D) ¥RA2 LA %5

sity of Scie and Technology of Chin

KTransformers: Unleashing the Full Potential of

CPU/GPU Hybrid Inference for MoE Models

Le Zhihao

Outline

Background

Background

(UMoE model is everywhere in modern LLM
+*Qwen3, DeepSeekV3/RI

Shared

Router

Norm

Attention

Norm

x N Layers

Background

(UMoE model is everywhere in modern LLM

(UMemory becomes bottleneck

How to deal with memory bottleneck with Shared

constrained GPU memory!?

Router

Attention: ~5B

7 3

Norm

Norm, Linear & Shared: ~12B

Attention

A

Routed Experts: ~654B

Norm

For DeepSeekV3 MoE 671B

x N Layers

Background

(UMoE model is everywhere in modern LLM

(UMemory becomes bottleneck

dHybrid CPU/GPU inference Shared

Router

7

Attention: ~5B

Norm

— GPU

Norm, Linear & Shared: ~17B _

Attention

Routed Experts: ~654B } CPU
Norm

For DeepSeekV3 MoE 671B
x N Layers

Background

(UMoE model is everywhere in modern LLM

(UMemory becomes bottleneck

dHybrid CPU/GPU inference Shared

Compute in GPU Router

oS = mm Em Em Em o o Em Em o oEm oy 'y

Norm

|
|

I 1 7~ GPU
|

_____________ ' PCle: 32 GB/s
Attention

A

(-~~~ -~~~ -=--~--=7 Cl» CPU Mem: 440 GB/s

Norm

Compute in CPU For DeepSeekV3 MoE 671B
x N Layers

Background

JGPU on Iy Attention Router Shared Experts

GPU Attn Shared |a | b | c Attn Shared [a | b | c Attn

UHybrid CPU/GPU inference

Recent Work

dLlama.cpp[1]

“*C++ based LLM inference enabling heterogeneous execution.

QFiddler[2]

*Support expert offloading and selectively reload experts.

‘ One A100 and two Intel Xeon CPUs:
* Prefill: 70.02 tokens per second
* Decode: 4.68 tokens per second
* Low GPU utilization (below 30%)

[1] Georgi Gerganov 2023. ggerganov/llama.cpp. Retrieved Feb 8, 2025 from https://github.com/ggerganov/llama.cpp
[2] Keisuke Kamahori,Yile Gu, Kan Zhu, and Baris Kasikci. 2024. Fiddler: CPU-GPU Orchestration for Fast Inference
of Mixture-of-Experts Models. arXiv:2402.07033 [cs.LG]

https://github.com/ggerganov/llama.cpp

Outline

dBackground

JMotivation

Motivation

dUnderutilized CPU compute resources

102 :- e T T T TTTTrTrrTTTTThrThEeETrTT™ETERT
1 =—-= Theoretical AMX 73.7 TELOPS

] === Theoretical AVX-512

Q 1 —m— PyTorch AMX Kernel —h—A

9 101 4+ —@— PyTorch AVX-512 Kernel o o T e

L n

= 1 —&— Klransformers AMX Kernel —m B 5.4 TFLOPS (7%)

=)

=)

o i

<, . ® ® Reasons:

§ 10 E - Memory bandwidth

i ' - Thread Sync
10_1 B 1 1 1 1 1 1

1 2 4 8 16 32 64 128 256 512 1024
Number of Tokens Assigned to Each Expert

Throughput of the MoE Layers on DeepSeek-V3 using PyTorch’s AMX and AVX-512 kernels

Motivation

dUnderutilized CPU compute resources

JCPU-GPU/CPU coordination

*CPU-GPU coordination
» High kernel launch latency

Fiddler Llama.cpp

107 { o Kernel Execution Time
0 == = Average Kernel Launch Time
3102
; 10 Only 8% of kernels exceed
e average launch time 75% of kernels exceed
=l average launch time
|_
0 25 50 75 100 0 25 50 75 100
Percentile (%) Percentile (%)

