D) ¥RA2 LA %5

sity of Scie and Technology of Chin

KTransformers: Unleashing the Full Potential of

CPU/GPU Hybrid Inference for MoE Models

Le Zhihao



Outline

Background




Background

(UMoE model is everywhere in modern LLM
+*Qwen3, DeepSeekV3/RI

Shared

Router

Norm

Attention

Norm

x N Layers




Background

(UMoE model is everywhere in modern LLM

(UMemory becomes bottleneck

How to deal with memory bottleneck with Shared

constrained GPU memory!?

Router

Attention: ~5B

7 3

Norm

Norm, Linear & Shared: ~12B

Attention

A

Routed Experts: ~654B

Norm

For DeepSeekV3 MoE 671B

x N Layers




Background

(UMoE model is everywhere in modern LLM

(UMemory becomes bottleneck

dHybrid CPU/GPU inference Shared

Router

7

Attention: ~5B

Norm

— GPU

Norm, Linear & Shared: ~17B _

Attention

Routed Experts: ~654B } CPU
Norm

For DeepSeekV3 MoE 671B
x N Layers




Background

(UMoE model is everywhere in modern LLM

(UMemory becomes bottleneck
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Recent Work

dLlama.cpp[ 1]

“*C++ based LLM inference enabling heterogeneous execution.

QFiddler[2]

*Support expert offloading and selectively reload experts.

‘ One A100 and two Intel Xeon CPUs:
* Prefill: 70.02 tokens per second
* Decode: 4.68 tokens per second
* Low GPU utilization (below 30%)

[1] Georgi Gerganov 2023. ggerganov/llama.cpp. Retrieved Feb 8, 2025 from https://github.com/ggerganov/llama.cpp
[2] Keisuke Kamahori,Yile Gu, Kan Zhu, and Baris Kasikci. 2024. Fiddler: CPU-GPU Orchestration for Fast Inference
of Mixture-of-Experts Models. arXiv:2402.07033 [cs.LG]
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Motivation

dUnderutilized CPU compute resources
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Throughput of the MoE Layers on DeepSeek-V3 using PyTorch’s AMX and AVX-512 kernels




Motivation

dUnderutilized CPU compute resources

JCPU-GPU/CPU coordination

*CPU-GPU coordination
» High kernel launch latency

Fiddler Llama.cpp

107 { o Kernel Execution Time
0 == = Average Kernel Launch Time
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; 10 Only 8% of kernels exceed
e average launch time 75% of kernels exceed
=l average launch time
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GPU kernel launch and execution time analysis of DeepSeek-V3 in A100




Motivation

dUnderutilized CPU compute resources

JCPU-GPU/CPU coordination

*CPU-GPU coordination
» High kernel launch latency

» CUDA graph fails to support CPU and GPU overlapping computation




Motivation

dUnderutilized CPU compute resources

JCPU-GPU/CPU coordination
<+ CPU-GPU coordination
+*CPU-CPU coordination

» Inefficient memory access NUMA nodes

* DeepSeek-V3 using Fiddler on a single socket: 6.9ms
* DeepSeek-V3 using Fiddler on two sockets: 5.8ms (-16%)
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Challenge

dUnderutilized CPU compute resources
“*Memory bandwidth constraints

**Thread synchronization overhead

JCPU-GPU/CPU coordination

*CPU-GPU: high overhead of kernel invocation and synchronization

*+*CPU-CPU:.: inefficient cross-socket memory access
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Design - Overview

User Interface
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MoE models
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Design - Unleashing the Full Potential of the CPU

UJAMXTiling-aware Memory Layout

Expert Weight

64 bytes submatrix

64 bytes submatrix

preprocessed

64 bytes submatrix

AMX instructions
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Design - Unleashing the Full Potential of the CPU

