Tally: Non-Intrusive Performance Isolation
for Concurrent Deep Learning Workloads

Wei Zhao'#, Anand Jayarajan?34, Gennady Pekhimenko?3-4
Presenter: Jiaqi Ruan, Jia He

£
5k
SaeTid s
S
o)1(

1 & 2 3 4
UNIVERSITY OF CTOR
Stanford m:j TORONTO ¢ IY\IEST-II-TUTE (CenTML

University ¥

DL is Gaining Unprecedented Popularity

Agent Domains Requirements

Classification = Object Detection

Help me lower my bike seat.

ChatGPT

To lower your bike seat:

¢ Loosen the clamp: Use a lever or allen
key to loosen the clamp under the seat.

¢ Adjust height: lower the seat to your

CAT, D OG, DUCK desired level.

¢ Secure the seat: tighten the clamp to

Query Response Call

, Generator Tester
secure the seat in place.

Soaring Investments in GPU Clusters

NVIDIA H100 GPU Units By Company

Company/Entity H100 GPU Count Ensuring high GPU utilization
Meta 350,000 is crucial for cost-efficiency!
XAl/X 100 0NN

Tesla While we don't know the precise mix of GPUs sold, each Nvidia H100 80GB

HBM2E compute GPU add-in-card (14,592 CUDA cores, 26 FP64 TFLOPS, 1,513

Lambda

FP16 TFLOPS]) retails for around $30,000 in the U.S. However, this is not the
Google A3 company's highest-performing Hopper architecture-based part. In fact, this is
Oracle Cloud the cheapest one, at least for now. Meanwhile in China, one such card can cost

as much as $70,000. 350,000 * 30,000 = $10 billion

https://www.visualcapitalist.com/which-companies-own-the-most-nvidia-h100-gpus/
https://www.tomshardware.com/news/nvidia-to-sell-550000-h100-compute-gpus-in-2023-report

Meanwhile - GPUs are Severely Underutilized

100 -
* 2022 Alibaba Study: _ o

« median GPU utilization in 6000-GPU 801

cluster is only 4.2%. ® 60-
LL
o 8 40
* Sources of Inefficiency: o
20 = (GPU Utilization
GPU Memory Usage
1{OSI

_/\/\-o 0 25 s 75 100
I:I Resource Utilization (%)
) (4 oLi0lo

Training: Inference:
bottlenecks in CPU execution

GPU utilization distribution in an Alibaba cluster

fluctuating user traffic

Weng et al., "MLaaS in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters,” NSDI 2022.

GPU Sharing to the Rescue

Consolidating multiple
. Workload Workload Workload
workloads to share a single

GPU’s resources.

g

/.* The same Alibaba study shows

”@ GPU sharing can cut resource
UI requirements by up to 73%.

https://developer.nvidia.com/techdemos/video/disc03 5
Weng et al., " MLaaS in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters,” NSDI 2022.

Yet, GPU Sharing is Rarely Used in Clusters

Limitations of Current GPU Sharing Solutions:

% High integration and maintenance cost
: due to intrusive code modifications

\ \ Lack of performance isolation guarantees
{\. leadstoviolations of task SLAs

v)» Limited application compatibility due to
g x reliance on workload-specific characteristics

Yet, GPU Sharing is Rarely Used in Clusters

Limitations of Current GPU Sharing Solutions: ﬂ_?
% High integration and maintenance cost / %
: due to intrusive code modifications y User Scripts

\ O PyTorch

DL Frameworks

ﬁﬁﬁ

COST

Yet, GPU Sharing is Rarely Used in Clusters

Limitations of Current GPU Sharing Solutions:

High-priority

- -

Best-effort
SLAs)

‘ A Lack of performance isolation guarantees
¢\, leads to violations of task SLAs