GPU kernel launch and execution time analysis of DeepSeek-V3 in A100

Motivation

dUnderutilized CPU compute resources

JCPU-GPU/CPU coordination

*CPU-GPU coordination
» High kernel launch latency

» CUDA graph fails to support CPU and GPU overlapping computation

Motivation

dUnderutilized CPU compute resources

JCPU-GPU/CPU coordination
<+ CPU-GPU coordination
+*CPU-CPU coordination

» Inefficient memory access NUMA nodes

* DeepSeek-V3 using Fiddler on a single socket: 6.9ms
* DeepSeek-V3 using Fiddler on two sockets: 5.8ms (-16%)

Outline

dBackground

JMotivation

_1Challenge

Challenge

dUnderutilized CPU compute resources
“*Memory bandwidth constraints

**Thread synchronization overhead

JCPU-GPU/CPU coordination

*CPU-GPU: high overhead of kernel invocation and synchronization

*+*CPU-CPU:.: inefficient cross-socket memory access

Outline

dBackground

JdMotivation
_1Challenge

dDesign

Design - Overview

User Interface

HuggingFace Transformers

MoE models

DeepSeek

Qwen

Mixtral

KTransformers

D N

2>

Unleashing the
Full Potential
of the CPU

i] 101 TS

Better CPU-
CPU/GPU

coordination

CPU

GEMM->AMX/AVX
GPU

Attn->Flashinfer

Quantization->Marlin

Kimi

Heterogeneous Hardware

Intel Xeon
CPUs

Nvidia Nvidia
Al100 RTX 4080

Design - Unleashing the Full Potential of the CPU

UJAMXTiling-aware Memory Layout

Expert Weight

64 bytes submatrix

64 bytes submatrix

preprocessed

64 bytes submatrix

AMX instructions

19
Design - Unleashing the Full Potential of the CPU

JAMX Tiling-aware Memory Layout
1Cache-Friendly AMX Kernels

I Input Eyxpert Weights Threads
I Activations

m X% EE Task Scheduler / N\[\ i A

Design - Unleashing the Full Potential of the CPU

JAMX Tiling-aware Memory Layout
1Cache-Friendly AMX Kernels
Adaptive AVX-512 Kernel for Low ARI Scenarios

g 1251 —— DS-3AMX —&- DS-3 AVX-512 SPT e

= —=— DS-2 AMX —m- DS-2 AVX-512 %

O 1004 —®* QW-2AMX - QW-2 AVX-512 ___-= el

- —] —— ——— — ————ih

— —"

LLl .—'-—.—

(@] 75' e—_———— =" x

=

_

8 501 1

> | = -

LC) - i - p———— === & sk »— -

o 251 w=———=—= I T T S W Py

ZU = e F=—==—=0— === ': —
1 2 3 4 5 6 7 8

Number of Tokens Assigned to Each Expert

l Lower is better

2]
Design - Unleashing the Full Potential of the CPU

JAMX Tiling-aware Memory Layout
1Cache-Friendly AMX Kernels
Adaptive AVX-512 Kernel for Low ARI Scenarios

m . - s S —— .
£ 1251 —— DS-3AMX —&- DS-3 AVX-512 ! Pt Lower is better
= —#— DS-2 AMX —m- DS-2 AVX-512 | -]
O 1004 —*=_QW-2 AMX _ —e- QW-2 AVX-512 | K !
> L L T T T 1 I T T T 1 T 1| 1 1 -
— " —— — h— L —d
£ : I S 1 [Use AMX Kernels
o 7511 y p————— 7 i | I i
= :] |
o i P! i
o 50 I I : 1
> | 1 g--m- a-—-——%
LC) 25 ::- =___:l _____ <.'_"'-F'=_—.7 === L i .:
o Lo tE——=—= LI
I N A A TR N G Sy ol
T | g e $=————e—t—foeommmnteosood
Use AVX-512 Kernkls 2 3 4 5 6 7 8

