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Retrieval-Augmented Generation (RAG)

* RAG is widely used in the era of LLM to

* Avoid retraining, reduce hallucination, preserve data privacy
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Heterogeneous RAG Workflow

* Complex LLM tasks drive RAG evolution

Doc: First Nobel Prize winner is ... ,
| retrieval

Simple question ™~ :
One-shot , e : ion |
Who got the first Nobel prize in physics? Answer: Wilhelm Réntgen. | generation
| Subquestion: Who is did Li Longji’s father
Multistep Multi-hop reasoning Docl — Subquestion: When did Li Dan die? 2 retrieval a
When did Li Longji’s father die? A/ 3 generation
Doc2 < Answer: 716 AD. :
" Question: How is penicillin discovered.
—
Knowledge summary Docl — Penicillin was discovered by ... >3 retrieval
Iterative Discovery of penicillin and >3 seneration
subsequent impact. Doc2 “% | 1940s, a team at the Oxford ... 8
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RAG Serving

* |terative invocation between Inference & Vector Search
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Motivation - Existing RAG Frameworks

* Functional Emphasis: Modular, Synchronized Design
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Motivation - Limitations of existing solutions

* System Level:
* Focus on Resource scheduling and disaggregated deployment strategies
* Lack of unified runtime support for coordinating multi-stage, heterogeneous flow

* Algorithmic Level:
* Accelerating generation by reusing document prefixes
* Early-terminated retrieval "' and speculative generation
* Missing generalizability and sometimes sacrificing output quality



Opportunity — Stage-level parallelism

* |st Observation: gaps between LLM generation & vector search

* LLM decoding: Continuous batching — Flexibly add new requests

* Vector search: Fixed batching — strongly depends on batch size
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Opportunity — Stage-level parallelism

* Example: 3 request with variable generation lengths

Variable Variable
generation tokens context lengths
Draft 1: RAG and Retrieval 1: —
About RAG workflow deign. 1 RAG paper Sunﬂ;
' ...(50 tokens) - =
. ' 0 Medium-length
Draft 2: LLM, attention, Retrieval 2: es noeng
- c 2 LLM papers LI
and inference serving. [ —]

About LLMs. ...(100 tokens) e

- . Lon;
1)rait 3 Machine learning, ?Eilﬁvzl :r.s Su mmi
About Machine different models and fields. —— —
Learning. ...(200 tokens) [—
—

Stage-level Heterogeneity



Opportunity — Stage-level parallelism

* Example: 3 request with variable Generation/Retrieval costs

Variable Variable P
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Opportunity - Intra-Request Semantic Similarity

« 2nd Observation: Similarity between stages in iterative workflows
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Opportunity - Intra-Request Semantic Similarity

« 2nd Observation: Similarity between stages in iterative workflows

Complex LLM Vector LLM Vector
—_— . —_— —_— . —_—
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Oppo rtun ity — Inter-Request Retrieval Skewness

« 3rd Observation: skewed cluster access among queries
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- .
, graph.add_generation(1, ...)
\ | graph.add_edge(0, 1, ...)

Design - overview

* System Overview

* User interface: Graph-based Workflow Definition
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Design - overview

* System Overview

* Backend server: Multiple RAG Workflow Co-execution
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Design - RAGraph

* RAG Specific Abstraction

» Graph AP
* add_generation()
* add_retrieval()
* add_edge()

» Server API

* Server()
* add_request()
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Listing 1. Construct RAG workflows with graph primitives.

from HedraRAG import RAGraph, START, END
from HedraRAG import Server
# HyDE-style workflow
gl = RAGraph()
g1.add_generation(@, prompt="Generate a hypothesis
for {input}.", output="hypopara")
gl.add_retrieval(1, topk=5, query="hypopara", output="docs")
gl.add_generation(2, prompt="Answer {query} using {docs}.")
g1.add_edge(START, 0); gl.add_edge(@, 1)
gl.add_edge(1, 2); gl.add_edge(2, END)
# Multistep-style workflow
g2 = RAGraph()
g2.add_generation(@, prompt="Decompose {input} into
subquestions.", output="subquestion")
g2.add_retrieval(1, topk=2, query="subquestion",
output="docs")
g2.add_generation(2, prompt="Answer {subquestion}
using {docs}.")
g2.add_edge(START, 0); g2.add_edge(@, 1); g2.add_edge(1, 2)
g2.add_edge(2, lambda s: 1 if s.get("subquestion") else END)
# Server initiating and execution
s = Server(generator="Llama3-8B", index="IVF4096")
s.add_request("What is RAG?", g1)
s.add_request ("Compare RAG with long-context models.", g2)

