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DL is Gaining Unprecedented Popularity
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Soaring Investments in GPU Clusters
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Ensuring high GPU utilization 
is crucial for cost-efficiency!

NVIDIA H100 GPU Units By Company

https://www.visualcapitalist.com/which-companies-own-the-most-nvidia-h100-gpus/
https://www.tomshardware.com/news/nvidia-to-sell-550000-h100-compute-gpus-in-2023-report

350,000 * 30,000 ≈ $10 billion



Meanwhile - GPUs are Severely Underutilized

• 2022 Alibaba Study:
• median GPU utilization in 6000-GPU 

cluster is only 4.2%.

GPU utilization distribution in an Alibaba cluster
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• Sources of Inefficiency:

Training: 
bottlenecks in CPU execution fluctuating user traffic

Weng et al., "MLaaS in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters,”  NSDI 2022.

Inference:



GPU Sharing to the Rescue

Consolidating multiple 
workloads to share a single 
GPU’s resources.
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…

The same Alibaba study shows 
GPU sharing can cut resource 
requirements by up to 73%.

Workload Workload Workload

https://developer.nvidia.com/techdemos/video/disc03
Weng et al., " MLaaS in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters,”  NSDI 2022.



Yet, GPU Sharing is Rarely Used in Clusters

High integration and maintenance cost 
due to intrusive code modifications

Limited application compatibility due to 
reliance on workload-specific characteristics

Lack of performance isolation guarantees 
leads to violations of task SLAs

Limitations of Current GPU Sharing Solutions:
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Yet, GPU Sharing is Rarely Used in Clusters

High integration and maintenance cost 
due to intrusive code modifications

Limited application compatibility due to reliance 
on workload-specific characteristics

Lack of performance isolation guarantees 
leads to violations of task SLAs

Limitations of Current GPU Sharing Solutions:
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User Scripts

DL Frameworks



Yet, GPU Sharing is Rarely Used in Clusters

High integration and maintenance cost 
due to intrusive code modifications

Limited application compatibility due to 
reliance on workload-specific characteristics

Lack of performance isolation guarantees 
leads to violations of task SLAs

Limitations of Current GPU Sharing Solutions:
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High-priority

Best-effort

Interference causes
performance degradation

SLAs
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Block



Scheduling Granularity for DL Workloads

• High-priority: BERT Inference
• Best-effort: Whisper Training
• Co-executed on a NVIDIA A100 GPU

10*: the thread-level latency is taken from the REEF paper as it is not supported in NVIDIA GPUs.

Iteration

Kernel

Block

*Thread

Inference Latency

…

~4 ms

~3 s

~10 ms

~300 μs

~40 μs

Training



Yet, GPU Sharing is Rarely Used in Clusters

High integration and maintenance cost 
due to intrusive code modifications

Limited application compatibility due to 
reliance on workload-specific characteristics

Lack of performance isolation guarantees 
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Yet, GPU Sharing is Rarely Used in Clusters

2017

2020

2022

2023

2024

EffiSha
[PPoPP’17]

Salus
[MLSys’20]

REEF
[OSDI’22]

TGS
[NSDI’23]

Orion
[EuroSys’24]

Iteration level

Intrusive code

Intrusive code

kernel level

Indempotent

GranularityIntrusiveness Generality

Block level

stream level

thread level

Static

Non-Intrusive

Non-Intrusive

Non-Intrusive

All

All

All



Block-level Thread-level

Latency

Generality

Choosing the Right Scheduling Granularity
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~100s μs ~10s μs

Universally 
applicable

Limited to 
idempotent

kernels

Adopted by Tally

GEMM

…

Independent

Disruptive abort and 
restart of a block 
require idempotency

Block-level:

Thread-level:



Tally: Enabling Practical GPU Sharing
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Applications GPUTally

Non-Intrusive Performance 
Isolation

Generalizable



Tally: Enabling Practical GPU Sharing
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Applications Tally GPU

Non-Intrusive Performance 
Isolation

Generalizable



Tally: Enabling Practical GPU Sharing
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Applications GPUTally

Non-Intrusive Performance 
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Generalizable

Fine-grained
Priority-aware

Scheduling
Performance 
Guarantees



Tally: Enabling Practical GPU Sharing
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Tally: Enabling Practical GPU Sharing
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Applications GPUTally

Non-Intrusive Performance 
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Tally Client Lib

Overview of Tally — Act as Virtualization Layer

ML Applications GPU

Device Code
(e.g., kernel binaries, 

PTX code)

Device API Calls
(e.g., cudaLaunchKernel) Tally Server
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Intercept Schedule



Tally Client Lib

Overview of Tally

ML Applications GPUTally Server

20

Intercept Schedule

• Core mechanisms
• Block-level scheduling primitives for best-effort kernels
• Transparent profiler
• Priority-aware scheduler



Tally Client Lib

Overview of Tally

ML Applications GPUTally Server
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Intercept Schedule

• Core mechanisms
• Block-level scheduling primitives for best-effort kernels
• Transparent profiler
• Priority-aware scheduler