Number of Tokens Assigned to Each Expert

22
Design - Unleashing the Full Potential of the CPU

JAMX Tiling-aware Memory Layout
1Cache-Friendly AMX Kernels
Adaptive AVX-512 Kernel for Low ARI Scenarios

(JFuse MoE Ops

Expert O Input e ————

|

|

Gate

U

_______ i
Inter. * Down » Output

C
O

3

)

)

O

(@)

2

)

O

S

O

S

Expert | Input

23
Design - Unleashing the Full Potential of the CPU
JAMX Tiling-aware Memory Layout
1Cache-Friendly AMX Kernels
Adaptive AVX-512 Kernel for Low ARI Scenarios
(JFuse MoE Ops

dDynamic Task Scheduling

- — /\/ Threads
X - Task queue \/\/

tackle workload imbalance

input experts

24
Design - Unleashing the Full Potential of the CPU

1Cache-Friendly AMX Kernels

Adaptive AVX-512 Kernel for Low ARI Scenarios
(JFuse MoE Ops

JAMXTiling-aware Memory Layout
Memory bandwidth constraints

- Thread synchronization overhead

dDynamic Task Scheduling | ﬂ

Better CPU resource utilization

25
Design - Better CPU-CPU/GPU Coordination

JAsynchronous CPU-GPU Task Scheduling Mechanism

Attention Router Shared Experts

> /7 N\ Threads
Can’t be captured by CUDA graph ~ /'\/

26
Design - Better CPU-CPU/GPU Coordination

JAsynchronous CPU-GPU Task Scheduling Mechanism

cudalaunchHostFunc Attention Router Shared Experts
GPU | Acn [shared E Attn [shared | A
CPU submit | IS b E sync 2 b .
2+ /7 N\ Threads

\/‘\/

Design - Better CPU-CPU/GPU Coordination

JAsynchronous CPU-GPU Task Scheduling Mechanism

LOUNUMA-aware Tensor Parallelism

| Node 0 | I Node | |

I --------- I I --------- I

2| e itiiai [e / Up

Mo | {7 1iirs i [r (i [neu { inter. |—| Down |—{Output
i s by | Gate

el fg ittt el [eN

l —mm === I ===

| d h {11! d h |1

I 1 11

L | |

Local Weights/States

Expert parallel is inefficient when imbalance.

Remote Weights/States

28
Design - Better CPU-CPU/GPU Coordination

JAsynchronous CPU-GPU Task Scheduling Mechanism

LOUNUMA-aware Tensor Parallelism

i Up jm——————
R LI e 1 - - 0 o
Nod_e“(') i I?l_c_)del B InEut <___ 1S Output

A

s |

2l §olel fiiia] i felf L

| irotad il s SIo ! & e

ol 3 O D] DI |- Lo gy Reduce]
: ™ T P L |1 Input —— Executed by Node 0 — Output |
: c --.i g ___i E : i___ C i___ g : ------ e e e e e e T e e e
! === ===y b - P

ild| ¢ || frid [d] | |n|!

| _—— p— I 1 -« - I

L L

Local Weights/States

Tensor parallel can balance the work.

i i Remote Weights/States

29
Design - Better CPU-CPU/GPU Coordination

JAsynchronous CPU-GPU Task Scheduling Mechanism

High overhead of kernel invocation and synchronization

LOUNUMA-aware Tensor Parallelism

Inefficient cross-socket memory access

4

Better CPU-CPU/GPU coordination

Design - Expert Deferral

dHybrid CPU/GPU inference

idle idle
GPU Attn Shared | < > Attn Shared | < > Attn
e "".Z”' """""""""""""""""""
CPU a b c < .1 . b c

dHybrid CPU/GPU inference + Expert Deferral

GPU 0.Attn ‘\O.Shared -/v | .Attn \ | .Shared {{ 2.Attn

Design - Expert Deferral

Layer k+1 MoE

Shared

Layer k+| Attention

Layer k MoE

e

Shared

N

Router
‘s
Norm

— Workflow

Design - Expert Deferral

Layer k+1 MoE

Layer k+| MoE

Shared

Shared

Router

Norm

Layer k+1 Attention Layer k+1 Attention

Attention

Layer k MOE/ Layer k MOE/
Shared Shared

Router

a [Immediate experts \
—3

Norm c | deferred experts

— Workflow

N

Design - Expert Deferral

(UHow to decide the expert
deferral configuration?