é

9
0

9o s

Interference causes
performance degradation

8

||||||||||||

NO concurrency
) (D €
DN D

O

| C
| C

e L . B, aYalial s
~ | _
|
_ I
_ I
_ o U lU L
L _/ . —_——g
— | 1 _ — ~ I~

I
L]
|
1
| C
) (
) C

) |

DR
(
C
C

| C
| C
| C

D C
)

R

| C
| C
| C

S—

L o o o | S B R _
| 3 | | M . . M | |
: | I SOOI SO SO B SO I]

NdD- tndD-— L ngo-

Iteration
Kernel
Stream

Block

Scheduling Granularity for DL Workloads

* High-priority: BERT Inference
* Best-effort: Whisper Training
* Co-executed on a NVIDIAA100 GPU

Inference Latency ~4 ms
~ Iteration
L. Kernel ~10 ms
Training -
Block [[]| ~300ps

-~ *Thread l ~40 ys

*:the thread-level latency is taken from the REEF paper as itis not supported in NVIDIA GPUs.

10

Yet, GPU Sharing is Rarely Used in Clusters

Limitations of Current GPU Sharing Solutions: @ v b

Limited application compatibility due to
reliance on workload-specific characteristics

o

(A0

Training Inference

& X

GPU Kernels
A

Idempotent Stateful

< o

11

Yet,

2017
2020
2022
2023

2024

GPU Sharing is Rarely Used in Clusters

EffiSha
[PPOPP’17]

Salus
[MLSys’20]

REEF
[0SDI’22]

TGS
[NSDI’23]

Orion

[EuroSys’24] _|

}
}

Intrusiveness

Intrusive code

Non-Intrusive

Non-Intrusive

Non-Intrusive

Intrusive code

Granularity

Block level

I[teration level

thread level

kernel level

stream level

Generality

All

All

Indempotent

Static

All

Choosing the Right Scheduling Granularity

Adopted by Tally Block-level:

gmommmImEm \ GEMM

| Block-level i Thread-level |

ot e 11111 11
Latenc ~100s ps ' ~10s ps 3 \ I
y @lé lﬁs‘ Y
Independent
% 4> Limited to Thread-level:

: Universally <4nY. .
Generallty applicable []é |dempotent Disruptive abort and
kernels ; restart of a block

require idempotency

13

Tally: Enabling Practical GPU Sharing

G — (0)— @

Applications Tally GPU

A
[1

Non-Intrusive Performance Generalizable
Isolation

14

Tally: Enabling Practical GPU Sharing

2 g — ©)—

O PyTorch Applications Tally GPU

1F TensorFlow ,/ A

| |
Non-Intrusive Performance Generalizable
Isolation

15

Tally: Enabling Practical GPU Sharing

Fine-grained [l
Priority-aware [7 — Performance

)
Scheduling 3= W Guarantees

Applications Tally GPU

| |
Non-Intrusive Performance Generalizable
Isolation

16

Tally: Enabling Practical GPU Sharing

Applications Tally GPU

A
[1

Non-Intrusive Performance Generalizable
Isolation

18

Training

£l
\E&

©,

Inference

Idempotent

Stateful

17

Tally: Enabling Practical GPU Sharing

. Priority-aware [Vl borf
Fine-grained = —> errormance
& : 2 4 Y Guarantees # Training
Scheduling 3I[=)

=0
¢ 1
C_

&

£l
\E&

ﬂ
(@)

OPyTorch Applications Tally GPU
) Idempotent
1F TensorFlow 7 : A \

Non-Intrusive Performance Generalizable l

Isolation Stateful

18

Overview of Tally — Act as Virtualization Layer

Tally Client Lib °

/

Device Code
(e.g., kernel binaries,
PTX code)

Intercept

/

[]
@ Device API Calls
i i .g., cudaLaunchKernel
- ML Applications , .(e g) Tally Server

(S

GPU

19

Overview of Tally

* Core mechanisms
* Block-level scheduling primitives for best-effort kernels
* Transparent profiler
* Priority-aware scheduler /

- e

/

_._____________
-—————————————’