JAMX Tiling-aware Memory Layout
1Cache-Friendly AMX Kernels

I Input  Eyxpert Weights Threads
I Activations

m X% EE Task Scheduler / N\[\ i A




Design - Unleashing the Full Potential of the CPU

JAMX Tiling-aware Memory Layout
1Cache-Friendly AMX Kernels
Adaptive AVX-512 Kernel for Low ARI Scenarios
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Design - Unleashing the Full Potential of the CPU

JAMX Tiling-aware Memory Layout
1Cache-Friendly AMX Kernels
Adaptive AVX-512 Kernel for Low ARI Scenarios

m . - s S —— .
£ 1251 —— DS-3AMX  —&- DS-3 AVX-512 ! Pt Lower is better
= —#— DS-2 AMX  —m- DS-2 AVX-512 | - ]
O 1004 —*=_QW-2 AMX _ —e- QW-2 AVX-512 | K !
> L L T T T 1 I T T T 1 T 1| 1 1 -
— " —— — h— L —d
£ : I S 1 [Use AMX Kernels
o 7511 y p————— 7 i | I i
= : ] |
o i P! i
o 50 I I : 1
> | 1 g--m- a-—-——%
LC) 25 ::- =___:l _____ <.'_"'-F'=_—.7 === L i .:
o Lo tE——=—= LI
I N A A TR N G Sy ol
T | g e $=————e—t—foeommmnteosood
Use AVX-512 Kernkls 2 3 4 5 6 7 8

Number of Tokens Assigned to Each Expert




22
Design - Unleashing the Full Potential of the CPU

JAMX Tiling-aware Memory Layout
1Cache-Friendly AMX Kernels
Adaptive AVX-512 Kernel for Low ARI Scenarios
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Design - Unleashing the Full Potential of the CPU
JAMX Tiling-aware Memory Layout
1Cache-Friendly AMX Kernels
Adaptive AVX-512 Kernel for Low ARI Scenarios
(JFuse MoE Ops

dDynamic Task Scheduling

- — /\/ Threads
X - Task queue \/\/

tackle workload imbalance

input experts
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Design - Unleashing the Full Potential of the CPU

1Cache-Friendly AMX Kernels

Adaptive AVX-512 Kernel for Low ARI Scenarios
(JFuse MoE Ops

JAMXTiling-aware Memory Layout
Memory bandwidth constraints

- Thread synchronization overhead

dDynamic Task Scheduling | ﬂ

Better CPU resource utilization
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Design - Better CPU-CPU/GPU Coordination

JAsynchronous CPU-GPU Task Scheduling Mechanism

Attention Router Shared Experts

> /7 N\ Threads
Can’t be captured by CUDA graph ~ /'\/
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Design - Better CPU-CPU/GPU Coordination

JAsynchronous CPU-GPU Task Scheduling Mechanism

cudalaunchHostFunc Attention Router Shared Experts
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CPU submit | IS b E sync 2 b .
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Design - Better CPU-CPU/GPU Coordination

JAsynchronous CPU-GPU Task Scheduling Mechanism

LOUNUMA-aware Tensor Parallelism
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Design - Better CPU-CPU/GPU Coordination

JAsynchronous CPU-GPU Task Scheduling Mechanism

LOUNUMA-aware Tensor Parallelism
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Design - Better CPU-CPU/GPU Coordination

JAsynchronous CPU-GPU Task Scheduling Mechanism

High overhead of kernel invocation and synchronization

LOUNUMA-aware Tensor Parallelism

Inefficient cross-socket memory access

4

Better CPU-CPU/GPU coordination




Design - Expert Deferral

dHybrid CPU/GPU inference

idle idle
GPU Attn Shared | < > Attn Shared | < > Attn
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CPU a b c < .1 . b c

dHybrid CPU/GPU inference + Expert Deferral
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Design - Expert Deferral

Layer k+1 MoE
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Design - Expert Deferral
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Design - Expert Deferral

(UHow to decide the expert
deferral configuration?
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Design - Expert Deferral

D d ‘d Wait 7771 Send + Submit %71 Immediate Experts
How to ECI e the expert [Z2%21 Attention E22d Shared Experts Deferred Experts
E= Gate Sync + Receive

deferral configuration?