34
Design - Expert Deferral

D d ‘d Wait 7771 Send + Submit %71 Immediate Experts
How to ECI e the expert [Z2%21 Attention E22d Shared Experts Deferred Experts
E= Gate Sync + Receive

deferral configuration?

8 Immediate Experts + 0 Deferred Experts

i

GPU utilization: 28% GPUA

CPU utilization: 74% CPU 1 . <\7§<\>§§<\z§§§<>§3&>§§</%<

0 500 1000 1500 2000 2500
Timeline (us)

CPU GPU timelines in the MoE layer of DeepSeek V3

35
Design - Expert Deferral

M Wait 771 Send + Submit 57 Immediate Experts
DHOW to deCIde the expert [Z2%21 Attention Shared Experts Deferred Experts
deferral configuration? o R
g ¢ 8 Immediate Experts + 0 Deferred Experts
G PU ':::::::::::: ﬂ": E
Heuristic ways: 6 Immediate Experts + 2 Deferred Experts
|. Achieve full CPU utilization GPU pos s § +29% Time
2. Ensure 2 immediate experts to maintain model accuracy CPUA PSRRI
5 Immediate Experts + 3 Deferred Experts
G PU _’ﬂ‘ﬂbbﬁﬂdﬂbowﬂﬂbbﬂaﬂnboﬂ T E l 26“{’& Time
Get the best number of experts. <: CPU - NWWi

T

4 Immediate Experts + 4 Deferred Experts

GPU frrenssnssnsdy fom §

CPU | RRREEELEELEEL

0 500 1000 1500 2000 2500
Timeline (us)

CPU GPU timelines in the MoE layer of DeepSeek V3

126% Time

36
Implementation - Flexible Module Injection

[[]
Build on HuggingFace Transformer: [...
2 class: modeling_deepseek_v3.DeepseekV3MoE
& ° ° ° o ° 3 replace:
”‘nghtwelght InjeCtlon framework 4 class: operators.experts.FusedMoE
5 device: "cpu"
» Use aYAML file to drive the substitution 6 kwargs :
7 backend: "hybrid_AMX_AVX512"
° 8 data_type: "Int4"
’:’EXPOSE pYbII"IC“ I tO expose CPU k&l"hElS 9 n_deferred_experts: 6
10
11 | - match:
12 name: "*model\\.layers\\..x\\.self_attn$"
13 replace:
14 class: operators.attention.FlashInferMLA
15 device: "cuda:Q"
16
17 | - match:
18 name: "*(?!1lm_head$).x"
19 class: torch.nn.Linear
20 replace:
21 class: operators.linear.MarlinlLinear
22 device: "cuda:0"
23 kwargs:
24 data_type: "Int4"

Example configuration for adapting DeepSeek-V3

Outline

dBackground

JdMotivation
_1Challenge

dDesign

JEvaluation

38
Summary

HuggingFace Transformers

|
|
|
GPU Attn Shared ! AMX,
I Models = | KTransformers | <3 Flashinfer,
| Marlin
CPU '
2 b < : Heterogeneous Hardware
Hybrid CPU/GPU inference Background | 1 | Framework
|
____________________________ [. o o
|
Motivation | | Design
! 2z
— Underutilized CPU compute resources Unleashing the Full Potential of the CPU ~

* Memory bandwidth constraints
* Thread synchronization overhead

* Cache-Friendly AMX kernels, Adaptive AVX-512 kernel
* Fuse MoE ops, Dynamic task scheduling

Better CPU-CPU/GPU Coordination

* CUDA Graph friendly kernel launch
* NUMA-aware tensor parallelism

CPU-GPU/CPU coordination

* CPU-GPU: high overhead of kernel invocation and
synchronization
* CPU-CPU: inefficient cross-socket memory access