(9]



Design - Fine-grained stage partition

* Partition

* In generation, each sub-stage comprises several decoding steps.
* In retrieval, each sub-stage involves searching across one or more clusters

Variable
generation tokens

Draft 1: RAG and

workflow deign.
About RAG. ...(50 tokens)
Draft 2: LLM, attention,
and inference serving.
About LLMs. ...(100 tokens)
1Dralt 20 Machine learning,
About Machine different models and fields.
Learning. ...(200 tokens)
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Latency (ms)

Design — Fine-grained stage partition

* Dynamic time-budgeting method based on retrieval requests

* Before executing a sub-stage, clusters from each retrieval request are incrementally
added until a maximum time budget mb is reached.

(a) vLLM, LIama3-8B

(b) Faiss search, IVF4096

40k
IRetri —mb  IRetrieval
. v 30k mb = argmax(Al), A = Retrieval __ [Retrieva ,3
N 2 mb
[ i | .
.| g 20k ) « Al: expected latency improvement
S .
3 10k - ///////  B:denotes the CPU overhead of request scheduling
7 - 0- ' * tRetieval: denotes the average time of retrieval stage
0 1000 2000 0 2000 4000

Context Length Cluster ID (sorted)




Design — Similarity-Aware Search Optimization

* 3 locality-based observations related to semantic similarity:

 The search results of v'tend to be included within the search results of v with
a larger top-k

« When the search results of v are in a cluster set Hv, the results of v'also tend
to be located in Hv

 The search results of v'tend to be located in clusters of CnC’.
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(a) v/ Results Distribution

C, - (2] (3) 4] Multistep | IRG

s lad

Original search order for v’
wikiQA hotpotQA wikiQA  hotpotQA 8

©
<
X

o
o
X

N
o
X

Query Proportion

¢,y 00 (2] (5] [3]

\Hv’/

N
<
X




Design — Similarity-Aware Search Optimization

* Cache search information
* For each retrieval in a request, a set of larger top-k results of v (20 in practice)

* Reorder of search flow for v’

* Local cache of v

* Cluster
 Hvn ('
*c (C—Hv)nC(C
* Remaining clusters

Previous search for v

¢, @ (=) () (4]
[

Original search order for v’

¢,y (2] (5] (3]

l \Hv’/

Optimized search order for v’

Local cache Reordere:i clusters

ooo (GG

S

I
Early termination :

10

Search Time Rat

80% A
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40% A

20% -

(b) Reduced Search Time
Multistep IRG
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Design — Similarity-Aware Search Optimization

* Speculative Execution
* Non-overlapping execution (Each stage with 4 sub-stages)

J ) OCJ &Y LJ UJ OJ O
cru (] (OJ O CJ LJ OJ CJ CJ
) I O B ) CJ CJ .
12 sub-stages
J J &J cach
CPU J OJ CJ
(0 I O O B

Generation sub-stage (]  Retrieval sub-stage C] Speculative sub-stage
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Design — Similarity-Aware Search Optimization

* Speculative Execution
* Generation with partial retrieval (lower search costs)

Speculative generation

) ) ) T C] 9 sub-stages
geUu( 1 C ) C ) C C) () 10 sub-stages
) O C) ) ) 7)) () [) 12 sub-stages

[
New top-k docs found,
[ regeneration

CPU (

Generation sub-stage (]  Retrieval sub-stage (] Speculative sub-stage
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Design — Similarity-Aware Search Optimization
* Speculative Execution

* Retrieval with partial generation (with caching & cluster reordering)

Semantic variation < §;
KT %

L) | [
GrU () CJ}(
] O

) (O ]

[
) ) O
( [

[ J J )

Speculative (
retrieval

] ) O [
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) O O |

Local cache
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Generation sub-stage (]  Retrieval sub-stage (] Speculative sub-stage
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Design - Partial GPU indexing

* Dynamic GPU cluster cache

GPU memory

LLM Weight

CPU memory

|
CPU index !

