1

G3 G2

R2

G4

CPU

GPU

Modular Execution

Timeline

Batched Queries



6

Motivation – Limitations of  existing solutions

• System Level:
• Focus on Resource scheduling and disaggregated deployment strategies[1, 2]

• Lack of unified runtime support for coordinating multi-stage, heterogeneous flow

• Algorithmic Level:
• Accelerating generation by reusing document prefixes[3, 4, 5]

• Early-terminated retrieval[3] and speculative generation [6, 7]

• Missing generalizability and sometimes sacrificing output quality

[1] RAGO: Systematic Performance Optimization for Retrieval-Augmented Generation Serving. (arXiv’25)
[2] Chameleon: a heterogeneous and disaggregated accelerator system for retrieval-augmented language models. (arXiv’23)
[3] RAGCache: Efficient Knowledge Caching for Retrieval-Augmented Generation. (arXiv’24)
[4] Prompt cache: Modular attention reuse for low-latency inference. (MLSys’24)
[5] CacheBlend: Fast Large Language Model Serving for RAG with Cached Knowledge Fusion. (Eurosys’24)
[6] Piperag: Fast retrieval-augmented generation via algorithm-system co-design. (arXiv’24)
[7] Accelerating retrieval-augmented language model serving with speculation. (arXiv’24)



7

Opportunity – Stage-level parallelism

• 1st Observation: gaps between LLM generation & vector search
• LLM decoding: Continuous batching → Flexibly add new requests
• Vector search: Fixed batching → strongly depends on batch size

Batching Strategies Throughput of vector search



8

Opportunity – Stage-level parallelism

• Example: 3 request with variable generation lengths



9

Opportunity – Stage-level parallelism

• Example: 3 request with variable Generation/Retrieval costs

Stage-level Batching & Scheduling:
CPU/GPU under-utilization



10

Opportunity – Intra-Request Semantic Similarity

• 2nd Observation: Similarity between stages in iterative workflows

Complex
Query

LLM
Generation

Vector
Search 1

LLM
Generation

Vector
Search 2

…

Successive retrievals
yield Close Vectors

in the embedding space



11

Opportunity – Intra-Request Semantic Similarity

• 2nd Observation: Similarity between stages in iterative workflows

Partial generation is
close to the final result
in the embedding space

Complex
Query

LLM
Generation

Vector
Search 1

LLM
Generation

Vector
Search 2

…



12

Opportunity – Inter-Request Retrieval Skewness

• 3rd Observation: skewed cluster access among queries

Everyday Question
about basketball

Scientific Problems

Kobe Bryant

Lebron James

Michael Jordan

Protein folding

Various query types

Frequently accessed
IVF clusters

Quantum Chemistry

Climate Modeling
A small number of clusters (20%)

dominate the overall access frequency.



13

Design – Overview

• System Overview
• User interface: Graph-based Workflow Definition

Compatible with 
Open-sourced frameworks



14

Design – Overview

• System Overview
• User interface: Graph-based Workflow Definition
• Backend server: Multiple RAG Workflow Co-execution

Throughput & Latency Optimization
via Graph-based Transformation



15

Design – RAGraph

• RAG Specific Abstraction
• Graph API

• add_generation()
• add_retrieval()
• add_edge()

• Server API
• Server()
• add_request()



16

Design – Fine-grained stage partition

• Partition
• In generation, each sub-stage comprises several decoding steps.
• In retrieval, each sub-stage involves searching across one or more clusters



17

Design – Fine-grained stage partition

• Dynamic time-budgeting method based on retrieval requests
• Before executing a sub-stage, clusters from each retrieval request are incrementally 

added until a maximum time budget 𝑚𝑏 is reached. 

• Δ𝑙: expected latency improvement
• 𝛽: denotes the CPU overhead of request scheduling
• 𝑡Retrieval: denotes the average time of retrieval stage



18

Design – Similarity-Aware Search Optimization

• 3 locality-based observations related to semantic similarity:
• The search results of 𝑣′tend to be included within the search results of 𝑣 with 

a larger top-𝑘
• When the search results of 𝑣 are in a cluster set 𝐻𝑣, the results of 𝑣′also tend 

to be located in 𝐻𝑣
• The search results of 𝑣′tend to be located in clusters of 𝐶∩𝐶′.



19

Design – Similarity-Aware Search Optimization

• Cache search information
• For each retrieval in a request, a set of larger top-𝑘 results of 𝑣 (20 in practice)

• Reorder of search flow for 𝑣′ 
• Local cache of v
• Cluster

• 𝐻𝑣 ∩ 𝐶′
• (𝐶 − 𝐻𝑣 ) ∩ 𝐶′
• Remaining clusters



20

Design – Similarity-Aware Search Optimization

• Speculative Execution 
• Non-overlapping execution (Each stage with 4 sub-stages)

12 sub-stages
each



21

Design – Similarity-Aware Search Optimization

• Speculative Execution 
• Generation with partial retrieval (lower search costs)

9 sub-stages

10 sub-stages

12 sub-stages



22

Design – Similarity-Aware Search Optimization

• Speculative Execution 
• Generation with partial retrieval (lower search costs)
• Retrieval with partial generation (with caching & cluster reordering)



23

Design – Partial GPU indexing

• Dynamic GPU cluster cache

LLM & Index cluster
memory coordination



24

Design – Partial GPU indexing

• Dynamic GPU cluster cache

LLM & Index cluster
memory coordination

GPU / CPU collaborated
vector search



25

Design – Put them together

• Sub-graph extraction with Node Wavefronts
• Multiple-graph transforming & scheduling



26

Evaluation – Setup

• 5 heterogeneous RAG workflows

• Baseline: LangChain, FlashRAG (vLLM + Faiss)
• Platform: NVIDIA H100 80GB + AMD EPYC 9534 64-core CPU



27

Evaluation – Setup

•Model: Llama 3.1 (8B)/ Llama2 (13B)/ OPT (30B)
• Corpus

• Primary retrieval corpus:  Wikipedia passages (38M documents)
• Embedding mode: e5_large (1024-dimensional)
• Index: IVF4096

• Nprobe: 128/256/512
• Top-k: 1

•Query dataset:
• NaturalQuestions (NQ)
• 2WikiMultiHopQA (wikiQA)
• HotpotQA



28

Evaluation – Overall

• Online: HedraRAG reduces request latency by 2.2×-18.2×, 3× higher request rates

• Offline:  Achieving speedups of 3.5× and 1.3× over LangChain and FlashRAG

Online Offline



29

Evaluation – Overall: hybrid workflows

• >3.3x throughput for multiple workflows

Online Throughput improvement

Capability under different 
Multistep : One-shot query ratios

• Achieving up to 5.6× latency reductiotion



30

Evaluation – Breakdown

Other LLMs Dynamic partitioning and pipelining

• > 1.5x Throughput • Achieving a reduction of 1.09× to 1.77×



31

Evaluation – Reordering and Speculation

Reordering and Speculation Partial GPU indexing

• Speedup ranging from 1.12× to 1.49×
• Nprobe: 512

• Speedup ranging from 1.06× to 1.62×



32

Summary

• Our contribution
• A serving framework to coordinate LLM and vector search
• Graph-based workflow definition, optimizing and scheduling
• 3 key techniques to optimize complex & concurrent RAG workflows


