

Tally: Non-Intrusive Performance Isolation for Concurrent Deep Learning Workloads

Wei Zhao^{1,4}, Anand Jayarajan^{2,3,4}, Gennady Pekhimenko^{2,3,4}

Presenter: Jiaqi Ruan, Jia He

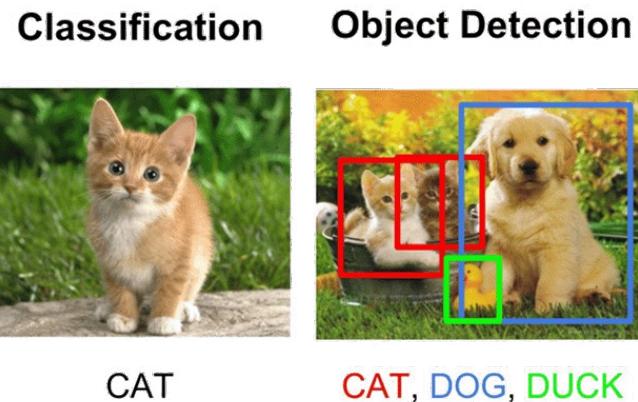
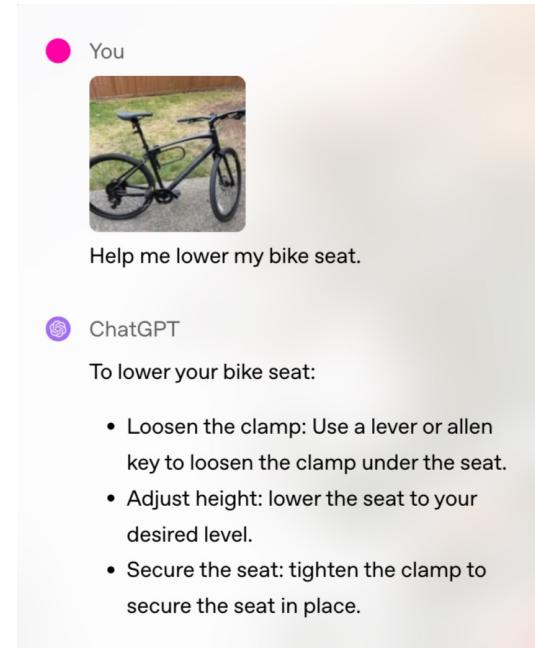
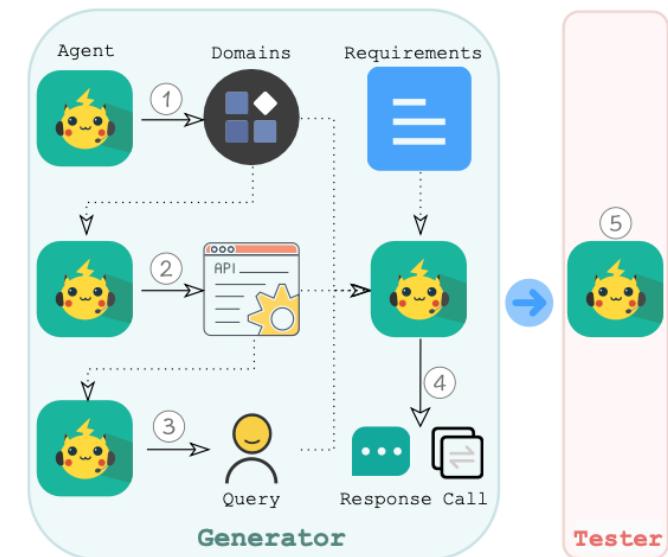
Stanford¹
University

UNIVERSITY OF
TORONTO²

VECTOR³
INSTITUTE

⁴

DL is Gaining Unprecedented Popularity



Soaring Investments in GPU Clusters

NVIDIA H100 GPU Units By Company

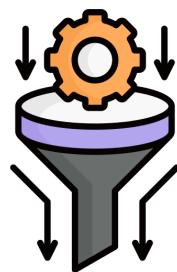
Company/Entity	H100 GPU Count
Meta	350,000
XAI/X	100,000
Tesla	
Lambda	
Google A3	
Oracle Cloud	

Ensuring high GPU utilization is crucial for cost-efficiency!

While we don't know the precise mix of GPUs sold, each Nvidia H100 80GB HBM2E compute GPU add-in-card (14,592 CUDA cores, 26 FP64 TFLOPS, 1,513 FP16 TFLOPS) **retails for around \$30,000 in the U.S.** However, this is not the company's highest-performing Hopper architecture-based part. In fact, this is the cheapest one, at least for now. Meanwhile in China, one such card can cost as much as **\$70,000.** **$350,000 * 30,000 \approx \10 billion**

Meanwhile - GPUs are Severely Underutilized

- 2022 Alibaba Study:
 - median GPU utilization in 6000-GPU cluster is only **4.2%**.
- Sources of Inefficiency:

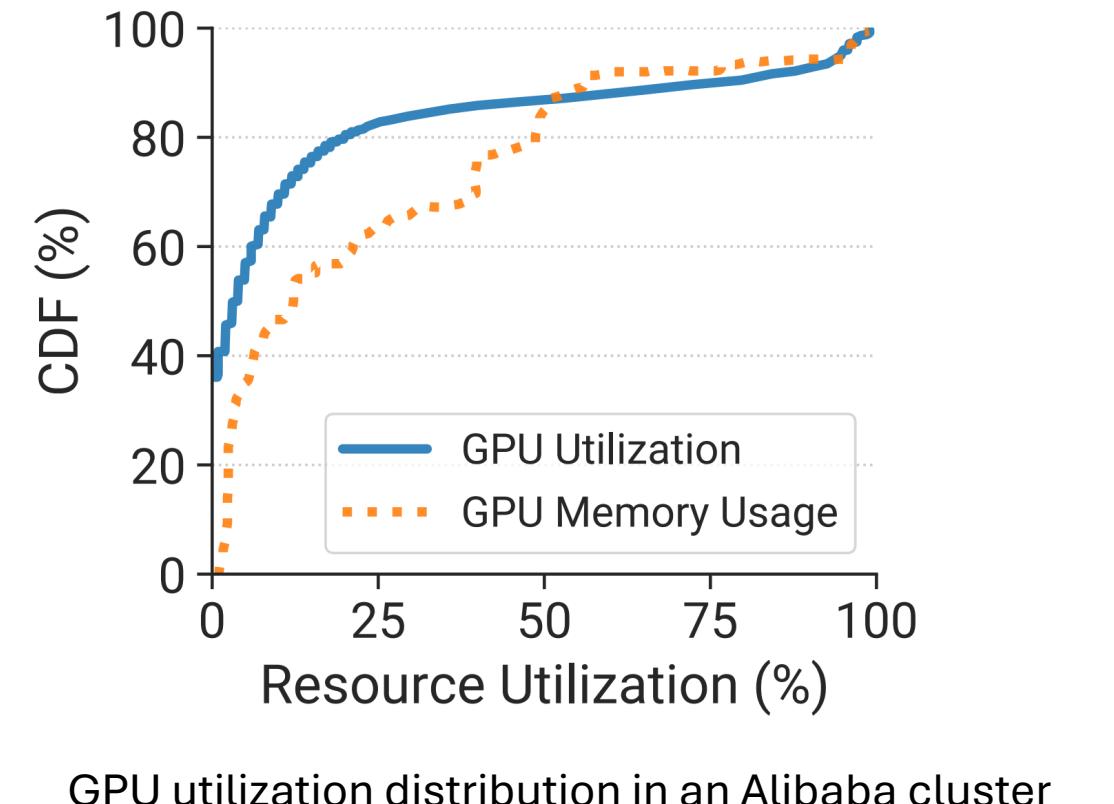


Training:

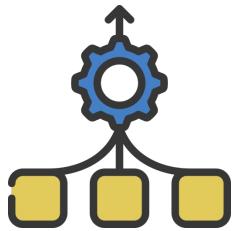
bottlenecks in CPU execution

Inference:

fluctuating user traffic

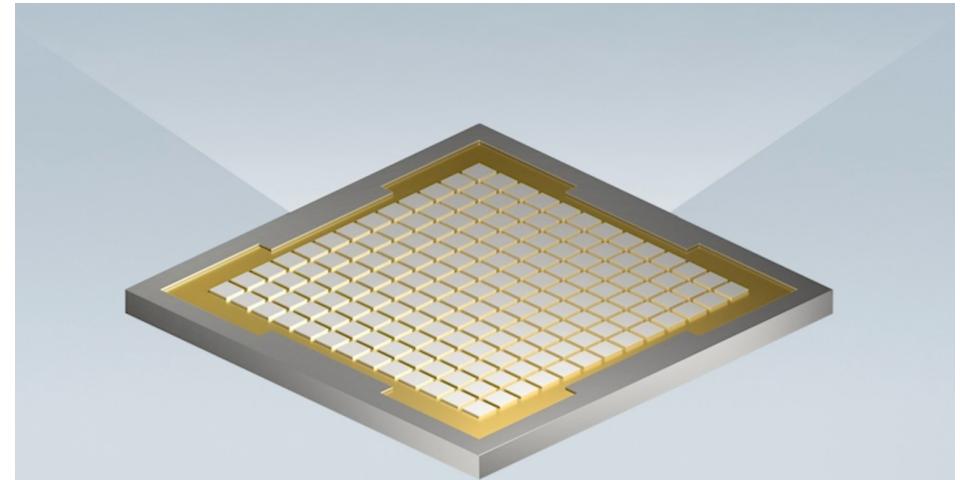


GPU Sharing to the Rescue



Consolidating multiple workloads to share a single GPU's resources.

The same Alibaba study shows GPU sharing can cut resource requirements by up to **73%**.



Yet, GPU Sharing is Rarely Used in Clusters

Limitations of Current GPU Sharing Solutions:

High integration and maintenance cost
due to intrusive code modifications

Lack of performance isolation guarantees
leads to violations of task SLAs

Limited application compatibility due to
reliance on workload-specific characteristics

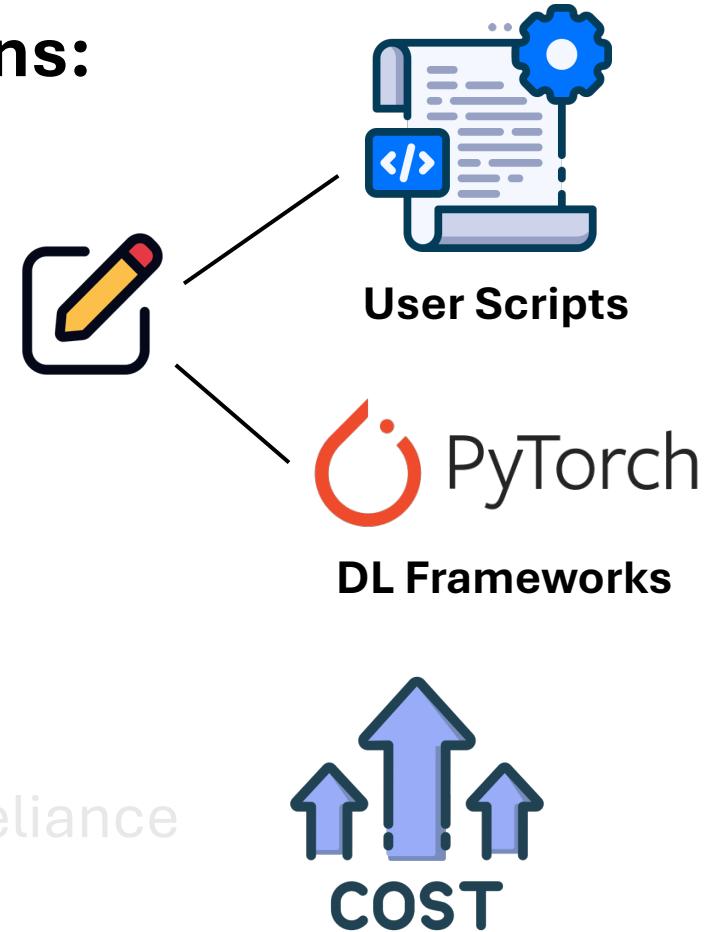
Yet, GPU Sharing is Rarely Used in Clusters

Limitations of Current GPU Sharing Solutions:

High integration and maintenance cost
due to intrusive code modifications

Lack of performance isolation guarantees
leads to violations of task SLAs

Limited application compatibility due to reliance
on workload-specific characteristics



Yet, GPU Sharing is Rarely Used in Clusters

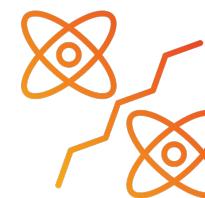
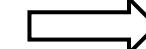
Limitations of Current GPU Sharing Solutions:

High integration and maintenance cost
due to intrusive code modifications



High-priority
Best-effort

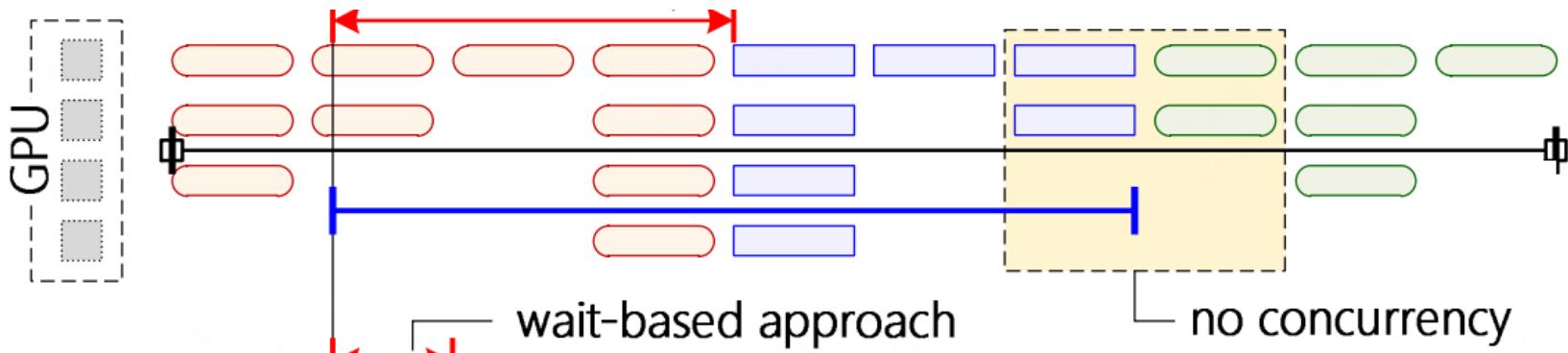
Lack of performance isolation guarantees
leads to violations of task SLAs



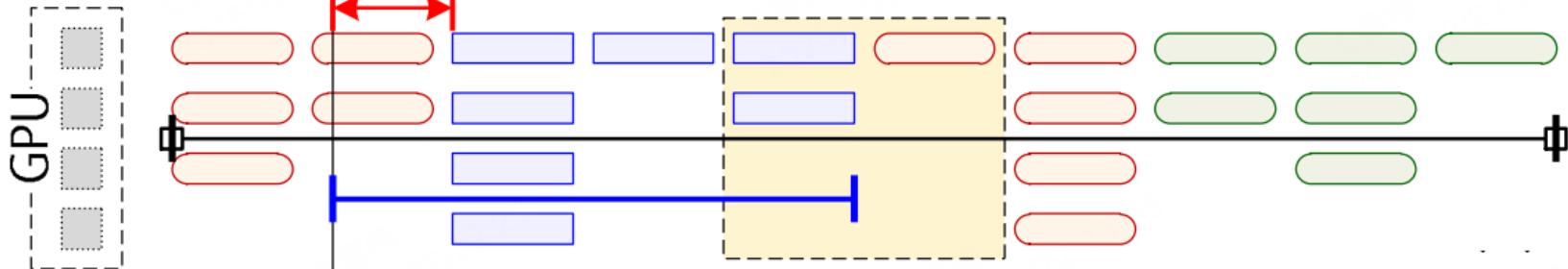
Limited application compatibility due to
reliance on workload-specific characteristics

