
Wei Zhao1,4, Anand Jayarajan2,3,4, Gennady Pekhimenko2,3,4

Presenter: Jiaqi Ruan, Jia He

Tally: Non-Intrusive Performance Isolation
for Concurrent Deep Learning Workloads

1

1 2 3 4

DL is Gaining Unprecedented Popularity

2

Soaring Investments in GPU Clusters

3

Ensuring high GPU utilization
is crucial for cost-efficiency!

NVIDIA H100 GPU Units By Company

https://www.visualcapitalist.com/which-companies-own-the-most-nvidia-h100-gpus/
https://www.tomshardware.com/news/nvidia-to-sell-550000-h100-compute-gpus-in-2023-report

350,000 * 30,000 ≈ $10 billion

Meanwhile - GPUs are Severely Underutilized

• 2022 Alibaba Study:
• median GPU utilization in 6000-GPU

cluster is only 4.2%.

GPU utilization distribution in an Alibaba cluster

4

• Sources of Inefficiency:

Training:
bottlenecks in CPU execution fluctuating user traffic

Weng et al., "MLaaS in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters,” NSDI 2022.

Inference:

GPU Sharing to the Rescue

Consolidating multiple
workloads to share a single
GPU’s resources.

5

…

The same Alibaba study shows
GPU sharing can cut resource
requirements by up to 73%.

Workload Workload Workload

https://developer.nvidia.com/techdemos/video/disc03
Weng et al., " MLaaS in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters,” NSDI 2022.

Yet, GPU Sharing is Rarely Used in Clusters

High integration and maintenance cost
due to intrusive code modifications

Limited application compatibility due to
reliance on workload-specific characteristics

Lack of performance isolation guarantees
leads to violations of task SLAs

Limitations of Current GPU Sharing Solutions:

6

Yet, GPU Sharing is Rarely Used in Clusters

High integration and maintenance cost
due to intrusive code modifications

Limited application compatibility due to reliance
on workload-specific characteristics

Lack of performance isolation guarantees
leads to violations of task SLAs

Limitations of Current GPU Sharing Solutions:

7

User Scripts

DL Frameworks

Yet, GPU Sharing is Rarely Used in Clusters

High integration and maintenance cost
due to intrusive code modifications

Limited application compatibility due to
reliance on workload-specific characteristics

Lack of performance isolation guarantees
leads to violations of task SLAs

Limitations of Current GPU Sharing Solutions:

8

High-priority

Best-effort

Interference causes
performance degradation

SLAs

9

Iteration

Kernel

Stream

Block

Scheduling Granularity for DL Workloads

• High-priority: BERT Inference
• Best-effort: Whisper Training
• Co-executed on a NVIDIA A100 GPU

10*: the thread-level latency is taken from the REEF paper as it is not supported in NVIDIA GPUs.

Iteration

Kernel

Block

*Thread

Inference Latency

…

~4 ms

~3 s

~10 ms

~300 μs

~40 μs

Training

Yet, GPU Sharing is Rarely Used in Clusters

High integration and maintenance cost
due to intrusive code modifications

Limited application compatibility due to
reliance on workload-specific characteristics

Lack of performance isolation guarantees
leads to violations of task SLAs

Limitations of Current GPU Sharing Solutions:

11

Training Inference

Idempotent Stateful

GPU Kernels

Yet, GPU Sharing is Rarely Used in Clusters

2017

2020

2022

2023

2024

EffiSha
[PPoPP’17]

Salus
[MLSys’20]

REEF
[OSDI’22]

TGS
[NSDI’23]

Orion
[EuroSys’24]

Iteration level

Intrusive code

Intrusive code

kernel level

Indempotent

GranularityIntrusiveness Generality

Block level

stream level

thread level

Static

Non-Intrusive

Non-Intrusive

Non-Intrusive

All

All

All

Block-level Thread-level

Latency

Generality

Choosing the Right Scheduling Granularity

13

~100s μs ~10s μs

Universally
applicable

Limited to
idempotent

kernels

Adopted by Tally

GEMM

…

Independent

Disruptive abort and
restart of a block
require idempotency

Block-level:

Thread-level:

Tally: Enabling Practical GPU Sharing

14

Applications GPUTally

Non-Intrusive Performance
Isolation

Generalizable

Tally: Enabling Practical GPU Sharing

15

Applications Tally GPU

Non-Intrusive Performance
Isolation

Generalizable

Tally: Enabling Practical GPU Sharing

16

Applications GPUTally

Non-Intrusive Performance
Isolation

Generalizable

Fine-grained
Priority-aware

Scheduling
Performance
Guarantees

Tally: Enabling Practical GPU Sharing

17

Applications GPUTally

Non-Intrusive Performance
Isolation

Generalizable

Priority-aware
Fine-grained
Scheduling

Performance
Guarantees Training

Inference

Stateful

Idempotent

Tally: Enabling Practical GPU Sharing

18

Applications GPUTally

Non-Intrusive Performance
Isolation

Generalizable

Training

Inference

Stateful

Idempotent

Priority-aware
Fine-grained
Scheduling

Performance
Guarantees

Tally Client Lib

Overview of Tally — Act as Virtualization Layer

ML Applications GPU

Device Code
(e.g., kernel binaries,

PTX code)

Device API Calls
(e.g., cudaLaunchKernel) Tally Server

19

Intercept Schedule

Tally Client Lib

Overview of Tally

ML Applications GPUTally Server

20

Intercept Schedule

• Core mechanisms
• Block-level scheduling primitives for best-effort kernels
• Transparent profiler
• Priority-aware scheduler

Tally Client Lib

Overview of Tally

ML Applications GPUTally Server

21

Intercept Schedule

• Core mechanisms
• Block-level scheduling primitives for best-effort kernels
• Transparent profiler
• Priority-aware scheduler

Tally’s Block-level Scheduling
• Key Insights:
• Block-level scheduling is non-intrusive and generalizable for all ML tasks
• Previous results are kept instead of simply discarding
• Turnaround latency (~100us) is tolerable

• Tally’s Scheduling Strategy towards Different Tasks
• High-priority: keep it as-is
• Best-effort: transform and schedule kernels at block-level via two primitives

22
Slicing Preemption

or

Slicing Transformation

23

• Divide a kernel into multiple sub-kernels to allow for more fine-grained
scheduling

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel

0 1 2 3

Sub-kernel 1

0 1 2 3

Sub-kernel 2

0 1 2 3

Sub-kernel 3

0 1 2 3

Sub-kernel 4

Naively partitioning into multiple
kernels results in incorrect results!

Slicing Transformation

24

• Divide a kernel into multiple sub-kernels to allow for more fine-grained
scheduling

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel

0 1 2 3

Sub-kernel 1

0 1 2 3

Sub-kernel 2

0 1 2 3

Sub-kernel 3

0 1 2 3

Sub-kernel 4

Adding block offset parameter to kernel
allows reconstruction of task index

Block offset: 4

Block offset: 8 Block offset: 12

Block offset: 0

Preemption Transformation

25

• Modify the kernel execution mode to Persistent Thread Block (PTB)

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel Preemptive Kernel

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

In queue

Next block: 0
Preemption flag:

False

PTB 1
(on SM1)

PTB 2
(on SM2)

Preemption Transformation

26

• Modify the kernel execution mode to Persistent Thread Block (PTB)

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel Preemptive Kernel

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3PTB 1
(on SM1)

PTB 2
(on SM2)

In queue

Next block: 1
Preemption flag:

False

Preemption Transformation

27

• Modify the kernel execution mode to Persistent Thread Block (PTB)

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel Preemptive Kernel

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

In queue

Next block: 2
Preemption flag:

False

PTB 1
(on SM1)

PTB 2
(on SM2)

Preemption Transformation

28

• Modify the kernel execution mode to Persistent Thread Block (PTB)

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel Preemptive Kernel

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

In queue

Next block: 3
Preemption flag:

False

PTB 1
(on SM1)

PTB 2
(on SM2)

Preemption Transformation

29

• Modify the kernel execution mode to Persistent Thread Block (PTB)
• DeepGEMM also uses PTB to control SM number

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel Preemptive Kernel

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

In queue

Next block: 4
Preemption flag:

False

PTB 1
(on SM1)

PTB 2
(on SM2)

Preemption flag:
True

Preemption Transformation

30

• Allow the interruption of active kernels to accelerate resource
reallocation

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel Preemptive Kernel

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3PTB 1

PTB 2

In queue

Next block: 2

Set by the scheduler to indicate preemption

Stopped

Preemption Transformation

31

• Allow the interruption of active kernels to accelerate resource
reallocation

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel Preemptive Kernel

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3PTB 1

PTB 2

In queue

Relaunch to resume execution from last checkpoint

Next block: 3
Preemption flag:

False

Preemption Transformation

32

• Transform kernels to PTB by wrapping it with an outer control loop

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3

Original Kernel Preemptive Kernel

8 9 10 11

4 5 6 7

12 13 14 15

0 1 2 3PTB 1

PTB 2

In queue

Next block: 2
Preemption flag:

False

Can result in divergence
in thread synchronization

Addressed by Unified
Synchronization Transformation

Unified Synchronization Transformation (UST)
• Original code before preemption transformation

Threads 0-7
(in one block)

If thread.idx >3
true

false

exe logic

early return

origin_syncthread()

4-7 exe logic
return

Unified Synchronization Transformation (UST)
• Original code before preemption transformation

Threads 0-7
(in one block)

If thread.idx >3
true

false

exe logic

early return

origin_syncthread()

• Preemption transformation w/o UST

Threads 0-7
(in one block)

If thread.idx >3
true

false

exe logic

next_loop_syncthread()
early return

origin_syncthread()

4-7

4-7

0-3
different sync groups

à kernel stalls

exe logic
return

Unified Synchronization Transformation (UST)
• Original code before preemption transformation

Threads 0-7
(in one block)

If thread.idx >3
true

false

exe logic

early return

origin_syncthread()

• Preemption transformation w/ UST

Threads 0-7
(in one block)

If thread.idx >3
true

false

exe logic

unified_syncthread()

unified_syncthread()

4-7

4-7

0-3

exe logic
return

exe logic

wait

unified_syncthread()

unified_syncthread()

4-7

0-3

next
loop

Tally Client Lib

Overview of Tally

ML Applications GPUTally Server

36

Intercept Schedule

• Core mechanisms
• Block-level scheduling primitives for best-effort kernels
• Transparent profiler
• Priority-aware scheduler

Pros and Cons of Different Primitives

37

• Turnaround latency and throughput vary when using different block-
level primitives and their launch configurations

Slicing

Preemption

Pros: lightweight, no sync overhead
Cons: launch overhead of sub-kernels

Conf: number of slices

Conf: number of PTBs

Pros: one-time kernel launch
Cons: sync overhead by UST

Transparent Profiler

38

• Profile and estimate the performance of transformed kernels in best-
effort tasks at runtime
• Generate candidate configurations encompassing both slicing and

preemption
• Estimates turnaround latency of different configurations
• Slicing: execution time of one sub-kernel
• Preemption: heuristic approximation à

• Scheduler selects the one that achieves the optimal performance
while complying with a predefined turnaround latency threshold

Tally Client Lib

Overview of Tally

ML Applications GPUTally Server

39

Intercept Schedule

• Core mechanisms
• Block-level scheduling primitives for best-effort kernels
• Transparent profiler
• Priority-aware scheduler

Priority-aware Scheduler

40

• Wisely schedules kernel to guarantee SLA and improve throughput
based on block-level primitives and transparent profiler