Expert Deferral

Evaluation - Setup

JHardware DDR5 | TB DDR5 | TB
. 220 GB/s
«CPU: 125 GB/s
Intel Xeon Intel Xeon
8452Y 36cores 8452Y 36cores

“+*GPU:a NVIDIA A100,a RTX 4080, Pcie 4.0

dModels:
*DeepSeek-V3-0324, DeepSeek V2.5-1210, Qwen2-57B-A14B

dDatasets:
*HumanEval, MBPP, GSM8K, StrategyQA, LiveBench

Baselines:
“*Fiddler, Llama.cpp

40
Evaluation - End2End Performance

Fiddler Llama.cpp B KTransformers
DS-3 BF16/FP16

400

300 A

Prefilling Speed (Tokens/s)

32 64 128 256 512 1024 2048 4096 8192

DS-3 Int4

Prefilling Speed (Tokens/s)
Ll
o
o

32 64 128 256 512 1024 2048 4096 8192
Prompt Length (Tokens)

Comparison of prefilling speed between KTransformers and the state-of-the-art baselines

4
Evaluation - End2End Performance

Fiddler Llama.cpp B KTransformers

DS-3 BF16/FP16

|. Llama.cpp outperform Fiddler (short prompt): superior fusion ops

2. Fiddler outperform Llama.cpp (long prompt): better utilization of
AMX instructions

3. KTransformers is better: optimized CPU kernels and improved
coordination between CPU and GPU

Prefilling Speed (Tokens/s)

DS-3 Int4

500 A

400 1

300 A

Prefilling Speed (Tokens/s)

32 64 128 256 512 1024 2048 4096 8192
Prompt Length (Tokens)

Comparison of prefilling speed between KTransformer and the state-of-the-art baselines

42
Evaluation —= End2End Performance

Fiddler Llama.cpp B KTransformers

- DS-3 BF16/FP16 DS-2 BF16/FP16 QW-2 BF16/FP16
—
9]
c— 400 A i
E 600
O 1500 +
!:_ 300 -
E 400 4
1000 ~

Q -
= 200
a 200
)] 7] i
I= 500
i.l_:
T .
o 32 64 128 256 512 1024 2048 4096 8192 32 64 128 256 512 1024 2048 4096 8192 32 64 128 256 512 1024 2048 4096 8192
o DS-3 Int4 DS-2 Int8 QW-2 Int8
A 2500 H
5 500 A { 200 -
- 2000 A
|E 400 ~
— 600 4
E 300 - 1500 ~
i}

400
o i
! 200 - 1000
n
é 100 A 200 A \ * ’ J 500 -
=
y
o 32 64 128 256 512 1024 2048 4096 8192 32 64 128 256 512 1024 2048 4096 8192 32 64 128 256 512 1024 2048 4096 8192

Prompt Length (Tokens) Prompt Length (Tokens) Prompt Length (Tokens)

Comparison of prefilling speed between KTransformers and the state-of-the-art baselines

43
Evaluation —= End2End Performance

Fiddler XX Klransformers
Llama.cop B KTransformers + Expert Deferral

BF16/FP16 Models Quantized Models

Optimized CPU kernels and advance
utilization of CUDA Graph

40 -

% v

v W

c C

Q Q

Y Y4

2 20 - =

= ~ 30

o 15 4 kS

L g 3 50

) y)

2 8 2

S : 7% 5 107

S zZ 7% S

8 |). 75 8 0- o .