Cl 0.15
C3 0.10

C5 0.09
pund BN 07/

__________________________________

LLM & Index cluster
memory coordination
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Design - Partial GPU indexing

* Dynamic GPU cluster cache

GPU memory
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Index
Cache

L

................................. )
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Design - Put them together

* Sub-graph extraction with Node Wavefronts

* Multiple-graph transforming & scheduling

Node Wavefront

s N
One-shot | ]—llb[
I /

— Graph
r . N Transform
RECOMP : ]—H +[ }
il s— -
Multistep | ]'T[ JH ]

Concurrent Requests

RAGraph Abstraction

——
GPU 2-1{2-2
Dynamic
Scheduling ﬁ
1-111-2|1-3
CPU 2-3|2-42-5] - - -
R
3-1(3-2
— A

GPU-CPU Pipeline
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Evaluation - setup

* 5 heterogeneous RAG workflows

-------------

_____________

_____________

i HyDE : Hyper- mmgmph—’[ Retrieval H Generation ]

_____________ Generation

-------------

i RECOMP *—’[ Retrieval ]—* LT

Compression

-------------

—b[ Generation ]

(o Sub-questi ( . ) Sub-questi
I Multi-step ! UH-qUESION Lol Retrieval | T dUeSHOR L)
_____________ Decomposition L J Answering

) I

-------------

Answer ]

L Summary

i IRG i [ Retrieval ]—’ Generation

_____________

—'[ Retrieval ]—{

Generation ]—-V

* Baseline: LangChain, FlashRAG (vLLM + Faiss)
* Platform: NVIDIA H100 80GB + AMD EPYC 9534 64-core CPU



Evaluation - setup
* Model: Llama 3.1 (8B)/ Llama2 (13B)/ OPT (30B)

* Corpus
* Primary retrieval corpus: Wikipedia passages (38M documents)

* Embedding mode: e5_large (1024-dimensional)
* Index: IVF4096
* Nprobe: 128/256/512
e Top-k: |
* Query dataset:
* NaturalQuestions (NQ)
* 2WikiMultiHopQA (wikiQA)
* HotpotQA



Latency (s/query) Latency (s/query)

Latency (s/query)

Evaluation - overall

* Online:
o Offline:

(a) One-shot, nprobe=128

—e— LangChain

(b) HyDE, nprobe=128

—4— FlashRAG

(c) RECOMP, nprobe=128

~4— HedraRAG

(d) Multistep, nprobe=128

(e) IRG, nprobe=128
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Latency (s/query)

Latency (s/query)

Evaluation - Overall: hybrid workflows

* >3.3x throughput for multiple workflows ¢ Achieving up to 5.6 x latency reductiotion

10
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Evaluation - Breakdown

Latency (s/query)

Latency (s/query)

* > | .5x Throughput * Achieving a reduction of 1.09x to |.77x%
—8— LangChain —4— FlashRAG HedraRAG
6 (a) Llama2-13B, Multistep " (b) OPT-30B, Multistep
77 71 —e— Faiss HedraRAG
51 51 (a) nprobe = 128 (b) nprobe = 512
] | EO'SOHH/’\/" 2=
0 T T T T T T o T T T T T T g g
2 4 6 8 10 12 2 4 6 8 10 12 o 915
Request Rate (req/s) Request Rate (req/s) § 0.45 1 § '
20 (c) Llama2-13B, IRG 20 (d) OPT-30B, IRG % %
L S 0.40 1 £ 1.0-
15 - 15 - z 2
10 10 - 4 8 12 16 20 24 28 4 8 12 16 20 24 28
o) 5 Arrival Rate (req/s) Arrival Rate (req/s)
0 T T T T T T 0 T T T T T T
2 4 6 8 10 12 2 4 6 8 10 12
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* Speedup ranging from .06 to |.62X%

Average Latency (s)

Average Latency (s)

Evaluation - Reordering and Speculation

(a) MultiStep, RPS=4
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* Speedup ranging from

* Nprobe: 512
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Summary

* Our contribution
* A serving framework to coordinate LLM and vector search
* Graph-based workflow definition, optimizing and scheduling
* 3 key techniques to optimize complex & concurrent RAG workflows