- | =
.. ML Applications , k === Tally Server GPU

20

/

\

Overview of Tally

* Core mechanisms
* Block-level scheduling primitives for best-effort kernels
* Transparent profiler
* Priority-aware scheduler

- e

-—————————————’

_ ML Applications , k = Tally Server

21

Tally’s Block-level Scheduling

* Key Insights:
* Block-level scheduling is non-intrusive and generalizable for all ML tasks
* Previous results are kept instead of simply discarding
* Turnaround latency (~100us) is tolerable

* Tally’s Scheduling Strategy towards Different Tasks

* High-priority: keep it as-is
* Best-effort: transform and schedule kernels at block-level via two primitives

or

Slicing Preemption

22

Slicing Transformation

* Divide a kernel into multiple sub-kernels to allow for more fine-grained
scheduling

Naively partitioning into multiple

kernels results in incorrect results!
Original Kernel

Sub-kernel | sub-kernet2
0006 (Coee)(Coeo)

4 5 6 7
—J___J__J\ I:> Sub-kernel 3

. Sub-kernel 4
8 9 10 11

foee) (B008])00es

23

Slicing Transformation

* Divide a kernel into multiple sub-kernels to allow for more fine-grained
scheduling

Original Kernel

K AY 4

\ g \

N[
g \

2 3\

(N[
\ g \

N[
g \

N[
g \

7

\ g \

9

10

11

\12

13

14

15/

—>

Adding block offset parameter to kernel
allows reconstruction of task index

Sub-kernel 1

f[Block offset: 0]

g

CJeEE)

J

Sub-kernel 3

g

f[Block offset: 8]

BEE

E

\ Sub-kernel 2

\f[

g

Block offset: 4]

CJeEE)

J

Sub-kernel 4

(
[Block offset: 12]

g

o JJE)

J

24

Preemption Transformation

* Modify the kernel execution mode to Persistent Thread Block (PTB)

Original Kernel Preemptive Kernel

/o 1 2 3\ / PTB 1 0 || 1 2 \
\, J \ J \ J \ J (onSM1) \, J \ J \ J
U | —— |) P82 ./

— (on SMZ)

8 9 10 11 | Next block: 0

Preemption flag: \
In queue False

\12 13 || 14 15/ \‘—‘ 12 || 13 || 14 15/

25

Preemption Transformation

* Modify the kernel execution mode to Persistent Thread Block (PTB)

Original Kernel Preemptive Kernel

/o 1 2 3\ / PTB 1 0 || 1 2 \
\, J \ J \ J \ J (onSM1) \ J \, J \ J
U | —— |) P82 ./

— (OI‘ISMZ) [

8 9 10 11 | Next block: 1]

Preemption flag:
In queue False

\12 13 || 14 15/ \‘—‘ 12 || 13 || 14 15/

26

Preemption Transformation

* Modify the kernel execution mode to Persistent Thread Block (PTB)

Original Kernel Preemptive Kernel

/o 1 2 3\ / PTB 1 o || 1 2 \
\, J \ J \ J \ J (onSM1) \ J J \\ J
U | —— |) P82 ./

— (OI‘ISMZ) [

8 9 10 11 | Next block: 2]

Preemption flag:
In queue False

\12 13 || 14 15/ \‘—‘ 12 || 13 || 14 15/

27

Preemption Transformation

* Modify the kernel execution mode to Persistent Thread Block (PTB)

Original Kernel Preemptive Kernel

/o 1 2 3\ / PTB 1 o || 1 2 \
\, J \ J \ J \ J (onSM1) \ J J)
U | —— |) P82 ./

— (OI‘ISMZ) [

8 9 10 11] Next block: 3]

Preemption flag:
In queue False

\12 13 || 14 15/ \‘—‘ 12 || 13 || 14 15/

28

Preemption Transformation

* Modify the kernel execution mode to Persistent Thread Block (PTB)
* DeepGEMM also uses PTB to control SM number