Tally’s Block-level Scheduling
• Key Insights:
• Block-level scheduling is non-intrusive and generalizable for all ML tasks
• Previous results are kept instead of simply discarding
• Turnaround latency (~100us) is tolerable

• Tally’s Scheduling Strategy towards Different Tasks
• High-priority: keep it as-is
• Best-effort: transform and schedule kernels at block-level via two primitives

22
Slicing Preemption

or



Slicing Transformation

23

• Divide a kernel into multiple sub-kernels to allow for more fine-grained 
scheduling

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel

0 1 2 3

Sub-kernel 1

0 1 2 3

Sub-kernel 2

0 1 2 3

Sub-kernel 3

0 1 2 3

Sub-kernel 4

Naively partitioning into multiple 
kernels results in incorrect results!



Slicing Transformation
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• Divide a kernel into multiple sub-kernels to allow for more fine-grained 
scheduling

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel

0 1 2 3

Sub-kernel 1

0 1 2 3

Sub-kernel 2

0 1 2 3

Sub-kernel 3

0 1 2 3

Sub-kernel 4

Adding block offset parameter to kernel 
allows reconstruction of task index

Block offset: 4

Block offset: 8 Block offset: 12

Block offset: 0



Preemption Transformation
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• Modify the kernel execution mode to Persistent Thread Block (PTB)

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel Preemptive  Kernel

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

In queue

Next block: 0
Preemption flag:

False

PTB 1
(on SM1)

PTB 2
(on SM2)



Preemption Transformation
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• Modify the kernel execution mode to Persistent Thread Block (PTB)

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel Preemptive  Kernel

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3PTB 1
(on SM1)

PTB 2
(on SM2)

In queue

Next block: 1
Preemption flag:

False



Preemption Transformation
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• Modify the kernel execution mode to Persistent Thread Block (PTB)

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel Preemptive  Kernel

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

In queue

Next block: 2
Preemption flag:

False

PTB 1
(on SM1)

PTB 2
(on SM2)



Preemption Transformation
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• Modify the kernel execution mode to Persistent Thread Block (PTB)

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel Preemptive  Kernel

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

In queue

Next block: 3
Preemption flag:

False

PTB 1
(on SM1)

PTB 2
(on SM2)



Preemption Transformation
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• Modify the kernel execution mode to Persistent Thread Block (PTB)
• DeepGEMM also uses PTB to control SM number

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel Preemptive  Kernel

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

In queue

Next block: 4
Preemption flag:

False

PTB 1
(on SM1)

PTB 2
(on SM2)



Preemption flag:
True

Preemption Transformation
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• Allow the interruption of active kernels to accelerate resource 
reallocation

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel Preemptive  Kernel

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3PTB 1

PTB 2

In queue

Next block: 2

Set by the scheduler to indicate preemption

Stopped



Preemption Transformation
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• Allow the interruption of active kernels to accelerate resource 
reallocation

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel Preemptive  Kernel

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3PTB 1

PTB 2

In queue

Relaunch to resume execution from last checkpoint

Next block: 3
Preemption flag:

False



Preemption Transformation
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• Transform kernels to PTB by wrapping it with an outer control loop

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel Preemptive  Kernel

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3PTB 1

PTB 2

In queue

Next block: 2
Preemption flag:

False

Can result in divergence 
in thread synchronization

Addressed by Unified 
Synchronization Transformation



Unified Synchronization Transformation (UST)
• Original code before preemption transformation

Threads 0-7
(in one block)

If thread.idx >3
true

false

exe logic

early return

origin_syncthread()

4-7 exe logic
return



Unified Synchronization Transformation (UST)
• Original code before preemption transformation

Threads 0-7
(in one block)

If thread.idx >3
true

false

exe logic

early return

origin_syncthread()

• Preemption transformation w/o UST

Threads 0-7
(in one block)

If thread.idx >3
true

false

exe logic

next_loop_syncthread()
early return

origin_syncthread()

4-7

4-7

0-3
different sync groups

à kernel stalls

exe logic
return



Unified Synchronization Transformation (UST)
• Original code before preemption transformation

Threads 0-7
(in one block)

If thread.idx >3
true

false

exe logic

early return

origin_syncthread()

• Preemption transformation w/ UST

Threads 0-7
(in one block)

If thread.idx >3
true

false

exe logic

unified_syncthread()

unified_syncthread()

4-7

4-7

0-3

exe logic
return

exe logic

wait

unified_syncthread()

unified_syncthread()

4-7

0-3

next
loop



Tally Client Lib

Overview of Tally

ML Applications GPUTally Server
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Intercept Schedule

• Core mechanisms
• Block-level scheduling primitives for best-effort kernels
• Transparent profiler
• Priority-aware scheduler



Pros and Cons of Different Primitives
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• Turnaround latency and throughput vary when using different block-
level primitives and their  launch configurations