8 Immediate Experts + 0 Deferred Experts

i

GPU utilization: 28% GPUA

CPU utilization: 74% CPU 1 . <\7§<\>§§<\z§§§<>§3&>§§</%<

0 500 1000 1500 2000 2500
Timeline (us)

CPU GPU timelines in the MoE layer of DeepSeek V3
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Design - Expert Deferral

M Wait 771 Send + Submit 57 Immediate Experts
DHOW to deCIde the expert [Z2%21 Attention Shared Experts Deferred Experts
deferral configuration? o R
g ¢ 8 Immediate Experts + 0 Deferred Experts
G PU ':::::::::::: ﬂ": E
Heuristic ways: 6 Immediate Experts + 2 Deferred Experts
|. Achieve full CPU utilization GPU pos s § +29% Time
2. Ensure 2 immediate experts to maintain model accuracy CPUA PSRRI
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G PU _’ﬂ‘ﬂbbﬁﬂdﬂbowﬂﬂbbﬂaﬂnboﬂ T E l 26“{’& Time
Get the best number of experts. <: CPU - NWWi

T
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Implementation - Flexible Module Injection

[ [ ]
Build on HuggingFace Transformer: [ ...
2 class: modeling_deepseek_v3.DeepseekV3MoE
& ° ° ° o ° 3 replace:
”‘nghtwelght InjeCtlon framework 4 class: operators.experts.FusedMoE
5 device: "cpu"
» Use aYAML file to drive the substitution 6 kwargs :
7 backend: "hybrid_AMX_AVX512"
° 8 data_type: "Int4"
’:’EXPOSE pYbII"IC“ I tO expose CPU k&l"hElS 9 n_deferred_experts: 6
10
11 | - match:
12 name: "*model\\.layers\\..x\\.self_attn$"
13 replace:
14 class: operators.attention.FlashInferMLA
15 device: "cuda:Q"
16
17 | - match:
18 name: "*(?!1lm_head$).x"
19 class: torch.nn.Linear
20 replace:
21 class: operators.linear.MarlinlLinear
22 device: "cuda:0"
23 kwargs:
24 data_type: "Int4"

Example configuration for adapting DeepSeek-V3
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Summary

HuggingFace Transformers

|
|
|
GPU Attn Shared ! AMX,
I Models = | KTransformers | <3 Flashinfer,
| Marlin
CPU '
2 b < : Heterogeneous Hardware
Hybrid CPU/GPU inference Background | 1 | Framework
|
____________________________ [ . o o
|
Motivation | | Design
! 2z
— Underutilized CPU compute resources Unleashing the Full Potential of the CPU ~

* Memory bandwidth constraints
* Thread synchronization overhead

* Cache-Friendly AMX kernels, Adaptive AVX-512 kernel
* Fuse MoE ops, Dynamic task scheduling

Better CPU-CPU/GPU Coordination

* CUDA Graph friendly kernel launch
* NUMA-aware tensor parallelism

CPU-GPU/CPU coordination

* CPU-GPU: high overhead of kernel invocation and
synchronization
* CPU-CPU: inefficient cross-socket memory access

Expert Deferral




Evaluation - Setup

JHardware DDR5 | TB DDR5 | TB
. 220 GB/s
«CPU: 125 GB/s
Intel Xeon Intel Xeon
8452Y 36cores 8452Y 36cores

“+*GPU:a NVIDIA A100,a RTX 4080, Pcie 4.0

dModels:
*DeepSeek-V3-0324, DeepSeek V2.5-1210, Qwen2-57B-A14B

dDatasets:
*HumanEval, MBPP, GSM8K, StrategyQA, LiveBench

Baselines:
“*Fiddler, Llama.cpp
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Evaluation - End2End Performance