Original Kernel

e) (=

Preemptive Kernel

2 |l 3 PTB 1 0 1 2 3\
\, J \ J (on SM1) \ J J J
\, 4 J \ 5 J \ 6 J \ 7 J E PTB 2 d \, 4 J \ 5 J 6 J 7
h — (on SMZ)
8 (| 9 || 10]] 11 | Nextblock:4| [g [f o | 10 || 11
\ J \\ J \\ J \\ J) Preemption flag: \, J \ J \\ J \\ J
~ In queue False Y
\12 13 14 15/ \‘—‘ 12 13 14 15/

29

Preemption Transformation

* Allow the interruption of active kernels to accelerate resource

reallocation

Original Kernel

Preemptive Kernel

ﬂ

ppiilieglliolion Nl I
N a N a \ / a N a I N f 3
0 1 2 3 0 1].[2 3 :
—) . PTB1 o~ UL I Istopped:
a |l s ||l el 7 —_— d all 51l 6l 7
e J e J J e J E PTB2 e J e J J
) —
g Il 9 |l 10]] 11 Next block: 2 g Il 9 |l 10| 11
J \ J \ J \ J) Preemption flag: | \ J \ \ \ J
~ In queue True Yaumn
\12 13 || 14 15/ \~—« / 12 1 13 || 14 15/

~

Set by the scheduler to indicate preemption -

Preemption Transformation

* Allow the interruption of active kernels to accelerate resource

reallocation

Original Kernel

Preemptive Kernel

ﬂ

O

| W Wl |) e
4 5 6 7 —
— — / —> PTB 2
) —
g Il 9 [| 10 (] 11
J J J J H
13 || 14

Next block: 3

Preemption flag
In queue

False

\12

oy -

e

0 1 2 3

4 5 6‘ 7

8 9 10"11‘
12 || 13 14:'

15/

e

Relaunch to resume execution from last checkpoint

31

Preemption Transformation

* Transform kernels to PTB by wrapping it with an outer control loop

Original Kernel

ﬂ

N[
\ g \

N[
\ v

A

10

11

13

14

Canresultin divergence
in thread synchronization

Preemptive Ke/rlél

@ -

\12

15/

GEEER
PTB 2
N/
SEEE
In queue

./

Next block: 2

Preemption flag: \

False

é AW 4
\ g

-\

10

11

12

13

14

15/

Addressed by Unified

Synchronization Transformation

32

Unified Synchronization Transformation (UST)

* Original code before preemption transformation

SSSS 4-7 exe logic

» return
logic %igin syncthread()
SSSSSSSS == > If thread.idx >3 —

ka early return

Threads 0-7
(in one block)

Unified Synchronization Transformation (UST)

* Original code before preemption transformation

SSSS 4-7 exe logic

» return
logic %igin syncthread()
SSSSSSSS == > If thread.idx >3 —

ka early return

Threads 0-7
(in one block)

* Preemption transformation w/o UST

true < - - _S ______
SSSSSSSS xe Togle If thread.idx >3 /.;E'?ﬂn__sjrlcihieed_()_,
| | different sync groups

Threads 0-7
(in one block) == = == === =

: eattyretdurn :

- kernel stalls

Unified Synchronization Transformation (UST)

* Original code before preemption transformation

SSSS 4-7 exe logic

» return
logic %igin syncthread()
SSSSSSSS == > If thread.idx >3 —

ka early return

Threads 0-7
(in one block)

* Preemption transformation w/ UST

4-7 exe logic 33884'7

true - SSSS — \

SSSSSSSS exe logic Amed_syncthread() unified_syncthread) next
» |f thread.idx >3

/ loop
wait
Threads 0-7 false SSSS 0-3 ' : SSSS 0-3

i block
(in one block) unified_syncthread|() unified_syncthread()

Overview of Tally

* Core mechanisms
* Block-level scheduling primitives for best-effort kernels
* Transparent profiler
* Priority-aware scheduler /