**Interference causes
performance degradation**

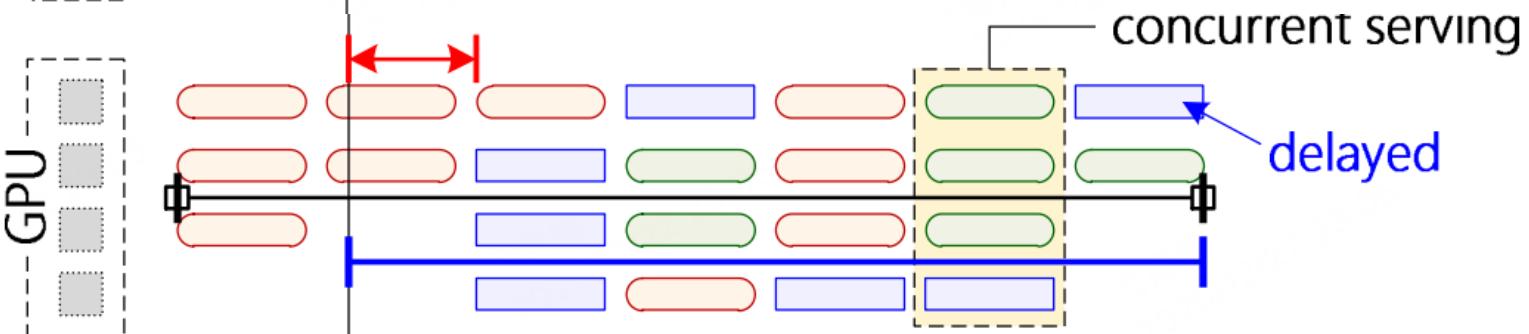
Iteration



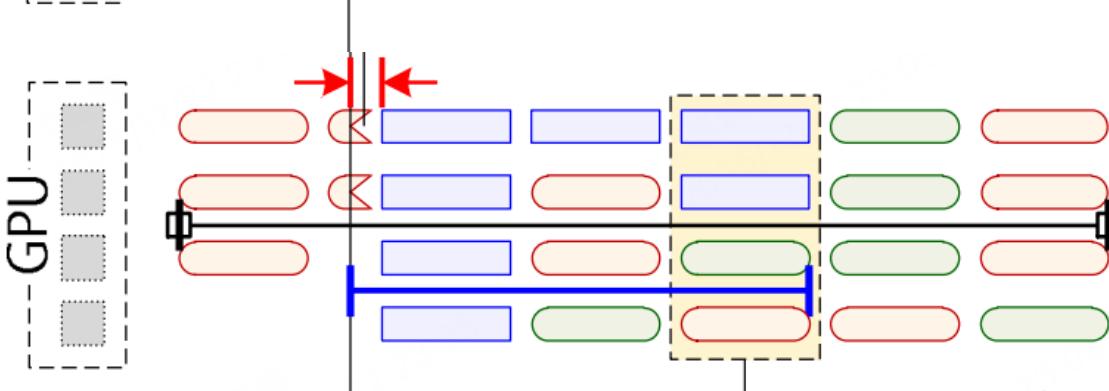
Kernel



Stream

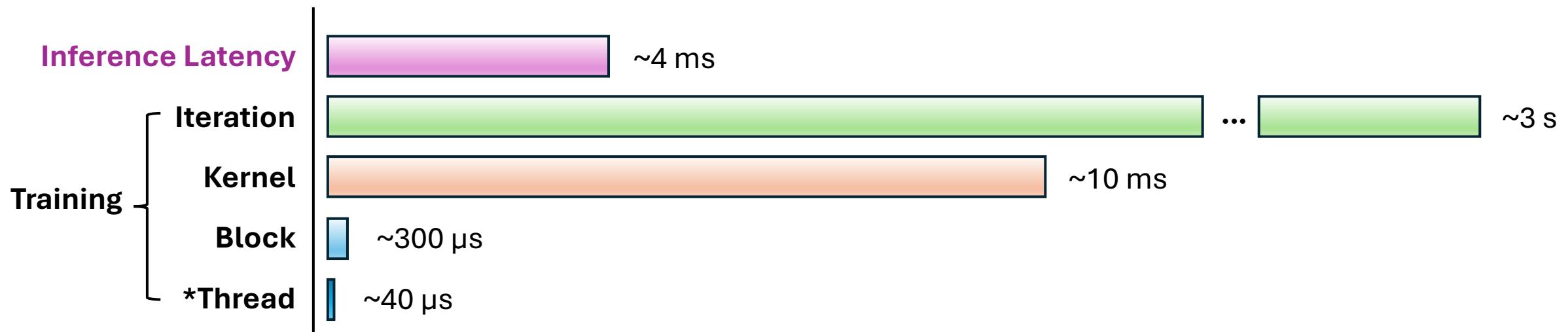


Block



Scheduling Granularity for DL Workloads

- High-priority: **BERT Inference**
- Best-effort: **Whisper Training**
- Co-executed on a NVIDIA A100 GPU



*: the thread-level latency is taken from the REEF paper as it is not supported in NVIDIA GPUs.

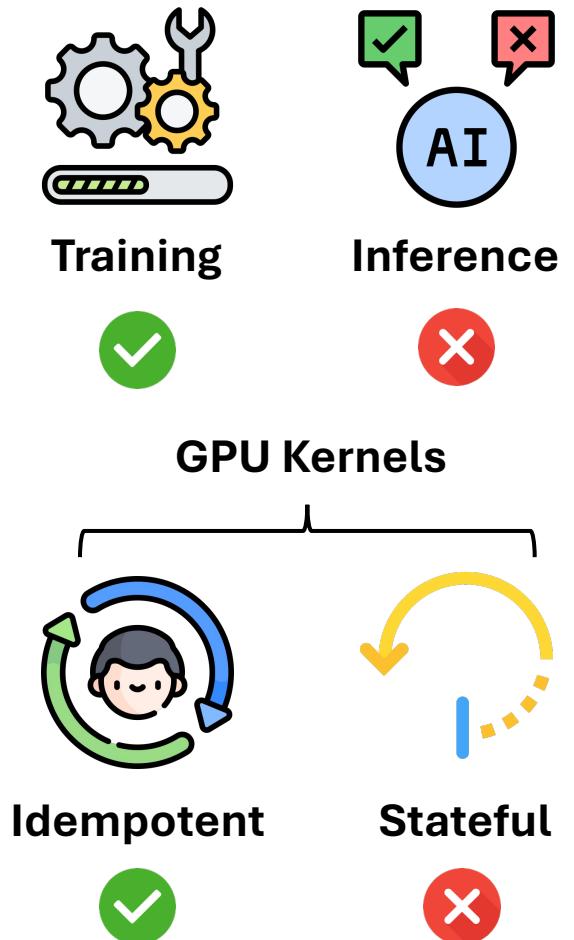
Yet, GPU Sharing is Rarely Used in Clusters

Limitations of Current GPU Sharing Solutions:

High integration and maintenance cost
due to intrusive code modifications

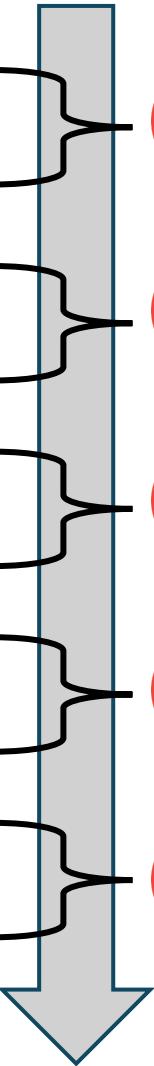
Lack of performance isolation guarantees
leads to violations of task SLAs

Limited application compatibility due to
reliance on workload-specific characteristics



Yet, GPU Sharing is Rarely Used in Clusters

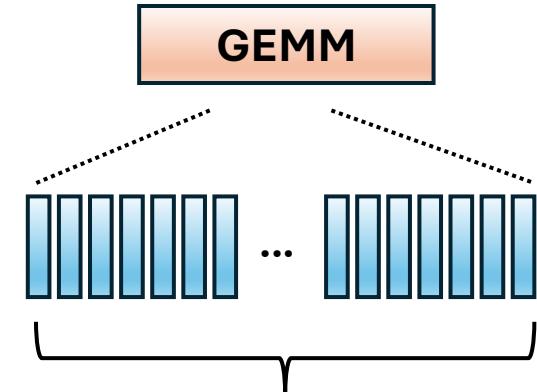
		Intrusiveness	Granularity	Generality	
2017	EffiSha [PPoPP'17]		Intrusive code	Block level	All
2020	Salus [MLSys'20]		Non-Intrusive	Iteration level	All
2022	REEF [OSDI'22]		Non-Intrusive	thread level	Indempotent
2023	TGS [NSDI'23]		Non-Intrusive	kernel level	Static
2024	Orion [EuroSys'24]		Intrusive code	stream level	All



Choosing the Right Scheduling Granularity

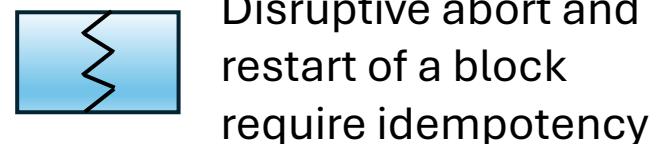
Adopted by Tally		
	Block-level	Thread-level
Latency	~100s μ s Universally applicable	~10s μ s Limited to idempotent kernels
Generality		

Block-level:

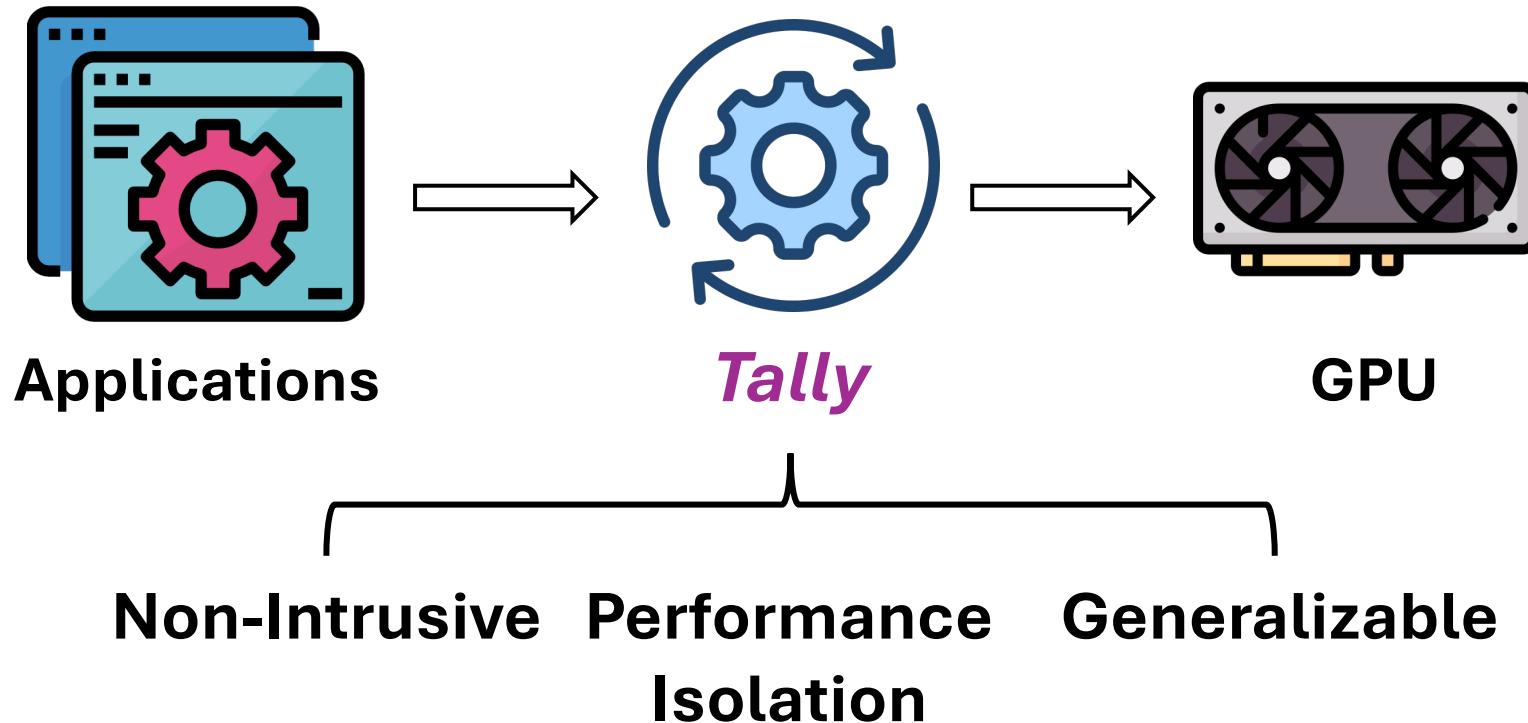


Independent

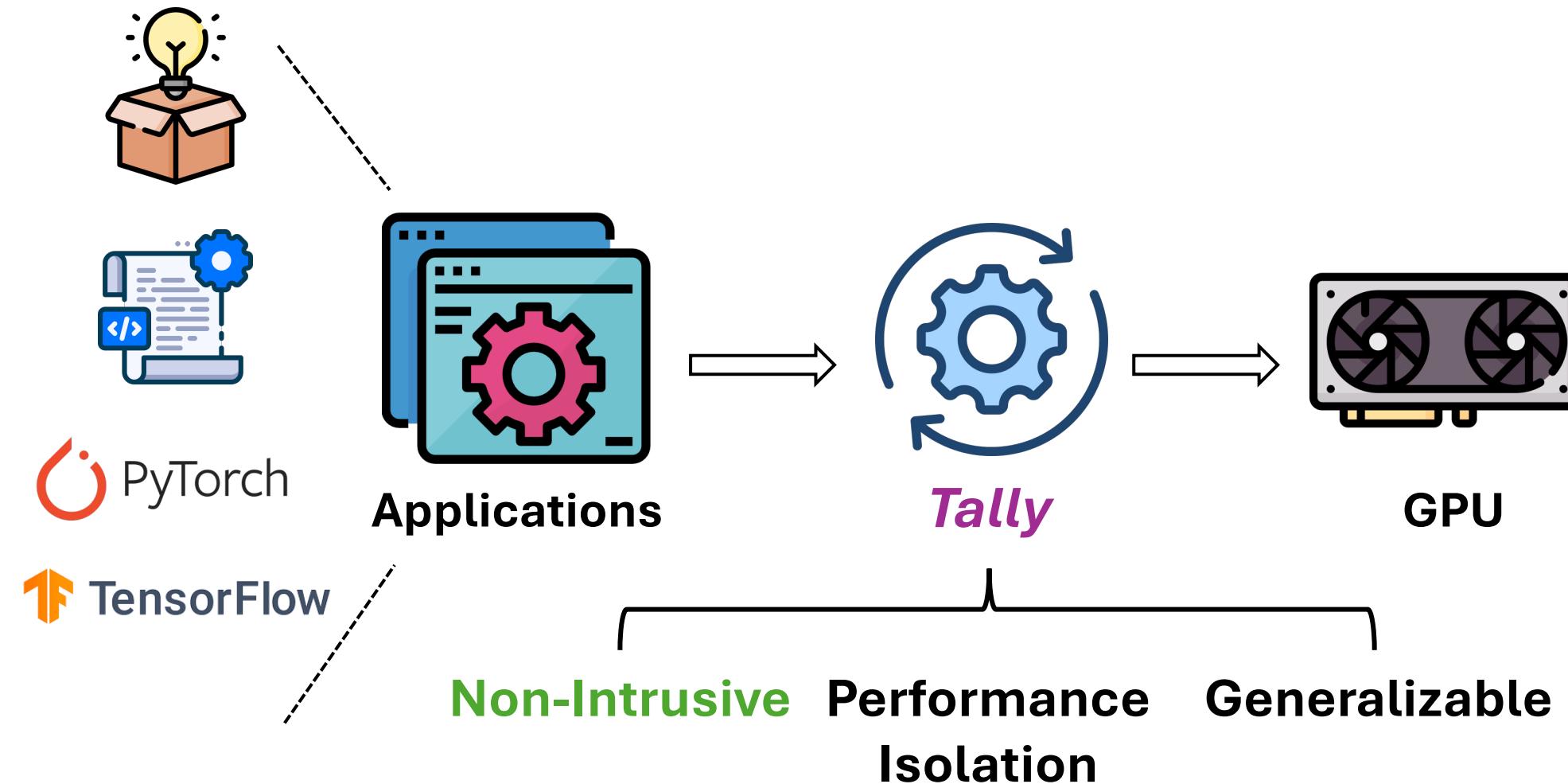
Thread-level:



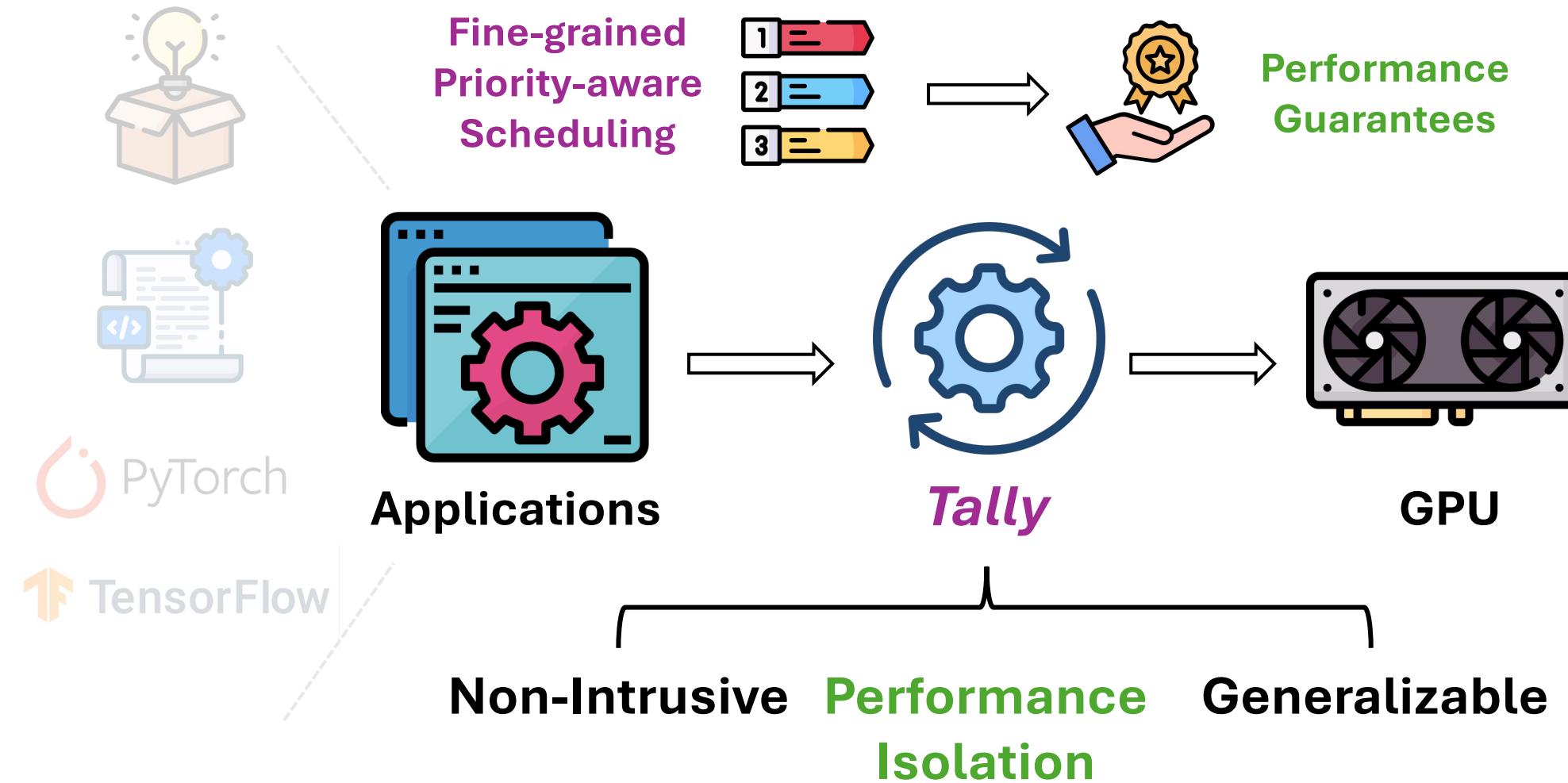
Tally: Enabling Practical GPU Sharing



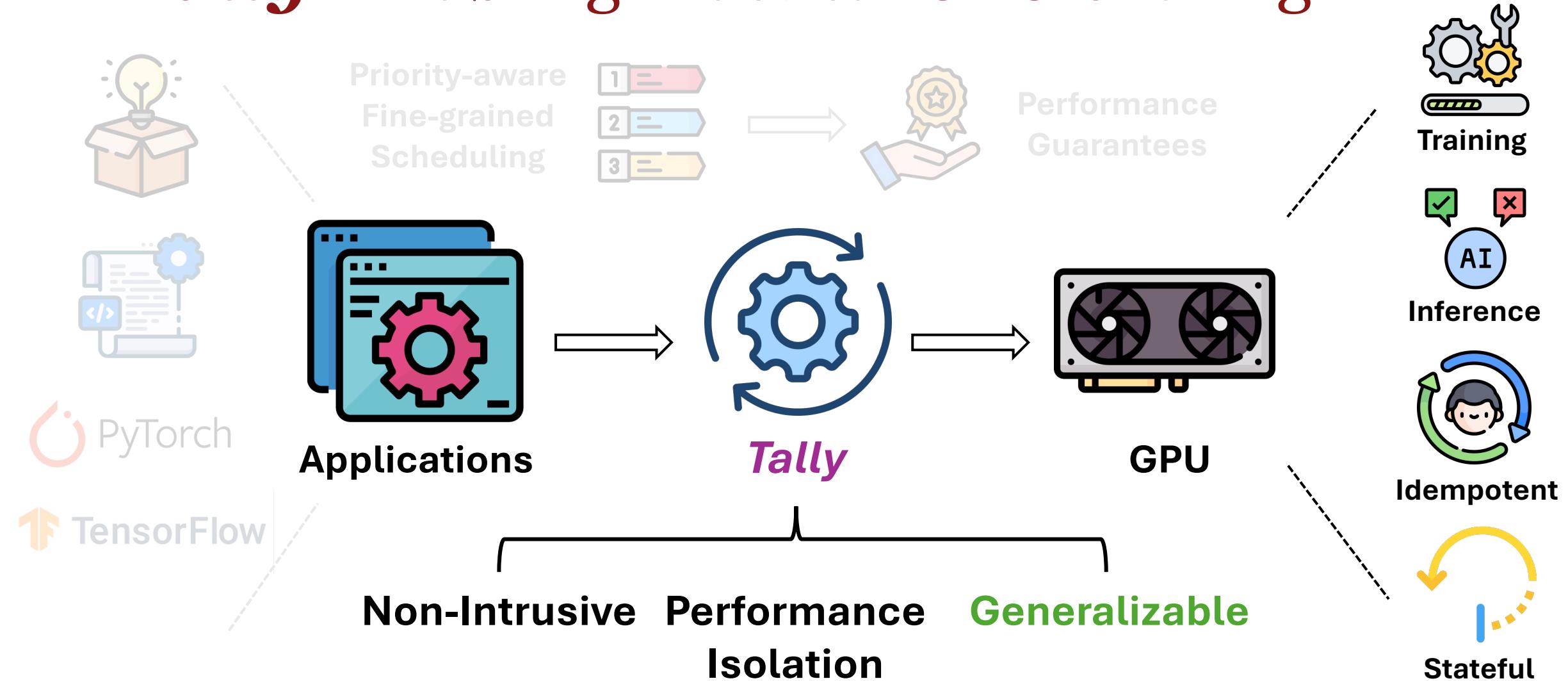
Tally: Enabling Practical GPU Sharing



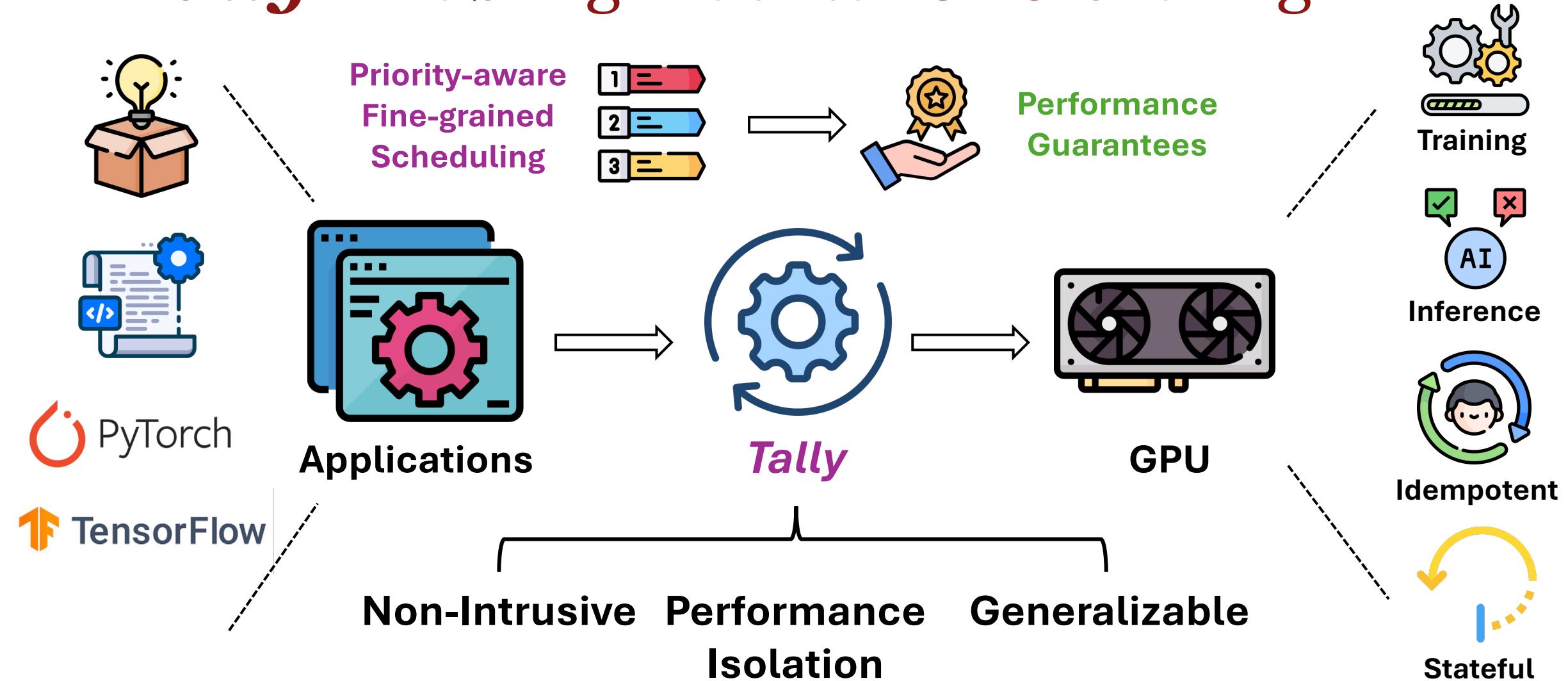
Tally: Enabling Practical GPU Sharing



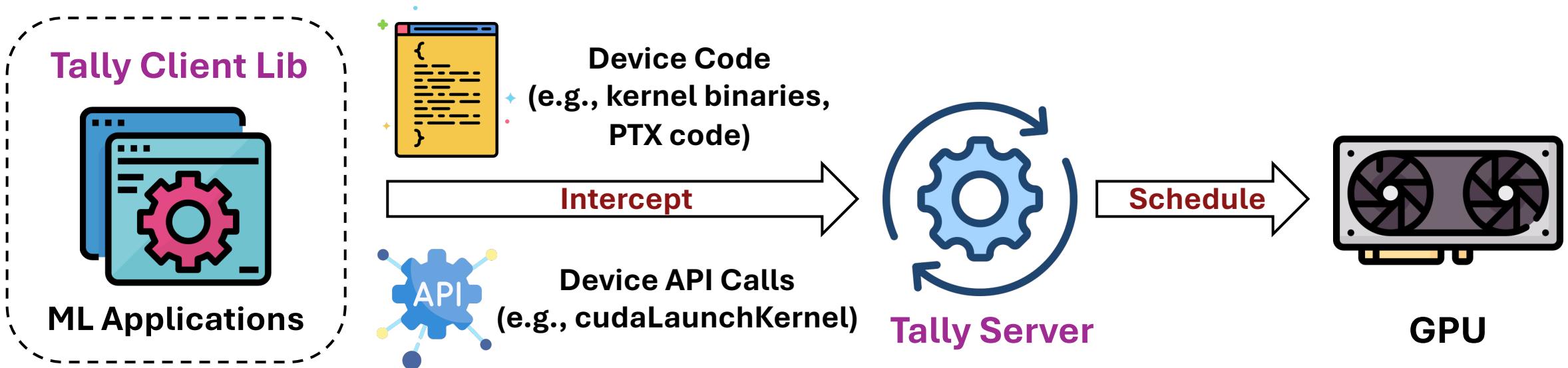
Tally: Enabling Practical GPU Sharing



Tally: Enabling Practical GPU Sharing

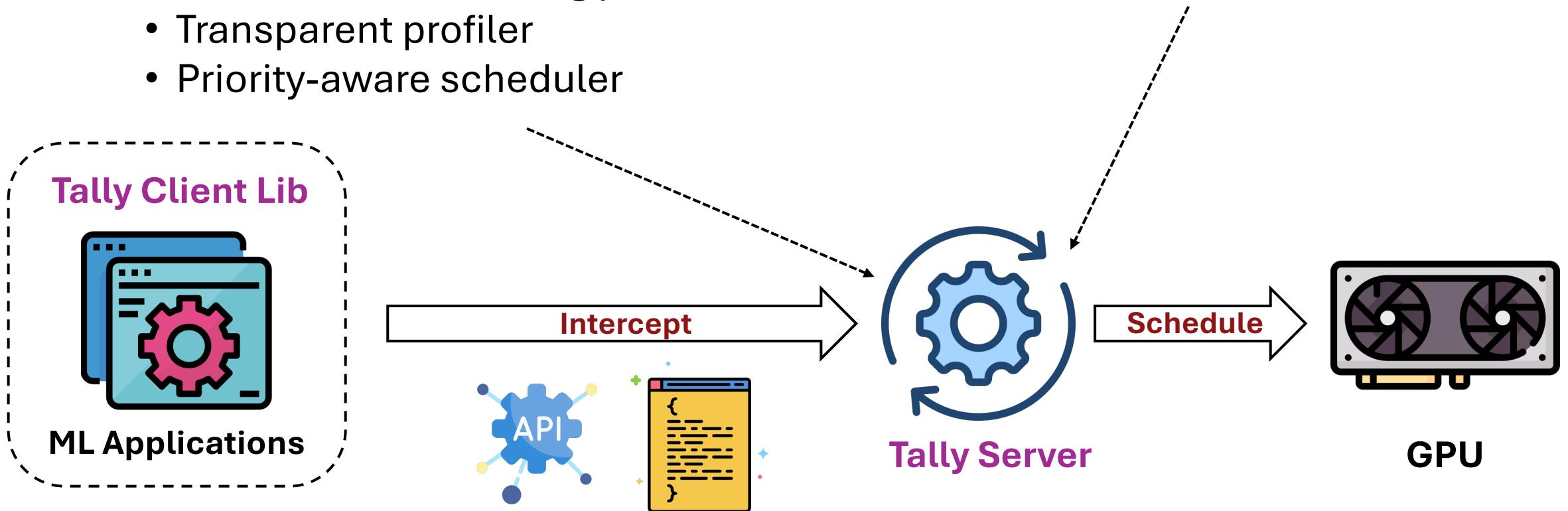


Overview of Tally – Act as Virtualization Layer



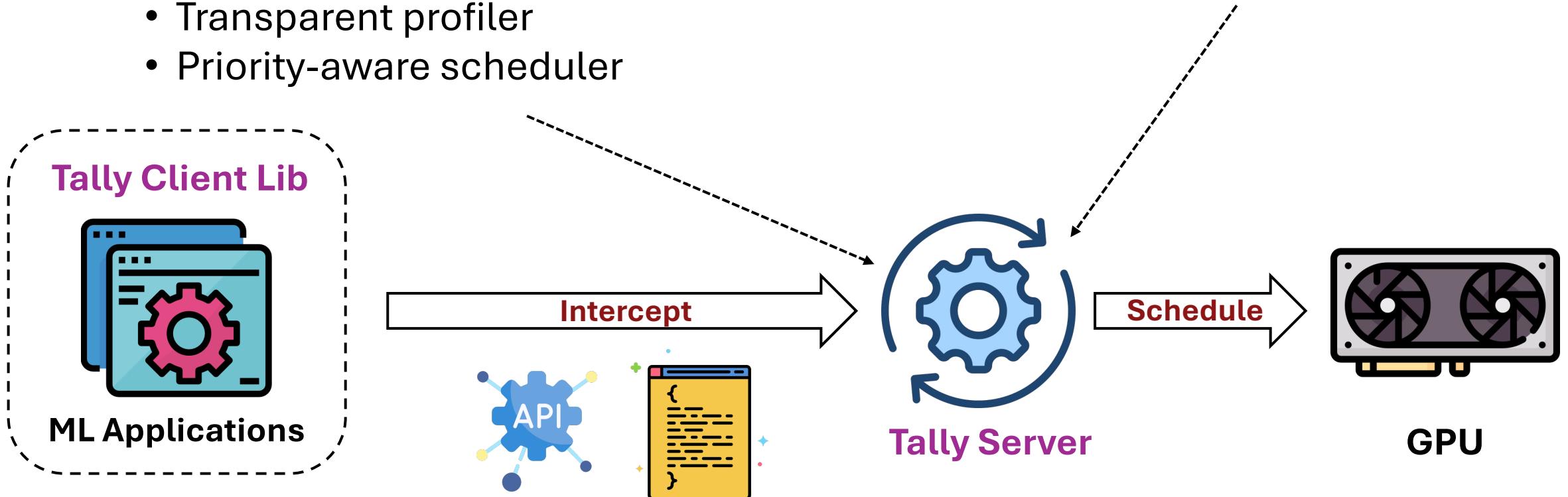
Overview of Tally

- Core mechanisms
 - Block-level scheduling primitives for best-effort kernels
 - Transparent profiler
 - Priority-aware scheduler



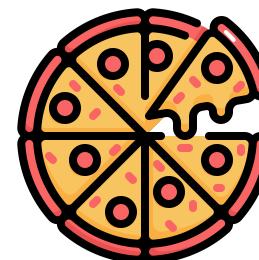
Overview of Tally

- Core mechanisms
 - **Block-level scheduling primitives for best-effort kernels**
 - Transparent profiler
 - Priority-aware scheduler