DS-3 DS-2 QW-2 DS-3 Int4 DS-2 Int8 QW-2 Int8

Comparison of decoding speed between KTransformers and the state-of-the-art baselines

44
Evaluation —= End2End Performance

Fiddler XX Klransformers
Llama.cop B KTransformers + Expert Deferral

BF16/FP16 Models Quantized Models

Better overlapping of CPU and GPU
computations

40 -

Decoding Speed (Tokens/s)

Decoding Speed (Tokens/s)
=
un

& 20 -
8 7% 10 1
70 7%
; A 75 o X .
DS-3 DS-2 QW-2 DS-3 Int4 DS-2 Int8 QW-2 Int8

Comparison of decoding speed between KTransformers and the state-of-the-art baselines

Evaluation - Expert Deferral

éy‘i’- 68.8 -0.1% +0.1% +0.4% +1.1% +0.7% -0.6% -

% - 57.8 +0.2% +0.3% +0.4% +0.0% +0.6% +1.0% +1.0% | -2.4%

,;z%’- 82.6 +0.3% -0.0% +0.2% -0.2% +0.1% -0.2% -0.5% | -1.8%

{aiéz" - 46.3 -0.0% -0.1% +1.2% +1.0% +0.4% +0.5% +0.9% +0.4%

KTransformers keeps good accuracy é%ig? - 717 +0.2% +0.4% +0.1% -0.1% -0.2% -1.6% -

- 71.5 +0.4% -0.2% -0.4% -0.3% -0.9% -1.6%

I
§
FS - 66.4 +0.2% +0.1% +0.2% +0.2% +0.1% -0.5% -1.9%
S
N
e

with the number of deferred experts &
less than 6. <

0 1 2 3 4 5 6 7 8
Number of Deferred Experts

DeepSeek-V3 accuracy on LiveBench under Expert Deferral

Evaluation - Expert Deferral

()
§ - 688 -0.1% +0.1% +0.4% +11% +0.7% -0.6% -
©

(JA
é,” - 57.8 +0.2% +0.3% +0.4% +0.0% +0.6% +1.0% +1.0% @-2.4%
T
fg- 82.6 +0.3% -0.0% +0.2% -0.2% +0.1% -0.2% -0.5% -1.8%
wOow
Qfoka\zg,, - 46.3 -0.0% -0.1% +1.2% +1.0% +0.4% +0.5% +0.9% +0.4%
()
§r§,“§- 71.7 +0.2% +0.4% +0.1% -0.1% -0.2% -1.6% -
~
0. ns EER 0% EEEE BRI
S
29 - 66.4 +0.2% +0.1% +0.2% +0.2% +0.1% -0.5% -1.9% -6.7%
QQJQL:.D I I ° 1 I ’ 1 1 1 0 1 :
& 0 1 2 3 4 5 6 71 8
Number of Deferred Experts
KTransformers keeps good accuracy DeepSeek-V3 accuracy on LiveBench under Expert Deferral
with Expert Deferral compared to S

with Expert Skipping. Sg
T

o))
rji&” - 82.6 +0.8% +0.2% -0.0% +0.1% -0.3% @ -2.2%
5o
Q’igﬁ, 46.3 -0.2% +1.4% +1.5% +1.3% -1.3% @ -3.0% (WSS NIE Ry

é%i;«? . 717 +0.3% -0.4% -0.6% | -2.5%
£ §’ ~ 715 +0.2% -0.2% | -1.8% | -3.0%
< ’icf;‘- 66.4 +0.2% +0.1% -0.6% -2.3%

‘ 5 6 7 8

< 5 | | . |
Number of Skipped Experts

< 0 1 2 3 4

DeepSeek-V3 accuracy on LiveBench under Expert Skipping

Evaluation - Breakdown

+v:AVX-512 instructions
+m:AMX instructions
+d: dynamic work scheduling

+n: NUMA-aware tensor parallelism
+c: CUDA Graph

1 Base (Fiddler) B +m Il +tm+d+n
0 +v B +m-+d Hl +m+d+n+c

Normalized Prefilling Speed
o B N W A~ UO

Normalized Decoding Speed
N

DS-3 DS-2 Qw-2

Breakdown of prefill phase

[1 Base (Fiddler) B +m B +v+d+n
3 +v B +v+d B +v+d+n+c

F=Y

w

-

o

DS-3 DS-2 QW-2

Breakdown of decode phase

48
Evaluation - Breakdown

1 Base (Fiddler) B +m Il +tm+d+n
|. AMX better in prefill: prefill is computation heavy. s RV B +m+d BN +m+d+n-c

2. Dynamic work scheduling is more efficient in
prefill: decode is more load balanced.

3. NUMA-aware is efficient in decode phases:
decode is more memory bound.

4. CUDA Graph is efficient in decode: in prefill
phase, the overhead of CUDA launch is amortized
into a large number of tokens.