- e

/

_._____________
-—————————————’

- | =
.. ML Applications , k === Tally Server GPU

36

Pros and Cons of Different Primitives

* Turnaround latency and throughput vary when using different block-
level primitives and their launch configurations

Conf: number of slices

Sub-kernel 1 Sub-kernel 2
e ™\

)EEE | | 00EO |

J

7

Slicing

Pros: lightweight, no sync overhead
Cons: launch overhead of sub-kernels

Original Kernel
Sub-kernel 3 Sub-kernel 4

BOEE 0006) (00E0)

\. J
4 5 6 7

| i ° JL 10 k11) Preemptive Kernel

12 13 14 15 / PTB 1 0 - T][S—\
k JL_JL \ j (on SM1) n))
:] BTB 2 J [«]l=])e][7_ Pros: one-time kernel launch

(on SM2)) () (] Cons: sync overhead by UST

Preemption flag: “—r/ \—uo/

I In queue False ()
\ 12 13 14 || 15/

Conf: number of PTBs °

Preemption

Transparent Profiler

* Profile and estimate the performance of transformed kernels in best-
effort tasks at runtime

* Generate candidate configurations encompassing both slicing and
preemption

* Estimates turnaround latency of different configurations
* Slicing: execution time of one sub-kernel
kernel_latency x PT B_blocks

* Preemption: heuristic approximation —> turnaround latency = Total blocks

* Scheduler selects the one that achieves the optimal performance
while complying with a predefined turnaround latency threshold

38

Overview of Tally

* Core mechanisms
* Block-level scheduling primitives for best-effort kernels
* Transparent profiler
* Priority-aware scheduler /

- e

/

_._____________
-—————————————’

- | =
.. ML Applications , k === Tally Server GPU

39

Priority-aware Scheduler

* Wisely schedules kernel to guarantee SLA and improve throughput
based on block-level primitives and transparent profiler

* Scheduling strategy in a nutshell
* |f meets high-priority kernel
1. Preempt block-level best-effort kernels (slicing/preemption)
2. Schedule high-priority kernel instantly
* |f doesn’t have high-priority kernel
1. Choose best-effort kernels to schedule

2. If kernel doesn’t have block-level launch configuration,
use transparent profiler to find optimal configuration on-the-fly

40

Overview of Tally

* Core mechanisms
* Block-level scheduling primitives for best-effort kernels
* Transparent profiler } Performance
* Priority-aware scheduler Isolation

Intercept > @ Schedule>

Tally Server GPU

Non-Intrusive
Generalizable

- - o =

Tally Client Lib °

/

. ML Applications |,

/

41

Implementation Details

* Tally’s client-side
1. Use LD_PRELOAD in Linux to intercept API calls

2. Intercepted API calls are sent to the server for actual execution
 Shared memory and local state caching are used to reduce communication overhead

KTally ClientLib ° \

Intercept > @ Schedule>

<
. . | el
.. ML Applications k == Tally Server GPU

. / .

— o o o e e e e e
— - o e e o e

Implementation Details

* Tally’s server-side

1. Apply kernel transformations for best-effort kernels at PTX level, then
recompile to executable GPU kernels

2. Schedule kernels based on priority-aware scheduler
' Tally Client Lib ° / \

()

{_
. ML Applications |, k ::Iii::

— o o o e e e e e
— - o e e o e

Tally Server GPU

_ ./

Evaluation

Hardware:
e NVIDIA A100 GPU

Workloads:

* High-priority Inference + Best-effort Training

Metrics:
« 99t Percentile Latency
* System Throughput

Baselines:
* |deal (no sharing, evaluate latency)

* Time-Slicing (default sharing mechanism)
* NVIDIA MPS (with and w/o priority mode)
* TGS (state-of-the-art GPU sharing)