Fiddler Llama.cpp B KTransformers
DS-3 BF16/FP16
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DS-3 Int4
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Ll
o
o
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Comparison of prefilling speed between KTransformers and the state-of-the-art baselines
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Evaluation - End2End Performance

Fiddler Llama.cpp B KTransformers

DS-3 BF16/FP16

|. Llama.cpp outperform Fiddler (short prompt): superior fusion ops

2. Fiddler outperform Llama.cpp (long prompt): better utilization of
AMX instructions

3. KTransformers is better: optimized CPU kernels and improved
coordination between CPU and GPU

Prefilling Speed (Tokens/s)

DS-3 Int4

500 A

400 1

300 A

Prefilling Speed (Tokens/s)

32 64 128 256 512 1024 2048 4096 8192
Prompt Length (Tokens)

Comparison of prefilling speed between KTransformer and the state-of-the-art baselines
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Evaluation —= End2End Performance

Fiddler Llama.cpp B KTransformers

- DS-3 BF16/FP16 DS-2 BF16/FP16 QW-2 BF16/FP16
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Comparison of prefilling speed between KTransformers and the state-of-the-art baselines
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Evaluation —= End2End Performance

Fiddler XX Klransformers
Llama.cop B KTransformers + Expert Deferral

BF16/FP16 Models Quantized Models

Optimized CPU kernels and advance
utilization of CUDA Graph
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Comparison of decoding speed between KTransformers and the state-of-the-art baselines
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Evaluation —= End2End Performance

Fiddler XX Klransformers
Llama.cop B KTransformers + Expert Deferral

BF16/FP16 Models Quantized Models

Better overlapping of CPU and GPU
computations

40 -

Decoding Speed (Tokens/s)

Decoding Speed (Tokens/s)
=
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8 7% 10 1
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Comparison of decoding speed between KTransformers and the state-of-the-art baselines




Evaluation - Expert Deferral
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Evaluation - Expert Deferral
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Evaluation - Breakdown

+v:AVX-512 instructions
+m:AMX instructions
+d: dynamic work scheduling

+n: NUMA-aware tensor parallelism
+c: CUDA Graph

1 Base (Fiddler) B +m Il +tm+d+n
0 +v B +m-+d Hl +m+d+n+c

Normalized Prefilling Speed
o B N W A~ UO

Normalized Decoding Speed
N
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Breakdown of prefill phase

[1 Base (Fiddler) B +m B +v+d+n
3 +v B +v+d B +v+d+n+c

F=Y

w

-

o

DS-3 DS-2 QW-2

Breakdown of decode phase
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Evaluation - Breakdown

1 Base (Fiddler) B +m Il +tm+d+n
|. AMX better in prefill: prefill is computation heavy. s RV B +m+d BN +m+d+n-c

2. Dynamic work scheduling is more efficient in
prefill: decode is more load balanced.

3. NUMA-aware is efficient in decode phases:
decode is more memory bound.

4. CUDA Graph is efficient in decode: in prefill
phase, the overhead of CUDA launch is amortized
into a large number of tokens.

Normalized Prefilling Speed
o B N W A~ U O

DS-3 DS-2 Qw-2

Breakdown of prefill phase

+v:AVX-512 instructions [ Base (Fiddler) HEE +m  EEE +v+d+n
+m: AMX instructions 5  +v Bl +v+d B +v+d+n+c
+d: dynamic work scheduling 84
+n: NUMA-aware tensor parallelism 23] 4

o
+c: CUDA Graph S
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Conclusion

UKTransformers, a system that enables efficient local
inference for large MoE models on hybrid CPU/GPU
platforms.

*Optimize CPU ops by combining AMX-optimized kernels for better
utilization of CPU.

“*Use CPU-GPU asynchronous scheduling and NUMA-aware TP for
better CPU-CPU/GPU coordination.

*Use the Expert Deferral strategy to maximize the utilization of
hardware.
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