Slicing

Preemption

Pros: lightweight, no sync overhead
Cons: launch overhead of sub-kernels

Conf: number of  slices

Conf: number of PTBs

Pros: one-time kernel launch
Cons: sync overhead by UST



Transparent Profiler
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• Profile and estimate the performance of transformed kernels in best-
effort tasks at runtime
• Generate candidate configurations encompassing both slicing and 

preemption
• Estimates turnaround latency of different configurations
• Slicing: execution time of one sub-kernel
• Preemption: heuristic approximation  à

• Scheduler selects the one that achieves the optimal performance 
while complying with a predefined turnaround latency threshold



Tally Client Lib

Overview of Tally

ML Applications GPUTally Server
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Intercept Schedule

• Core mechanisms
• Block-level scheduling primitives for best-effort kernels
• Transparent profiler
• Priority-aware scheduler



Priority-aware Scheduler
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• Wisely schedules kernel to guarantee SLA and improve throughput 
based on block-level primitives and transparent profiler

• Scheduling strategy in a nutshell
• If meets high-priority kernel

1. Preempt block-level best-effort kernels (slicing/preemption)
2. Schedule high-priority kernel instantly

• If doesn’t have high-priority kernel
1. Choose best-effort kernels to schedule
2. If kernel doesn’t have block-level launch configuration,

use transparent profiler to find optimal configuration on-the-fly



Tally Client Lib

Overview of Tally

ML Applications GPUTally Server
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Intercept Schedule

• Core mechanisms
• Block-level scheduling primitives for best-effort kernels
• Transparent profiler
• Priority-aware scheduler

Performance 
Isolation

Non-Intrusive
Generalizable



Tally Client Lib

Implementation Details

ML Applications GPUTally Server
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Intercept Schedule

• Tally’s client-side
1. Use LD_PRELOAD in Linux to intercept API calls
2. Intercepted API calls are sent to the server for actual execution

• Shared memory and local state caching are used to reduce communication overhead



Tally Client Lib

Implementation Details

ML Applications GPUTally Server
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Intercept Schedule

• Tally’s server-side
1. Apply kernel transformations for best-effort kernels at PTX level, then 

recompile to executable GPU kernels
2. Schedule kernels based on priority-aware scheduler 



Evaluation

• Hardware:
• NVIDIA A100 GPU

• Workloads:
• High-priority Inference + Best-effort Training

• Metrics:
• 99th Percentile Latency
• System Throughput

• Baselines:
• Ideal (no sharing, evaluate latency)
• Time-Slicing (default sharing mechanism)
• NVIDIA MPS (with and w/o priority mode)
• TGS (state-of-the-art GPU sharing)
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Inference Training

ResNet50 ResNet50

BERT PointNet

YOLOv6m BERT

Llama2-7b GPT2-Large

Stable Diffusion PEGASUS

GPT-Neo Whisper-v3



End-to-end Results
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Tally
negligible overhead

On average, Tally incurs only a 7% overhead on the P99 latency of high-priority inference tasks, 
compared to 188% overhead of the best baseline, while attaining more than 80% throughput.

Llama2-7B P99 Latency (ms) System Throughput

Baseline
high overhead



Responsiveness of Tally 

46

BERT P99 Latency with BERT Training 

Request Count Over Time

Best-effort Throughput Over Time

Tally can adaptively adjust the throughput of the best-effort task in correspondence with the 
fluctuating traffic load to the high-priority inference task.

low high-priority task latency



Selection of Turnaround Latency Threshold
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Based on empirical results, Tally chooses threshold of 0.0316 ms that provides the best 
balance between latency and throughput.

P99 Latency and Throughput during BERT Inference Varying Turnaround Latency 



Importance of Block-level Scheduling (Ablation)
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10!

10"

BERT P99 Latency (ms)

Whisper ResNet50 BERT

Ideal

No-scheduling

Priority-aware (kernel-level)

Priority-aware (block-level)

More than 10x Latency 
slowdown with kernel-
level scheduling. Block-level scheduling 

achieves near-ideal 
latency.



Overhead Analysis
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• Virtualization (client-server)
• Incurs an average overhead pf only 1%, proving minimal performance impact

• Transformed kernel execution
• Execution of block-level best-effort kernels causes 25% average overhead

• Profiling 
• One-time online profiling for each kernel in one best-effort task complete

within minutes, negligible given training workloads often run for hours/days



Summary

• Challenges of current GPU sharing solutions:
• High Integration costs due to intrusive code modifications (Intrusive)
• Performance degradation leading to SLA violations (Bad Performance Isolation)
• Limited workload compatibility across applications (Non-generalizable)

• Method:
• Implements block-level scheduling primitives for GPU virtualization
• Ensures effective performance isolation in a non-intrusive, task-agnostic 

manner
• Results:

• 7% overhead vs 188% in state-of-the-art GPU sharing
• Maintains over 80% throughput of the best-performing baseline
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Remaining Problems
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• Selection of turnaround latency threshold at block-level launch 
configuration is very ad-hoc
• Doesn’t compare with REEF
• Fundamentally incompatible with CUDA Graph, may encounter 

launch bubble issues on high-end GPUs (e.g., NVIDIA H100)