Tally's Block-level Scheduling

- Key Insights:
 - Block-level scheduling is **non-intrusive** and **generalizable** for all ML tasks
 - Previous results are **kept** instead of simply discarding
 - Turnaround latency (~100us) is **tolerable**
- Tally's Scheduling Strategy towards Different Tasks
 - High-priority: keep it **as-is**
 - Best-effort: **transform** and schedule kernels at block-level **via two primitives**



Slicing

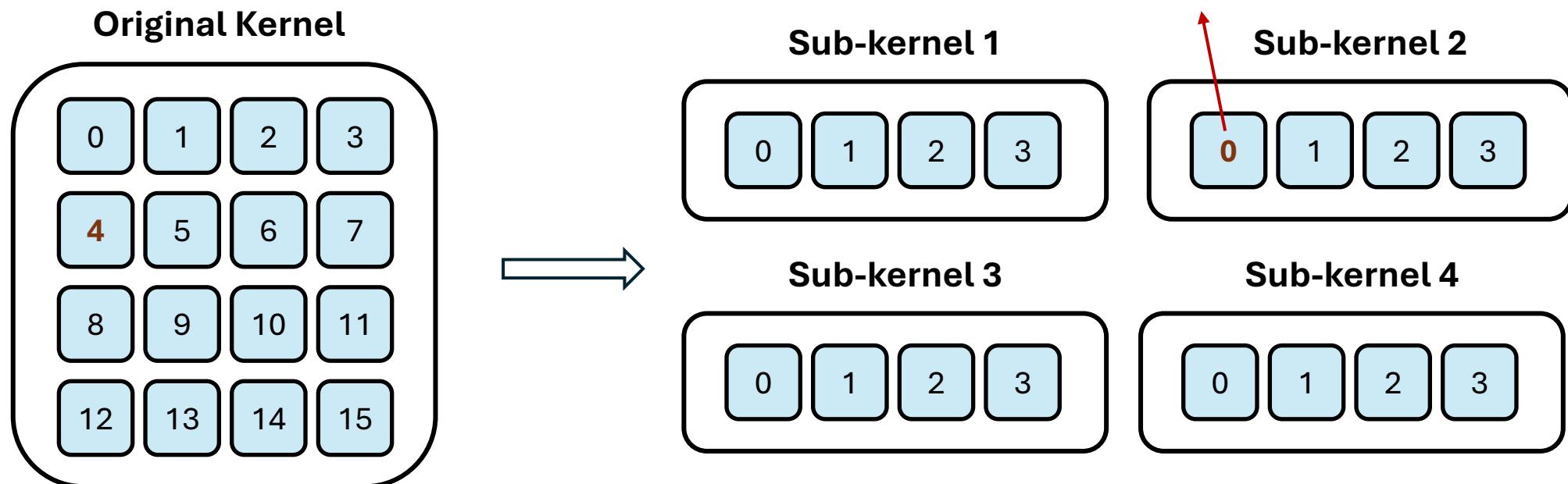
or

Preemption

Slicing Transformation

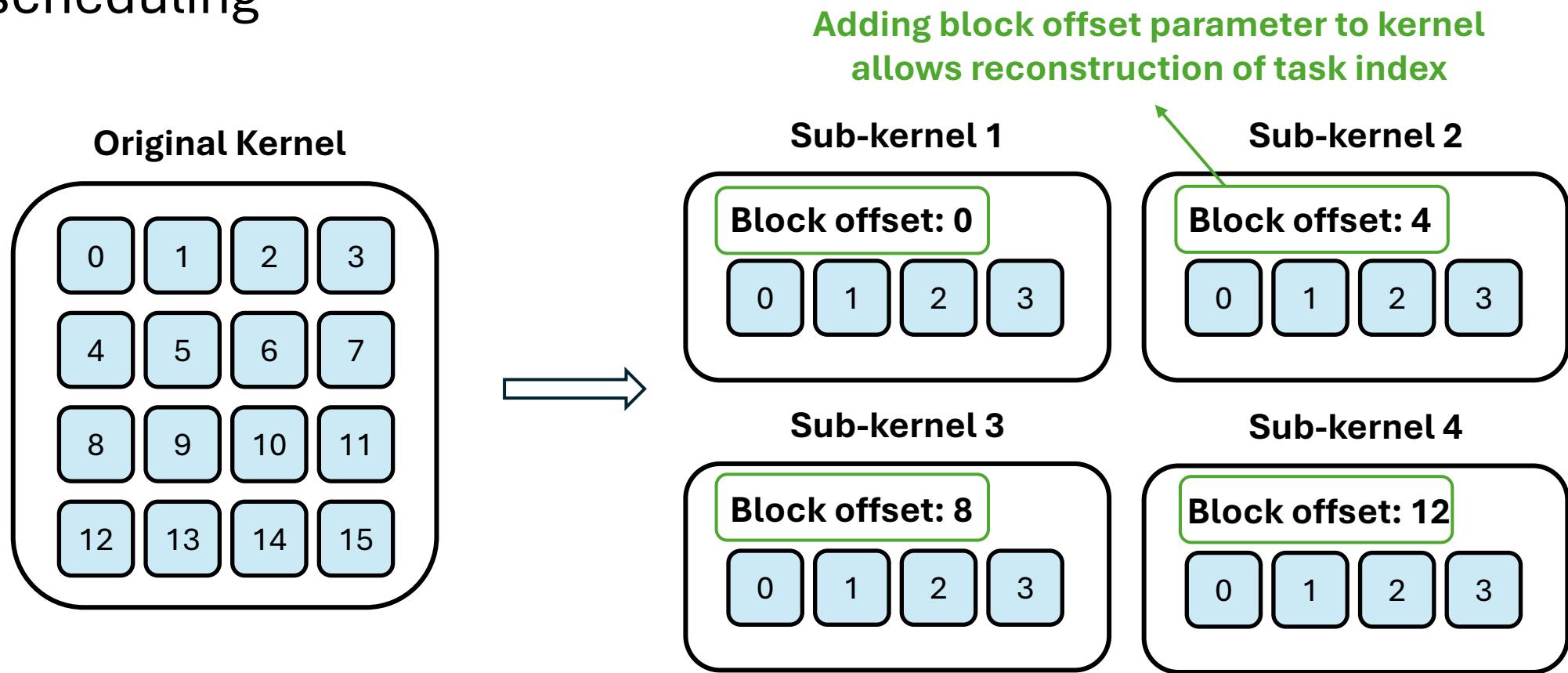
- Divide a kernel into multiple sub-kernels to allow for more fine-grained scheduling

Naively partitioning into multiple kernels results in incorrect results!



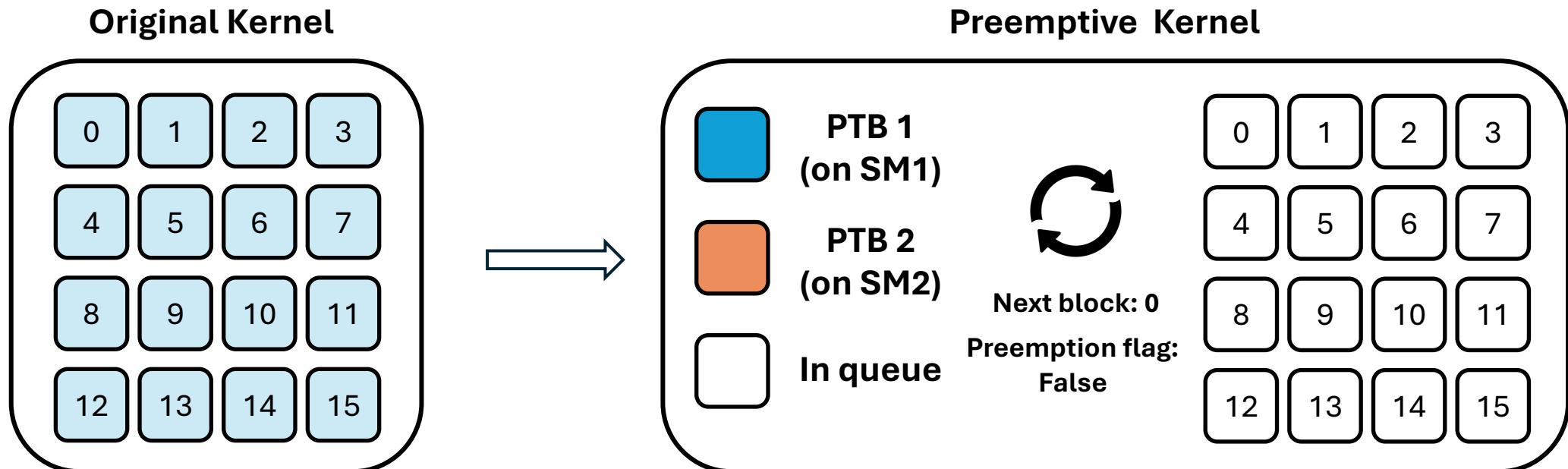
Slicing Transformation

- Divide a kernel into multiple sub-kernels to allow for more fine-grained scheduling