Inference Training
ResNet50 ResNet50
BERT PointNet
YOLOv6mM BERT
LlamaZ2-7b GPT2-Large
Stable Diffusion PEGASUS
GPT-Neo Whisper-v3

44

End-to-end Results

[|deal [Time-Slicing s MPS @ MPS-Priority 1 TGS 0 Tally

LlamaZ2-7B P99 Latency (ms) , System Throughput
0000 hig?\aosveellrrr::ad negligib-ll-:lg/erhead - _ _ i i i
4000 '\ / N
20001~ . - L.
o L,
\N‘(\\S@ S&e \(\’(, ?ega \)%3\)’(2 EE?:(\N\\\S‘) 6“690\ ?egas\)%?’('l E?:‘

On average, Tally incurs only a 7% overhead on the P99 latency of high-priority inference tasks,
compared to 188% overhead of the best baseline, while attaining more than 80% throughput.
45

P99 Latency (ms)

30-

20-

10

Responsiveness of Tally

BERT P99 Latency with BERT Training

—— ldeal

low high-priority task latency — :4:5 e-Slicing

= —— MPS-Priority
/ o TGS

N / - — Tally

*_-M_l Rt e et e b = s

._L-.-.A._.-N.—-—,-—-- o~ —— — . —- =
T T T

0 2000 4000 6000 8000

Timestamp (s)

Request Count

Request Count Over Time

N
o
(@)

-- Server Capacity |

o
o
—

o

Mﬁb%\WMWA I N 1

Best-effort Throughput Over Time

g mi N

= | L W (WW U Hﬂl

A (el

go u” \f ”W . i /\M AH

Timestamp (s)

Tally can adaptively adjust the throughput of the best-effort task in correspondence with the
fluctuating traffic load to the high-priority inference task.

46

Selection of Turnaround Latency Threshold

P99 Latency and Throughput during BERT Inference Varying Turnaround Latency

—eo— Whisper
BERT

—*— Pegasus
—e— ResNet50

} .

Norm Throughput

o
o

P99 Latency (ms)
(@)}

PointNet
0 4— v__v__/ﬁ'/k//*\-'
4-”] 1 TP Trrrrrt I 1 IIIIII I LI III'/I.TIHT\I’_./.
1072 1071 10° 1072 1071 10°
Turnaround Latency (ms) Turnaround Latency (ms)

Based on empirical results, Tally chooses threshold of 0.0316 ms that provides the best
balance between latency and throughput.

47

Importance of Block-level Scheduling (Ablation)

102-

101

BERT P99 Latency (ms)

More than 10x Latency
slowdown with kernel-
level scheduling.

. =

ldeal
" No-scheduling

Block-level scheduling Priority-aware (kernel-level)

achieves near-ideal
latency.

B Priority-aware (block-level)

Whisper ResNet50

BERT

48

Overhead Analysis

* Virtualization (client-server)
* Incurs an average overhead pf only 1%, proving minimal performance impact

* Transformed kernel execution
* Execution of block-level best-effort kernels causes 25% average overhead

* Profiling
* One-time online profiling for each kernel in one best-effort task complete
within minutes, negligible given training workloads often run for hours/days

49

Summary

* Challenges of current GPU sharing solutions:
* High Integration costs due to intrusive code modifications (Intrusive)
* Performance degradation leading to SLA violations (Bad Performance Isolation)
* Limited workload compatibility across applications (Non-generalizable)

e Method:

* Implements block-level scheduling primitives for GPU virtualization

* Ensures effective performance isolation in a non-intrusive, task-agnostic
manner

* Results:
* 7% overhead vs 188% in state-of-the-art GPU sharing
* Maintains over 80% throughput of the best-performing baseline

50

Remaining Problems

* Selection of turnaround latency threshold at block-level launch
configuration is very ad-hoc

* Doesn’t compare with REEF

* Fundamentally incompatible with CUDA Graph, may encounter
launch bubble issues on high-end GPUs (e.g., NVIDIA H100)