Normalized Prefilling Speed
o B N W A~ U O

DS-3 DS-2 Qw-2

Breakdown of prefill phase

+v:AVX-512 instructions [Base (Fiddler) HEE +m EEE +v+d+n
+m: AMX instructions 5 +v Bl +v+d B +v+d+n+c
+d: dynamic work scheduling 84
+n: NUMA-aware tensor parallelism 23] 4

o
+c: CUDA Graph S

Q 27

©

]

N1

©

E

o 0-

2 DS-3 DS-2 QW-2

Breakdown of decode phase

Outline

dBackground

JdMotivation
_1Challenge

dDesign

JEvaluation

JConclusion

Conclusion

UKTransformers, a system that enables efficient local
inference for large MoE models on hybrid CPU/GPU
platforms.

*Optimize CPU ops by combining AMX-optimized kernels for better
utilization of CPU.

“*Use CPU-GPU asynchronous scheduling and NUMA-aware TP for
better CPU-CPU/GPU coordination.

*Use the Expert Deferral strategy to maximize the utilization of
hardware.

rFEP 4 . :
® %
N>~ University of Science and Technology of China

Le Zhihao

	默认节
	幻灯片 1
	幻灯片 2: Outline
	幻灯片 3: Background
	幻灯片 4: Background
	幻灯片 5: Background
	幻灯片 6: Background
	幻灯片 7: Background
	幻灯片 8: Recent Work
	幻灯片 9: Outline
	幻灯片 10: Motivation
	幻灯片 11: Motivation
	幻灯片 12: Motivation
	幻灯片 13: Motivation
	幻灯片 14: Outline
	幻灯片 15: Challenge
	幻灯片 16: Outline
	幻灯片 17: Design - Overview
	幻灯片 18: Design - Unleashing the Full Potential of the CPU
	幻灯片 19: Design - Unleashing the Full Potential of the CPU
	幻灯片 20: Design - Unleashing the Full Potential of the CPU
	幻灯片 21: Design - Unleashing the Full Potential of the CPU
	幻灯片 22: Design - Unleashing the Full Potential of the CPU
	幻灯片 23: Design - Unleashing the Full Potential of the CPU
	幻灯片 24: Design - Unleashing the Full Potential of the CPU
	幻灯片 25: Design - Better CPU-CPU/GPU Coordination
	幻灯片 26: Design - Better CPU-CPU/GPU Coordination
	幻灯片 27: Design - Better CPU-CPU/GPU Coordination
	幻灯片 28: Design - Better CPU-CPU/GPU Coordination
	幻灯片 29: Design - Better CPU-CPU/GPU Coordination
	幻灯片 30: Design – Expert Deferral
	幻灯片 31: Design – Expert Deferral
	幻灯片 32: Design – Expert Deferral
	幻灯片 33: Design – Expert Deferral
	幻灯片 34: Design – Expert Deferral
	幻灯片 35: Design – Expert Deferral
	幻灯片 36: Implementation – Flexible Module Injection
	幻灯片 37: Outline
	幻灯片 38: Summary
	幻灯片 39: Evaluation - Setup
	幻灯片 40: Evaluation – End2End Performance
	幻灯片 41: Evaluation – End2End Performance
	幻灯片 42: Evaluation – End2End Performance
	幻灯片 43: Evaluation – End2End Performance
	幻灯片 44: Evaluation – End2End Performance
	幻灯片 45: Evaluation – Expert Deferral
	幻灯片 46: Evaluation – Expert Deferral
	幻灯片 47: Evaluation - Breakdown
	幻灯片 48: Evaluation - Breakdown
	幻灯片 49: Outline
	幻灯片 50: Conclusion
	幻灯片 51