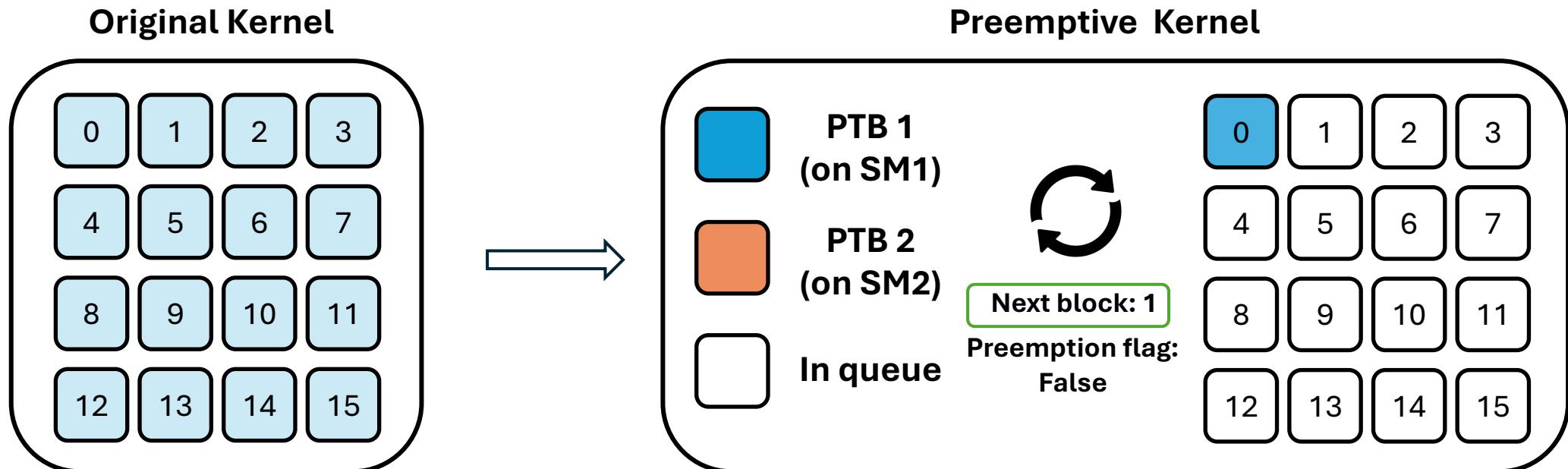
Preemption Transformation

- Modify the kernel execution mode to **Persistent Thread Block** (PTB)



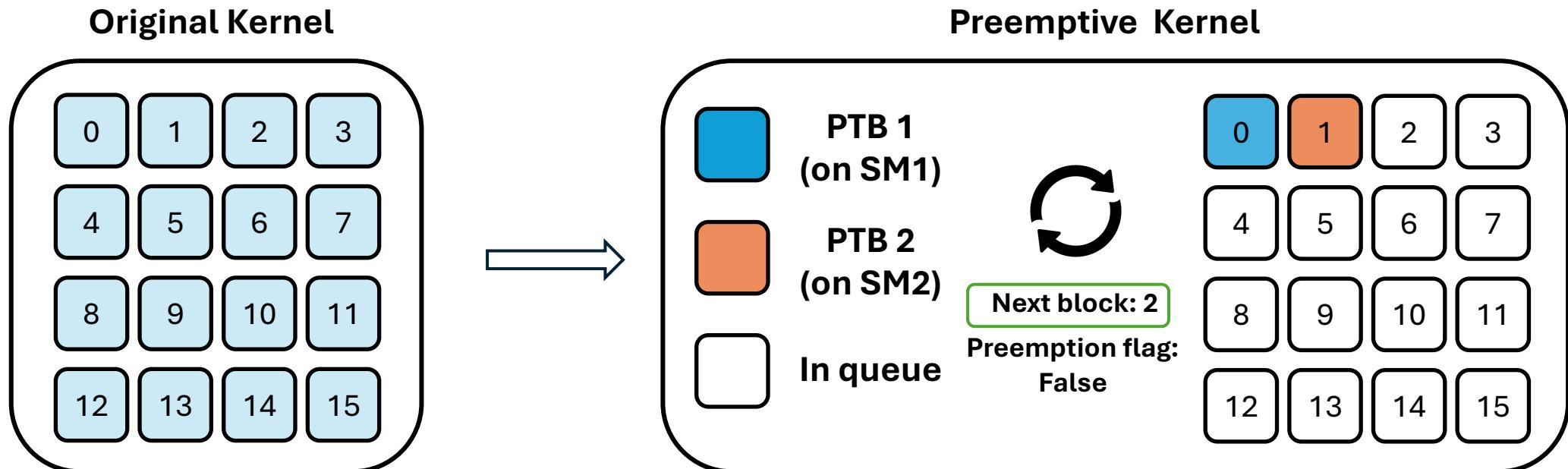
Preemption Transformation

- Modify the kernel execution mode to Persistent Thread Block (PTB)



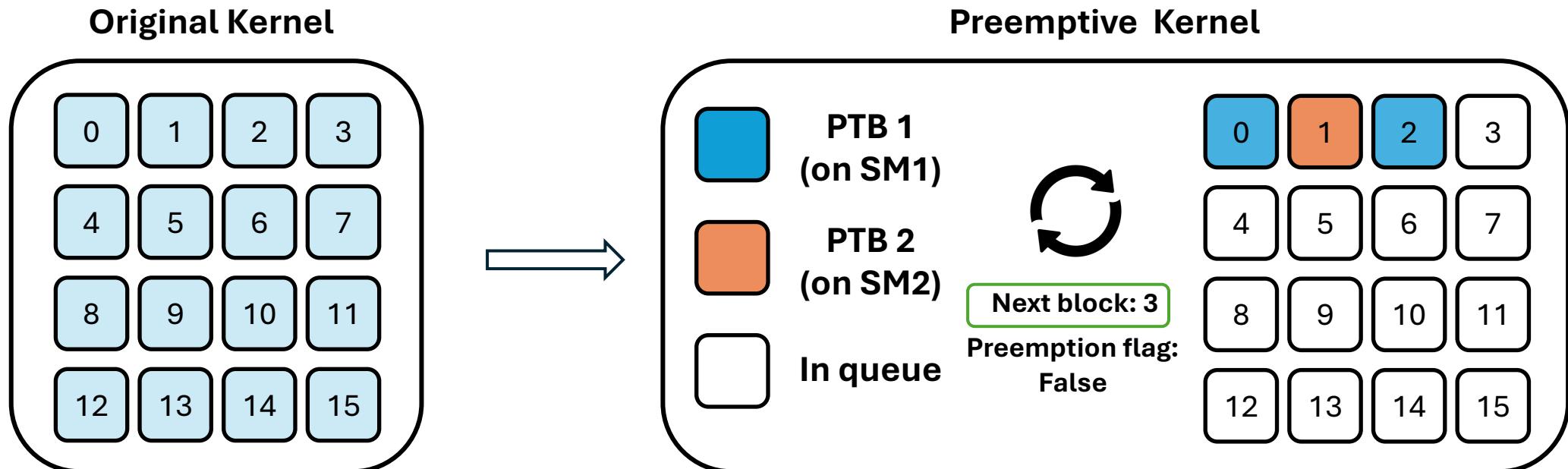
Preemption Transformation

- Modify the kernel execution mode to Persistent Thread Block (PTB)



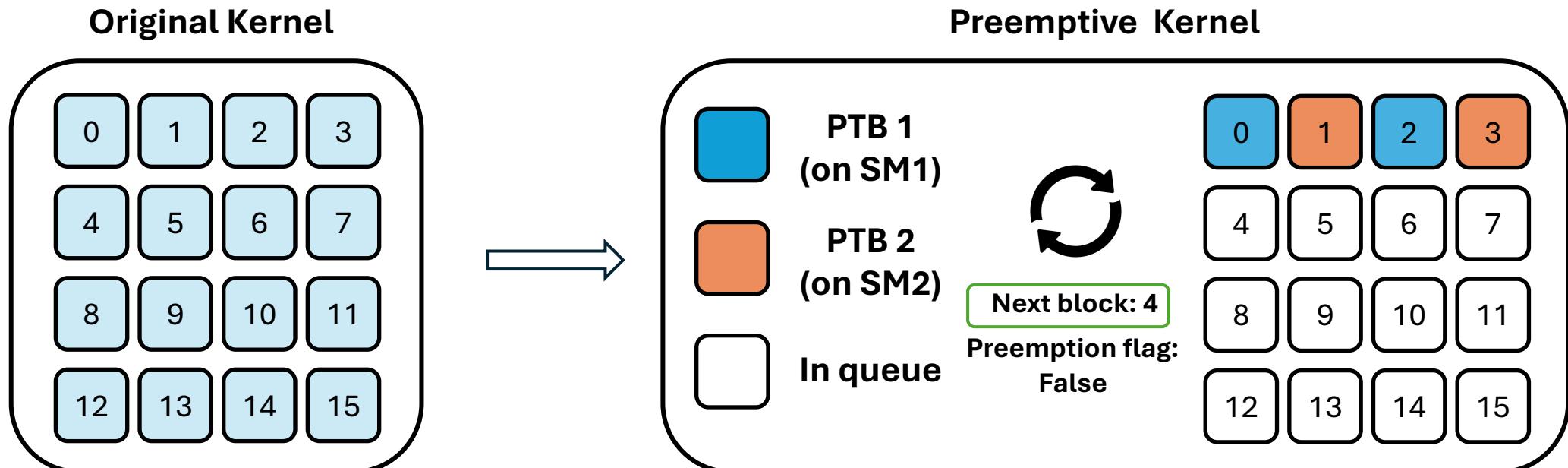
Preemption Transformation

- Modify the kernel execution mode to Persistent Thread Block (PTB)



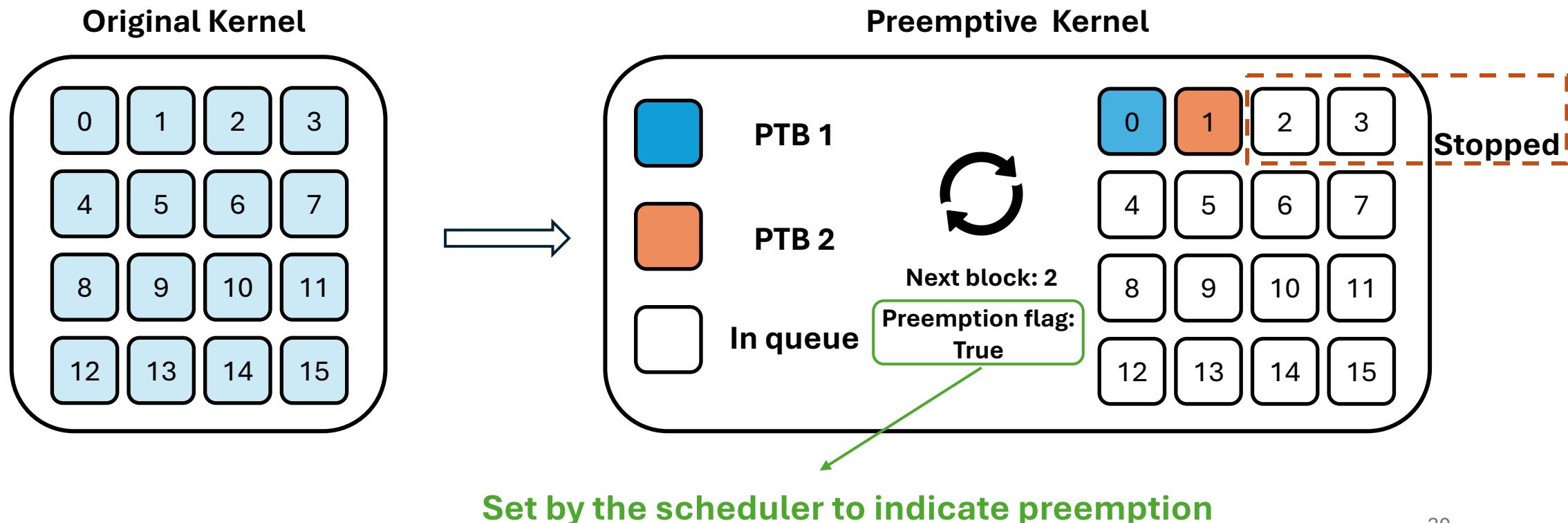
Preemption Transformation

- Modify the kernel execution mode to Persistent Thread Block (PTB)
 - DeepGEMM also uses PTB to control SM number



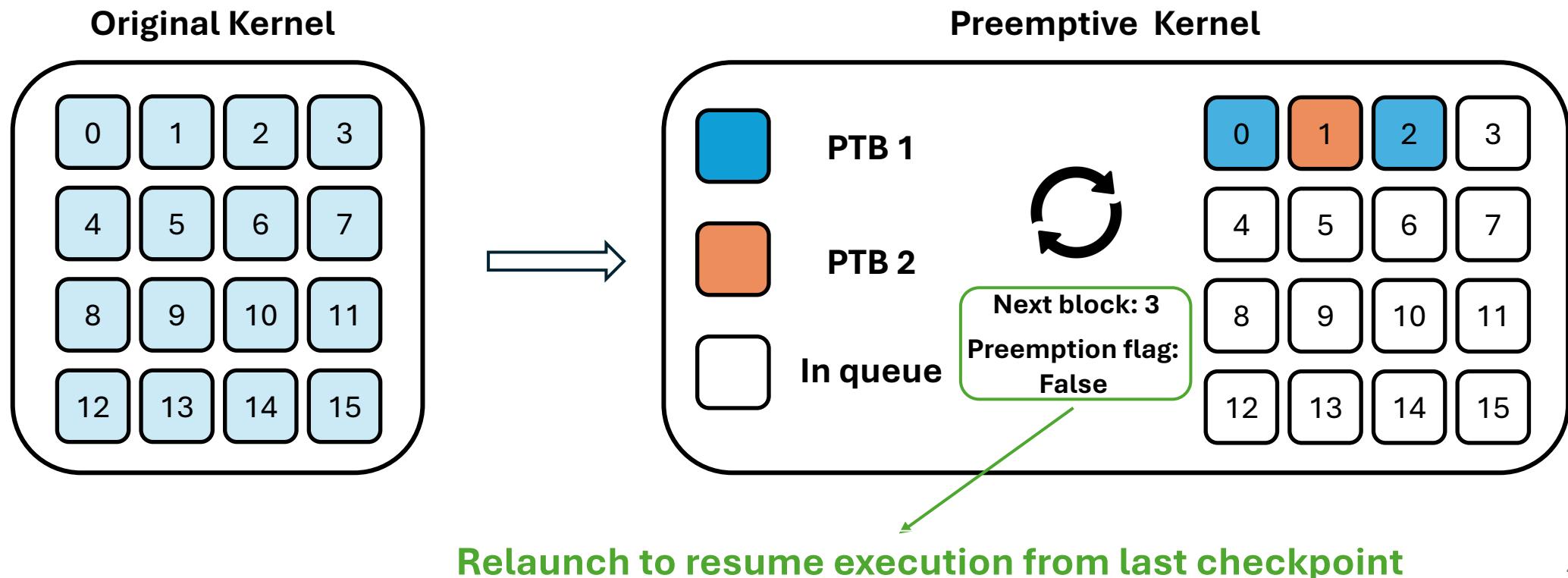
Preemption Transformation

- Allow the interruption of active kernels to accelerate resource reallocation



Preemption Transformation

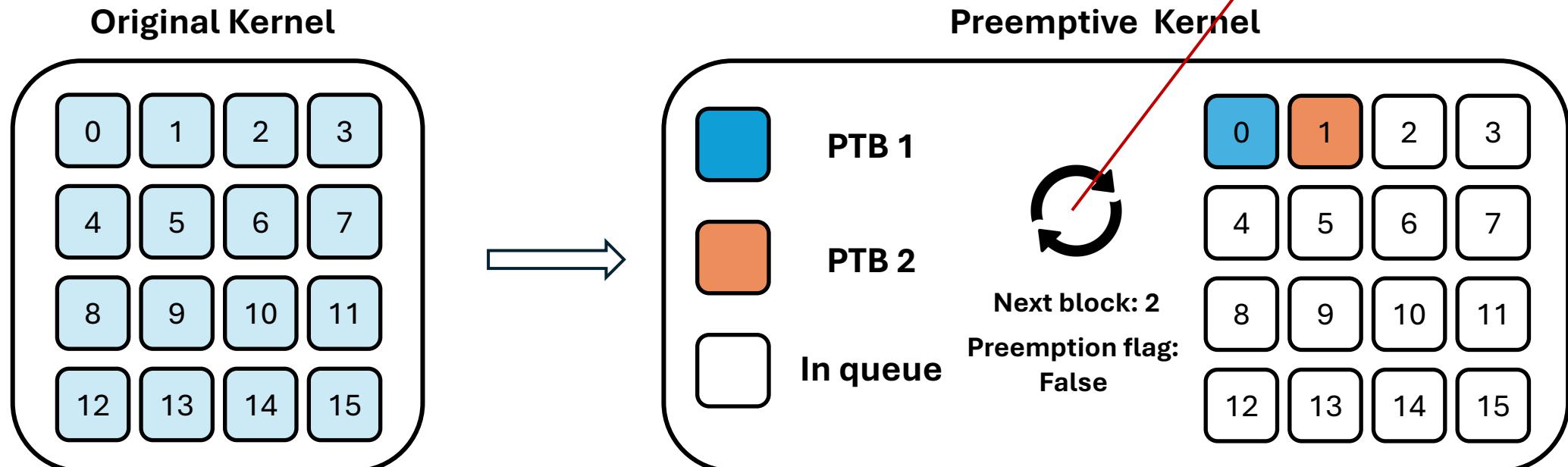
- Allow the interruption of active kernels to accelerate resource reallocation