• Scheduling strategy in a nutshell
• If meets high-priority kernel

1. Preempt block-level best-effort kernels (slicing/preemption)
2. Schedule high-priority kernel instantly

• If doesn’t have high-priority kernel
1. Choose best-effort kernels to schedule
2. If kernel doesn’t have block-level launch configuration,

use transparent profiler to find optimal configuration on-the-fly

Tally Client Lib

Overview of Tally

ML Applications GPUTally Server

41

Intercept Schedule

• Core mechanisms
• Block-level scheduling primitives for best-effort kernels
• Transparent profiler
• Priority-aware scheduler

Performance
Isolation

Non-Intrusive
Generalizable

Tally Client Lib

Implementation Details

ML Applications GPUTally Server

42

Intercept Schedule

• Tally’s client-side
1. Use LD_PRELOAD in Linux to intercept API calls
2. Intercepted API calls are sent to the server for actual execution

• Shared memory and local state caching are used to reduce communication overhead

Tally Client Lib

Implementation Details

ML Applications GPUTally Server

43

Intercept Schedule

• Tally’s server-side
1. Apply kernel transformations for best-effort kernels at PTX level, then

recompile to executable GPU kernels
2. Schedule kernels based on priority-aware scheduler

Evaluation

• Hardware:
• NVIDIA A100 GPU

• Workloads:
• High-priority Inference + Best-effort Training

• Metrics:
• 99th Percentile Latency
• System Throughput

• Baselines:
• Ideal (no sharing, evaluate latency)
• Time-Slicing (default sharing mechanism)
• NVIDIA MPS (with and w/o priority mode)
• TGS (state-of-the-art GPU sharing)

44

Inference Training

ResNet50 ResNet50

BERT PointNet

YOLOv6m BERT

Llama2-7b GPT2-Large

Stable Diffusion PEGASUS

GPT-Neo Whisper-v3

End-to-end Results

45

Tally
negligible overhead

On average, Tally incurs only a 7% overhead on the P99 latency of high-priority inference tasks,
compared to 188% overhead of the best baseline, while attaining more than 80% throughput.

Llama2-7B P99 Latency (ms) System Throughput

Baseline
high overhead

Responsiveness of Tally

46

BERT P99 Latency with BERT Training

Request Count Over Time

Best-effort Throughput Over Time

Tally can adaptively adjust the throughput of the best-effort task in correspondence with the
fluctuating traffic load to the high-priority inference task.

low high-priority task latency

Selection of Turnaround Latency Threshold

47

Based on empirical results, Tally chooses threshold of 0.0316 ms that provides the best
balance between latency and throughput.

P99 Latency and Throughput during BERT Inference Varying Turnaround Latency

Importance of Block-level Scheduling (Ablation)

48

10!

10"

BERT P99 Latency (ms)

Whisper ResNet50 BERT

Ideal

No-scheduling

Priority-aware (kernel-level)

Priority-aware (block-level)

More than 10x Latency
slowdown with kernel-
level scheduling. Block-level scheduling

achieves near-ideal
latency.

Overhead Analysis

49

• Virtualization (client-server)
• Incurs an average overhead pf only 1%, proving minimal performance impact

• Transformed kernel execution
• Execution of block-level best-effort kernels causes 25% average overhead

• Profiling
• One-time online profiling for each kernel in one best-effort task complete

within minutes, negligible given training workloads often run for hours/days

Summary

• Challenges of current GPU sharing solutions:
• High Integration costs due to intrusive code modifications (Intrusive)
• Performance degradation leading to SLA violations (Bad Performance Isolation)
• Limited workload compatibility across applications (Non-generalizable)

• Method:
• Implements block-level scheduling primitives for GPU virtualization
• Ensures effective performance isolation in a non-intrusive, task-agnostic

manner
• Results:

• 7% overhead vs 188% in state-of-the-art GPU sharing
• Maintains over 80% throughput of the best-performing baseline

50

Remaining Problems

51

• Selection of turnaround latency threshold at block-level launch
configuration is very ad-hoc
• Doesn’t compare with REEF
• Fundamentally incompatible with CUDA Graph, may encounter

launch bubble issues on high-end GPUs (e.g., NVIDIA H100)