Preemption Transformation

- Transform kernels to PTB by wrapping it with an **outer control loop**

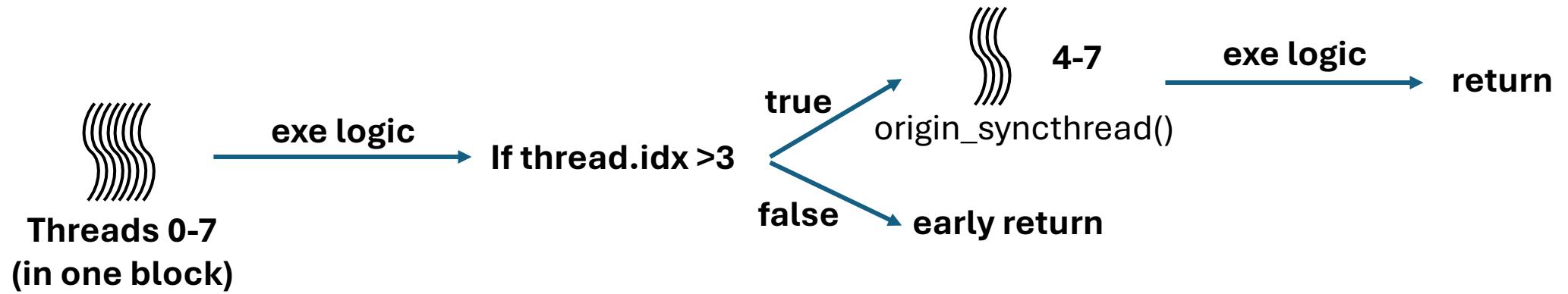
Can result in divergence
in thread synchronization



Addressed by Unified
Synchronization Transformation

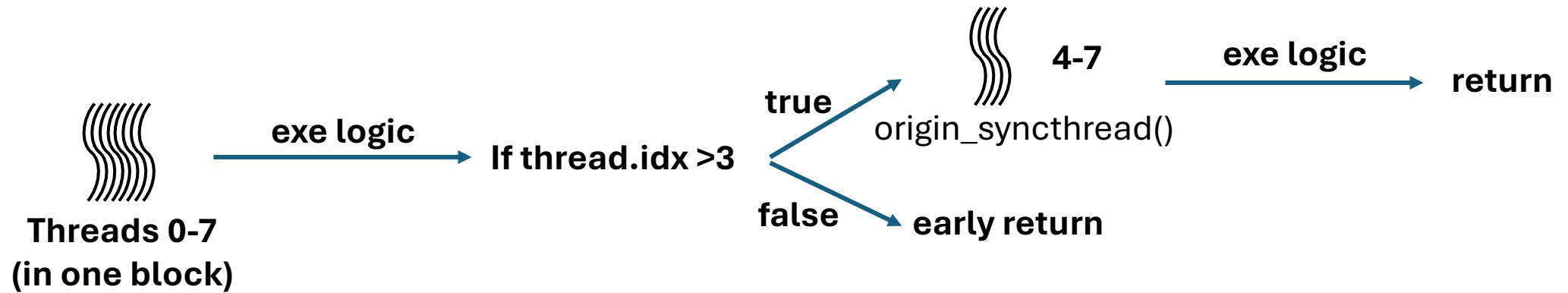
Unified Synchronization Transformation (UST)

- Original code before preemption transformation

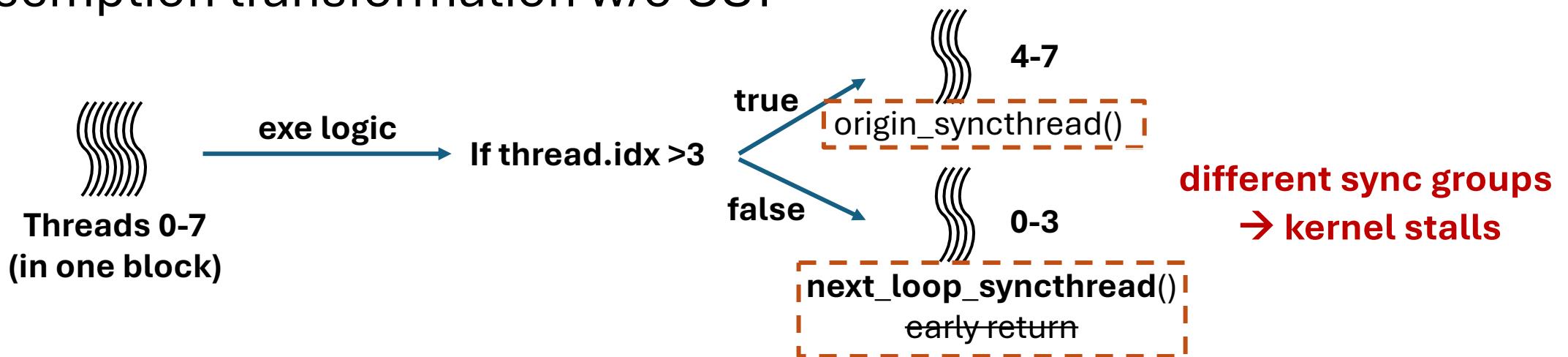


Unified Synchronization Transformation (UST)

- Original code before preemption transformation

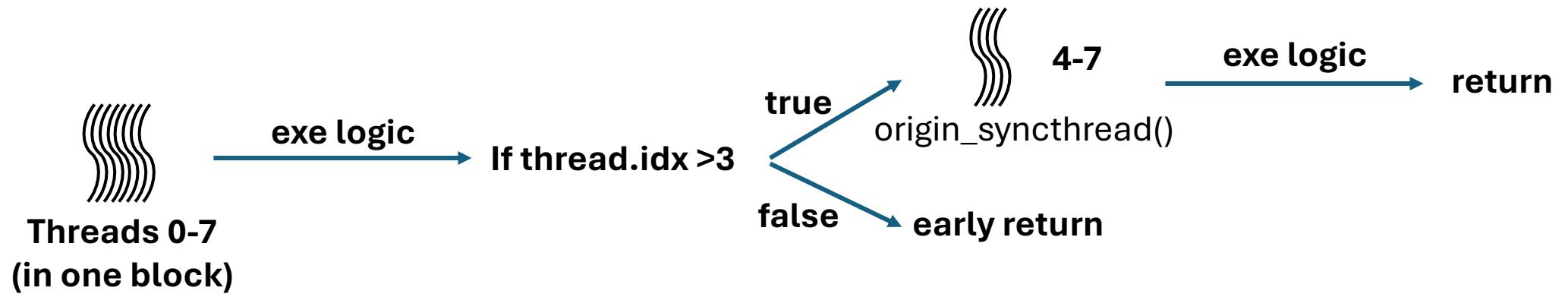


- Preemption transformation w/o UST

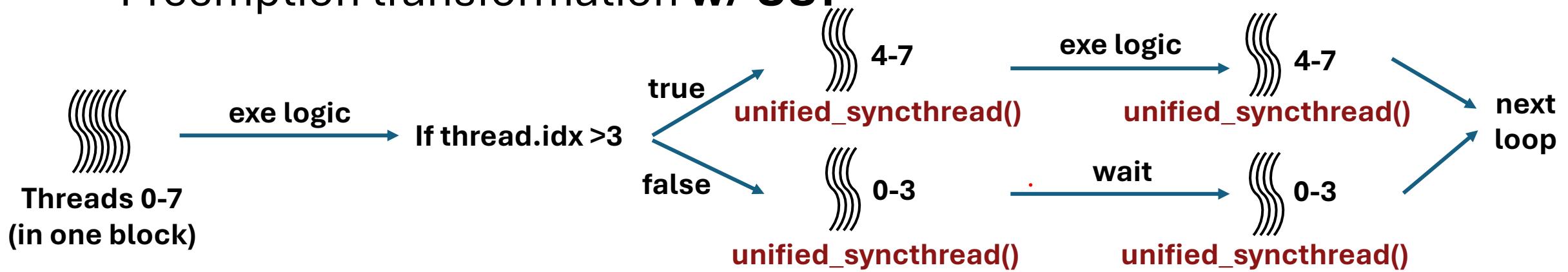


Unified Synchronization Transformation (UST)

- Original code before preemption transformation

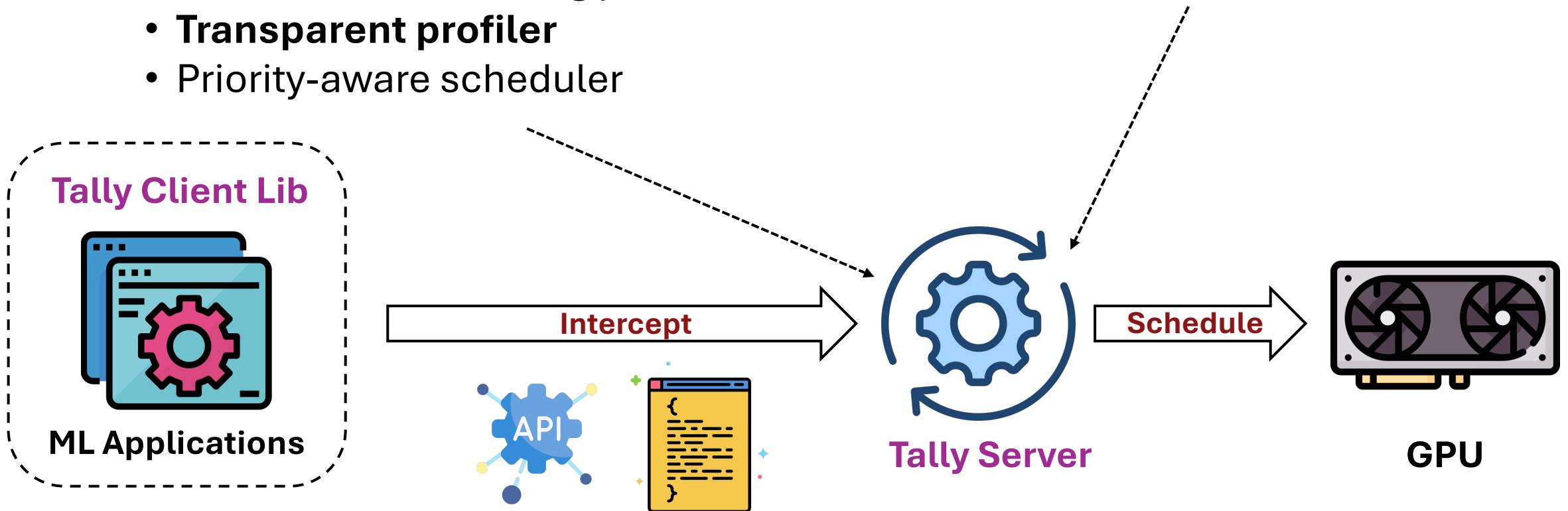


- Preemption transformation w/ UST



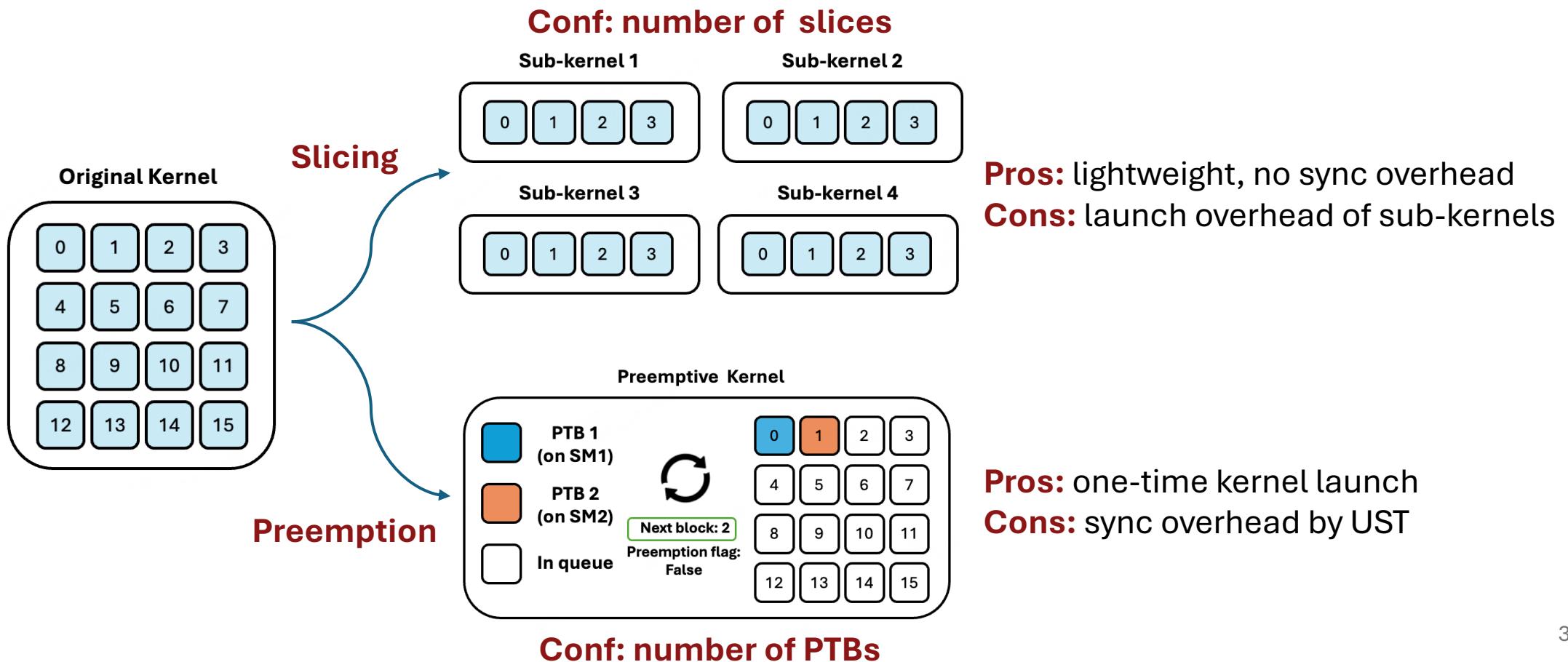
Overview of Tally

- Core mechanisms
 - Block-level scheduling primitives for best-effort kernels
 - **Transparent profiler**
 - Priority-aware scheduler



Pros and Cons of Different Primitives

- **Turnaround latency** and **throughput** vary when using different block-level primitives and their launch configurations

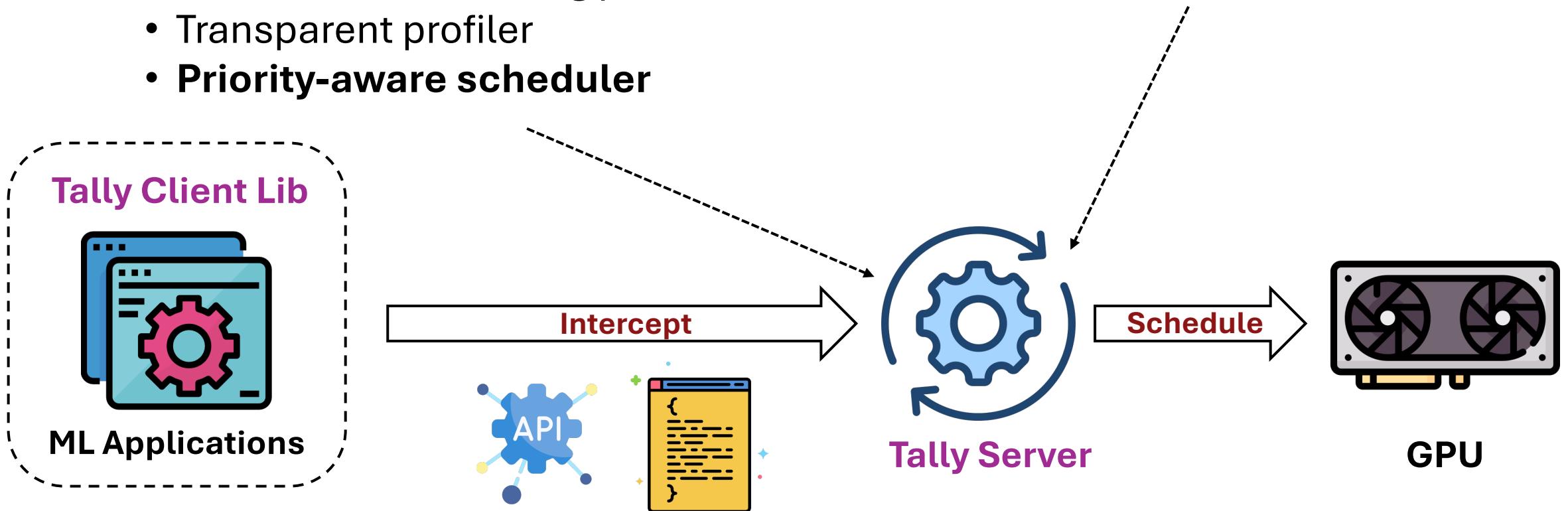


Transparent Profiler

- Profile and estimate the performance of transformed kernels in **best-effort tasks at runtime**
 - Generate candidate configurations encompassing both slicing and preemption
 - Estimates **turnaround latency** of different configurations
 - Slicing: execution time of one sub-kernel
 - Preemption: heuristic approximation →
$$\text{turnaround_latency} = \frac{\text{kernel_latency} \times \text{PTB_blocks}}{\text{total_blocks}}$$
- **Scheduler** selects the one that achieves the optimal performance while complying with a predefined turnaround latency threshold

Overview of Tally

- Core mechanisms
 - Block-level scheduling primitives for best-effort kernels
 - Transparent profiler
 - **Priority-aware scheduler**



Priority-aware Scheduler

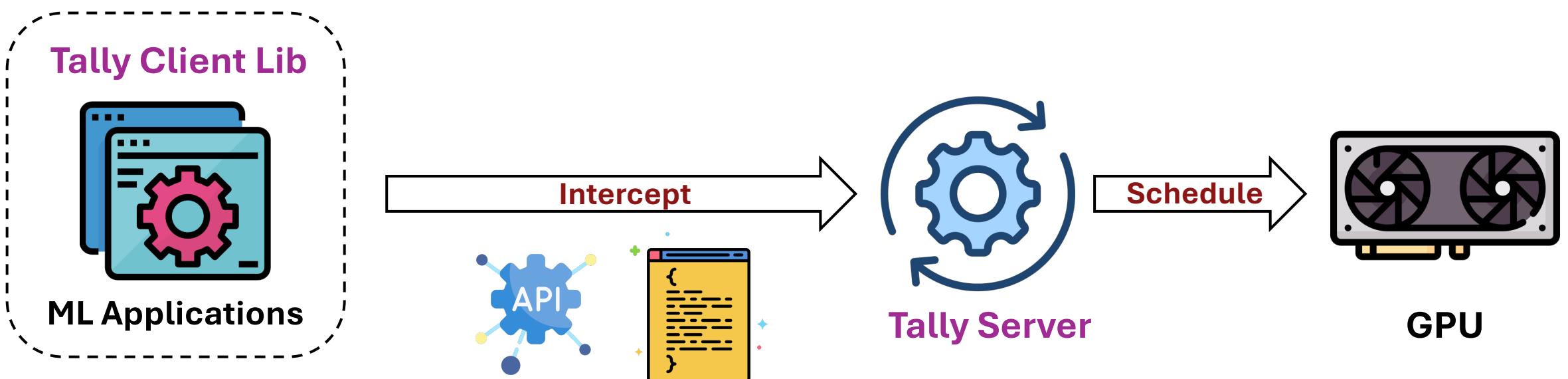
- Wisely schedules kernel to guarantee **SLA** and improve **throughput** based on block-level primitives and transparent profiler
- Scheduling strategy **in a nutshell**
 - If meets high-priority kernel
 1. **Preempt** block-level best-effort kernels (slicing/preemption)
 2. Schedule high-priority kernel instantly
 - If doesn't have high-priority kernel
 1. Choose best-effort kernels to schedule
 2. If kernel doesn't have block-level launch configuration, use **transparent profiler** to find optimal configuration **on-the-fly**

Overview of Tally

- Core mechanisms
 - Block-level scheduling primitives for best-effort kernels
 - Transparent profiler
 - Priority-aware scheduler

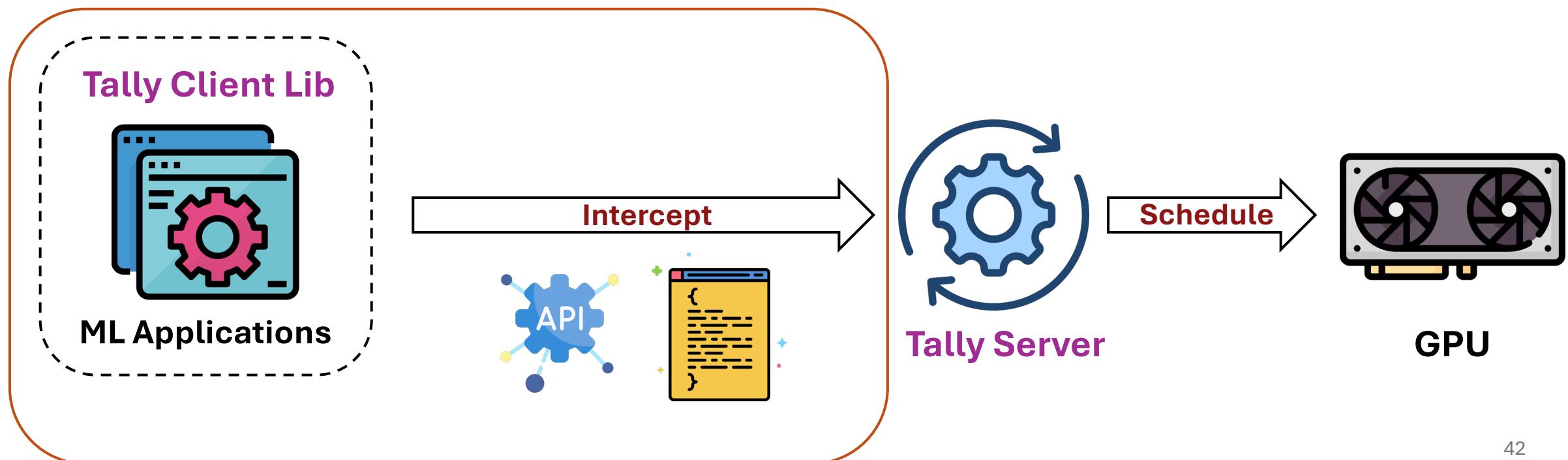
Performance
Isolation

Non-Intrusive
Generalizable



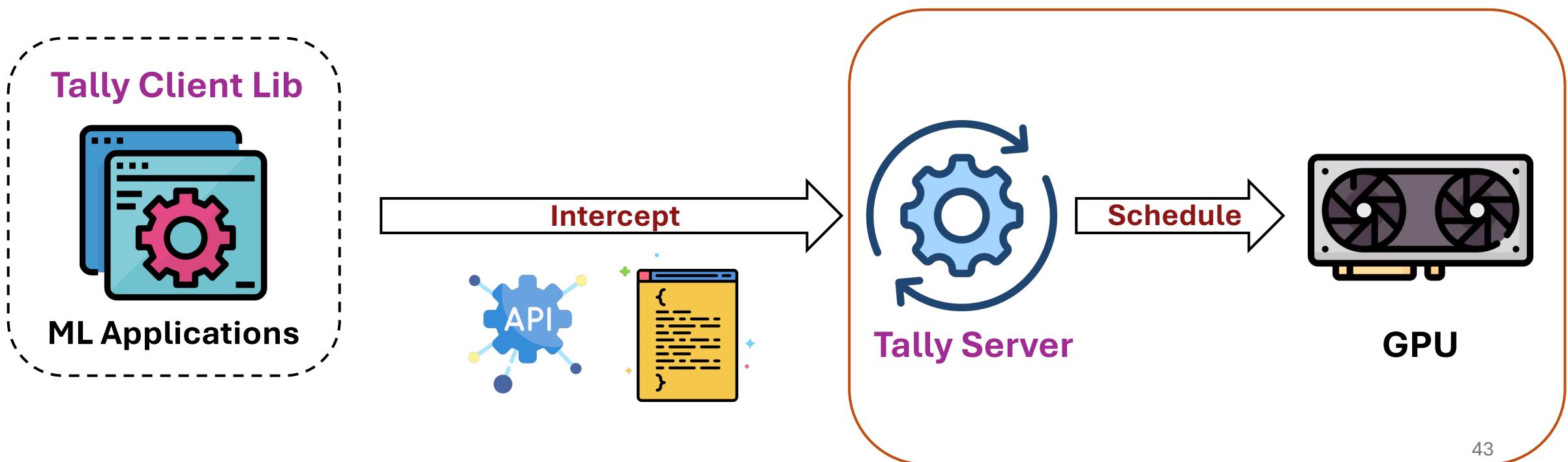
Implementation Details

- Tally's client-side
 1. Use LD_PRELOAD in Linux to **intercept** API calls
 2. Intercepted API calls are **sent** to the server for actual execution
 - **Shared memory** and **local state caching** are used to reduce communication overhead



Implementation Details

- Tally's server-side
 1. Apply kernel transformations for best-effort kernels at **PTX level**, then **recompile** to executable GPU kernels
 2. Schedule kernels based on priority-aware scheduler

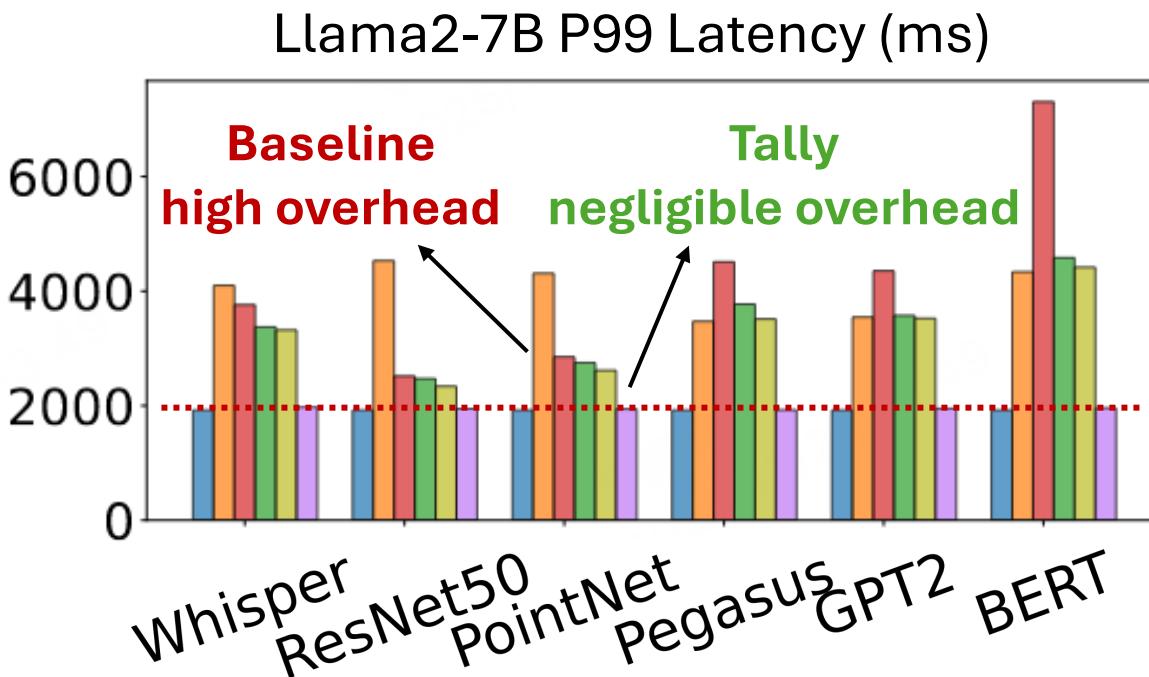
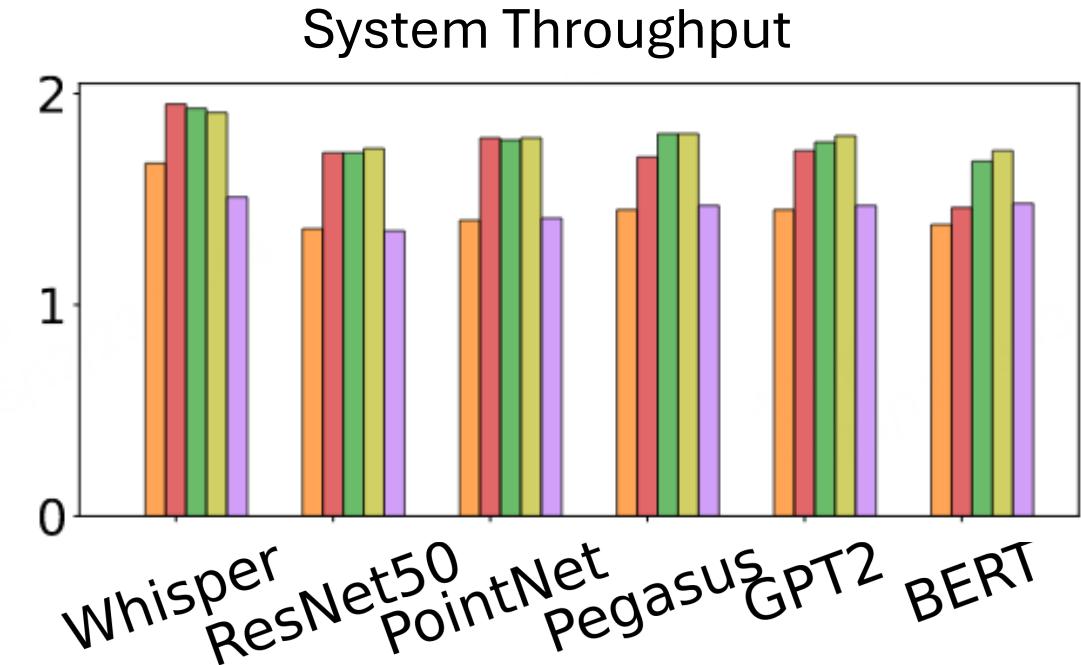


Evaluation

- Hardware:
 - NVIDIA A100 GPU
- Workloads:
 - **High-priority** Inference + **Best-effort** Training
- Metrics:
 - 99th Percentile Latency
 - System Throughput
- Baselines:
 - Ideal (no sharing, evaluate **latency**)
 - Time-Slicing (default sharing mechanism)
 - NVIDIA MPS (with and w/o priority mode)
 - TGS (state-of-the-art GPU sharing)

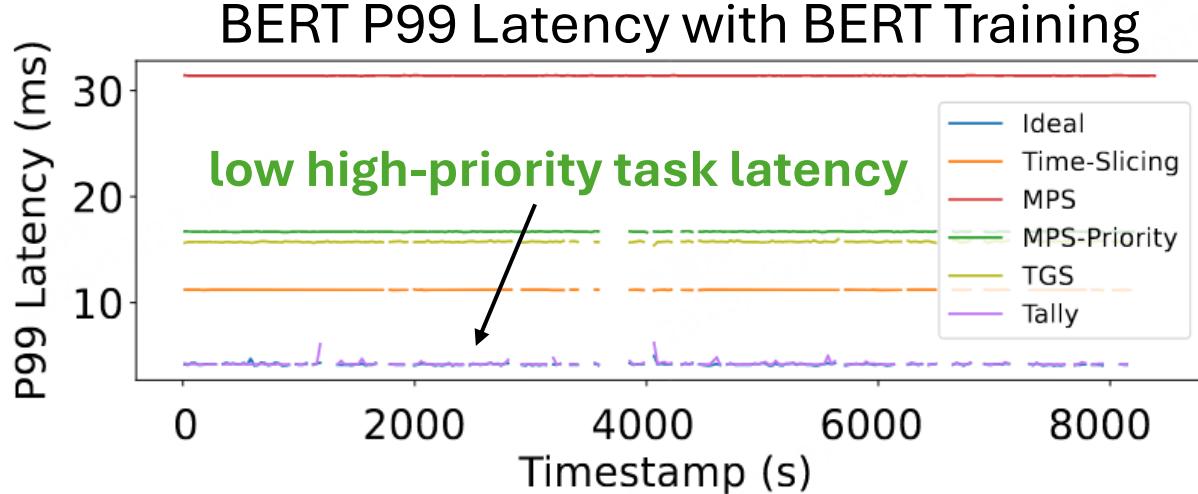
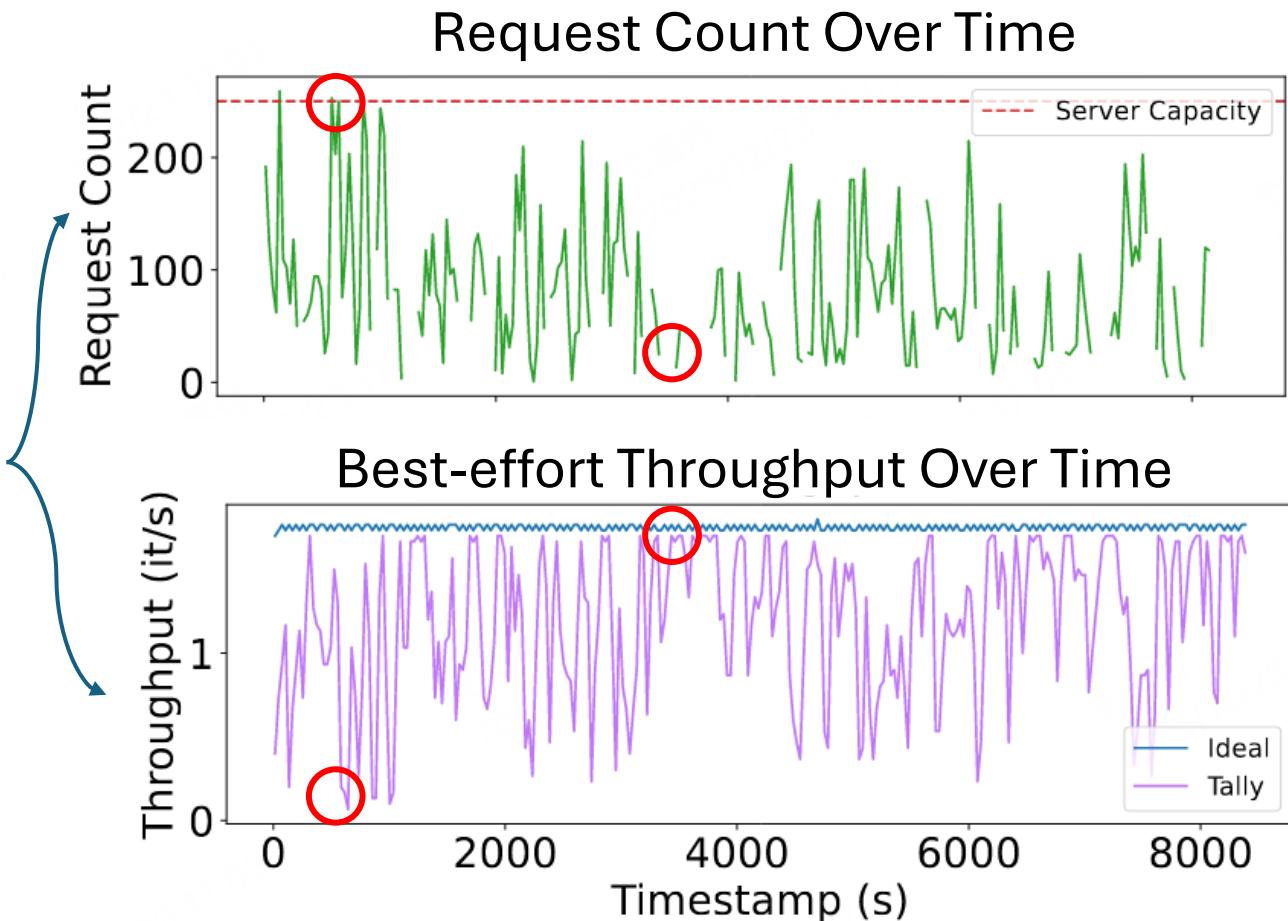
Inference	Training
ResNet50	ResNet50
BERT	PointNet
YOLOv6m	BERT
Llama2-7b	GPT2-Large
Stable Diffusion	PEGASUS
GPT-Neo	Whisper-v3

End-to-end Results



On average, Tally incurs only a **7% overhead** on the P99 latency of high-priority inference tasks, compared to **188% overhead** of the best baseline, while attaining more than **80% throughput**.

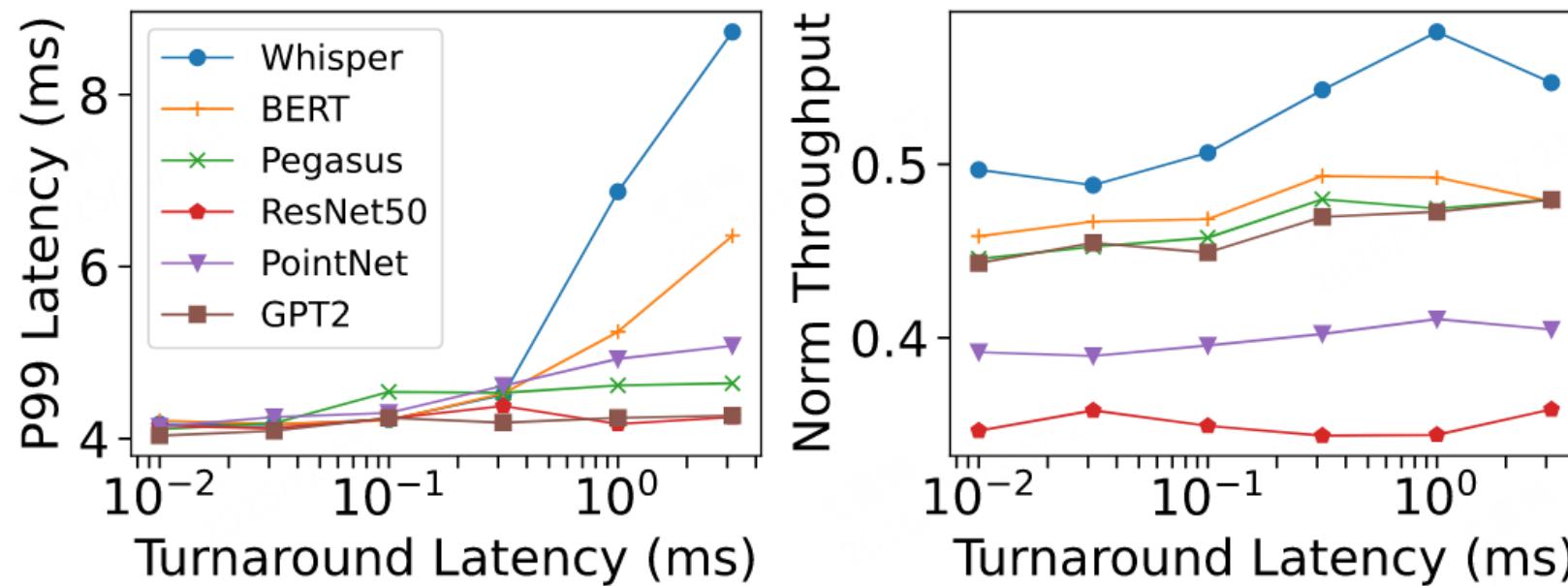
Responsiveness of Tally



Tally can **adaptively adjust the throughput** of the best-effort task in correspondence with the fluctuating traffic load to the high-priority inference task.

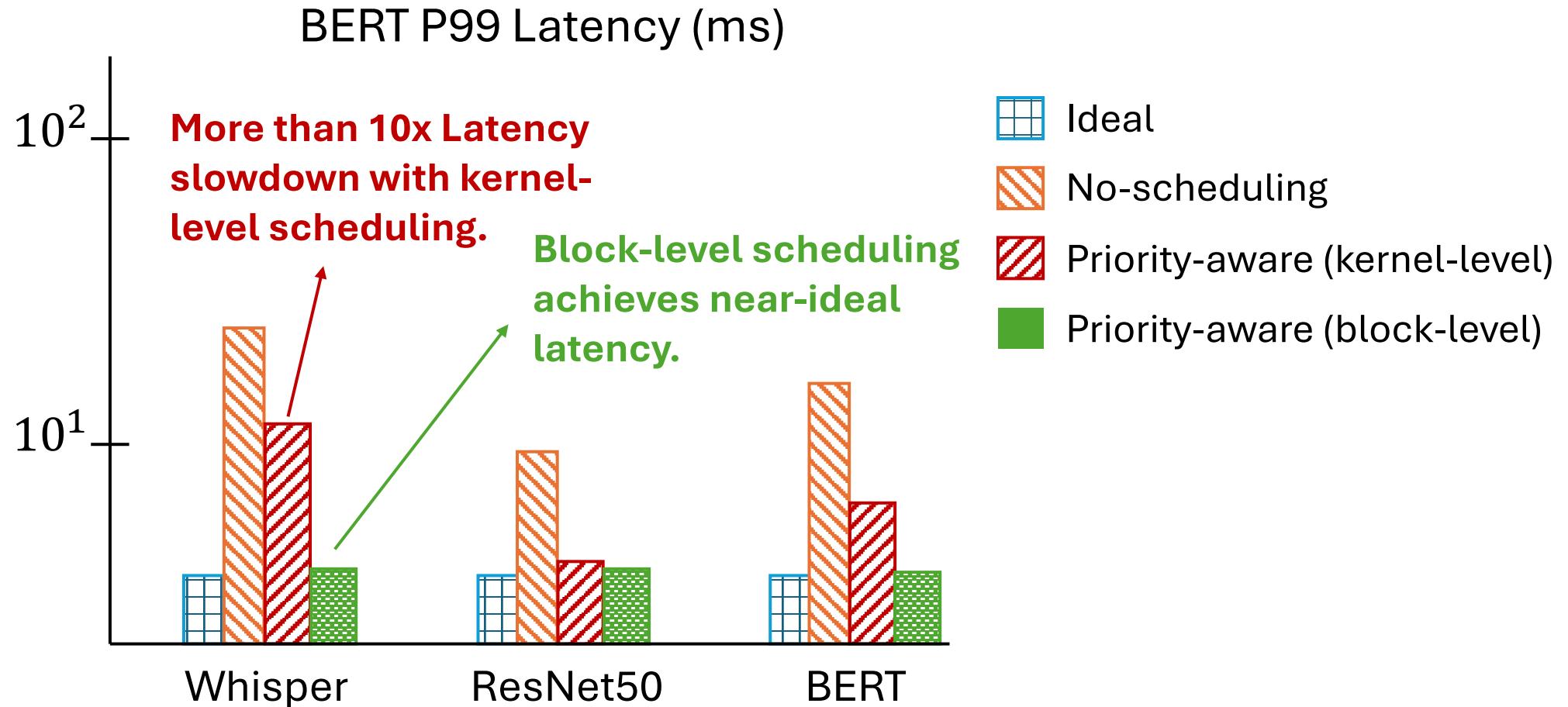
Selection of Turnaround Latency Threshold

P99 Latency and Throughput during BERT Inference Varying Turnaround Latency



Based on **empirical results**, Tally chooses threshold of **0.0316 ms** that provides the best balance between latency and throughput.

Importance of Block-level Scheduling (Ablation)



Overhead Analysis

- Virtualization (client-server)
 - Incurs an average overhead of only **1%**, proving minimal performance impact
- Transformed kernel execution
 - Execution of block-level best-effort kernels causes **25%** average overhead
- Profiling
 - One-time online profiling for each kernel in one best-effort task complete within **minutes**, negligible given training workloads often run for hours/days

Summary

- Challenges of current GPU sharing solutions:
 - **High Integration costs** due to intrusive code modifications (**Intrusive**)
 - **Performance degradation** leading to SLA violations (**Bad Performance Isolation**)
 - **Limited workload compatibility** across applications (**Non-generalizable**)
- Method:
 - Implements **block-level scheduling primitives** for GPU virtualization
 - Ensures **effective performance isolation** in a **non-intrusive, task-agnostic** manner
- Results:
 - **7% overhead** vs **188%** in state-of-the-art GPU sharing
 - Maintains over **80% throughput** of the best-performing baseline

Remaining Problems

- Selection of **turnaround latency threshold** at block-level launch configuration is very **ad-hoc**
- Doesn't compare with **REEF**
- Fundamentally **incompatible** with **CUDA Graph**, may encounter launch bubble issues on high-end GPUs (e.g., NVIDIA H100)