
KTransformers: Unleashing the Full Potential of

CPU/GPU Hybrid Inference for MoE Models

2

❑Background

❑Motivation

❑Challenge

❑Design

❑Evaluation

❑Conclusion

Outline

3

❑MoE model is everywhere in modern LLM

❖Qwen3, DeepSeekV3/R1

Background

Norm

Attention

+

Norm

Router

Shared a b c d e

+

+

x N Layers

4

❑MoE model is everywhere in modern LLM

❑Memory becomes bottleneck

Background

Norm

Attention

+

Norm

Router

Shared a b c d e

+

+

x N Layers

Attention: ~5B

Norm, Linear & Shared: ~12B

Routed Experts: ~654B

For DeepSeekV3 MoE 671B

How to deal with memory bottleneck with

constrained GPU memory?

5

❑MoE model is everywhere in modern LLM

❑Memory becomes bottleneck

❑Hybrid CPU/GPU inference

Background

Norm

Attention

+

Norm

Router

Shared a b c d e

+

+

x N Layers

Attention: ~5B

Norm, Linear & Shared: ~17B

Routed Experts: ~654B

For DeepSeekV3 MoE 671B

GPU

CPU

6

❑MoE model is everywhere in modern LLM

❑Memory becomes bottleneck

❑Hybrid CPU/GPU inference

Background

Norm

Attention

+

Norm

Router

Shared a b c d e

+

+

x N Layers

Attention: ~5B

Norm, Linear & Shared: ~17B

Routed Experts: ~654B

For DeepSeekV3 MoE 671B

GPU

CPU

PCIe: 32 GB/s

Mem: 440 GB/s

Compute in GPU

Compute in CPU

7

❑GPU only

❑Hybrid CPU/GPU inference

Background

Attn Shared a b c

Attention Router Shared Experts

Attn Shared a b c AttnGPU

Attn Shared Attn Shared Attn

CPU

GPU

a b c a b c

8

❑Llama.cpp[1]

❖C++ based LLM inference enabling heterogeneous execution.

❑Fiddler[2]

❖Support expert offloading and selectively reload experts.

Recent Work

[1] Georgi Gerganov 2023. ggerganov/llama.cpp. Retrieved Feb 8, 2025 from https://github.com/ggerganov/llama.cpp

[2] Keisuke Kamahori, Yile Gu, Kan Zhu, and Baris Kasikci. 2024. Fiddler: CPU-GPU Orchestration for Fast Inference

of Mixture-of-Experts Models. arXiv:2402.07033 [cs.LG]

One A100 and two Intel Xeon CPUs:

• Prefill: 70.02 tokens per second

• Decode: 4.68 tokens per second

• Low GPU utilization (below 30%)

https://github.com/ggerganov/llama.cpp

9

❑Background

❑Motivation

❑Challenge

❑Design

❑Evaluation

❑Conclusion

Outline

10

Motivation

❑Underutilized CPU compute resources

Number of Tokens Assigned to Each Expert

T
h
ro

u
gh

p
u
t

(T
F
L
O

P
S)

Throughput of the MoE Layers on DeepSeek-V3 using PyTorch’s AMX and AVX-512 kernels

5.4 TFLOPS (7%)

73.7 TFLOPS

Reasons:

- Memory bandwidth

- Thread Sync

11

❑Underutilized CPU compute resources

❑CPU-GPU/CPU coordination

❖CPU-GPU coordination

➢High kernel launch latency

Motivation

GPU kernel launch and execution time analysis of DeepSeek-V3 in A100

12

❑Underutilized CPU compute resources

❑CPU-GPU/CPU coordination

❖CPU-GPU coordination

➢High kernel launch latency

➢CUDA graph fails to support CPU and GPU overlapping computation

Motivation

13

❑Underutilized CPU compute resources

❑CPU-GPU/CPU coordination

❖CPU-GPU coordination

❖CPU-CPU coordination

➢ Inefficient memory access NUMA nodes

• DeepSeek-V3 using Fiddler on a single socket: 6.9ms

• DeepSeek-V3 using Fiddler on two sockets: 5.8ms (-16%)

Motivation

14

❑Background

❑Motivation

❑Challenge

❑Design

❑Evaluation

❑Conclusion

Outline

15

❑Underutilized CPU compute resources

❖Memory bandwidth constraints

❖Thread synchronization overhead

❑CPU-GPU/CPU coordination

❖CPU-GPU: high overhead of kernel invocation and synchronization

❖CPU-CPU: inefficient cross-socket memory access

Challenge

16

❑Background

❑Motivation

❑Challenge

❑Design

❑Evaluation

❑Conclusion

Outline

17

Design - Overview

KTransformers

MoE models

DeepSeek

Qwen

Llama

Mixtral

Kimi
Heterogeneous Hardware

Intel Xeon

CPUs

Nvidia

A100

Nvidia

RTX 4080

User Interface

HuggingFace Transformers

…
…

Unleashing the

Full Potential

of the CPU

Better CPU-

CPU/GPU

coordination

CPU

GEMM->AMX/AVX

Attn->FlashInfer

Quantization->Marlin

GPU

18

❑AMX Tiling-aware Memory Layout

Design - Unleashing the Full Potential of the CPU

64 bytes submatrix

64 bytes submatrix

64 bytes submatrix

…
Expert Weight AMX instructions

preprocessed

19

❑AMX Tiling-aware Memory Layout

❑Cache-Friendly AMX Kernels

Design - Unleashing the Full Potential of the CPU

20

❑AMX Tiling-aware Memory Layout

❑Cache-Friendly AMX Kernels

❑Adaptive AVX-512 Kernel for Low ARI Scenarios

Lower is better

Design - Unleashing the Full Potential of the CPU

21

❑AMX Tiling-aware Memory Layout

❑Cache-Friendly AMX Kernels

❑Adaptive AVX-512 Kernel for Low ARI Scenarios

Design - Unleashing the Full Potential of the CPU

Lower is better

Use AVX-512 Kernels

Use AMX Kernels

22

❑AMX Tiling-aware Memory Layout

❑Cache-Friendly AMX Kernels

❑Adaptive AVX-512 Kernel for Low ARI Scenarios

❑Fuse MoE Ops

Design - Unleashing the Full Potential of the CPU

Input

Gate

Up

Act Inter. Down Output

Input

Up

Gate

Act Inter. Down OutputExpert 0

Expert 1

2. Combine gate and up projections where no dependencies.

1. Merge gate projections, up and down across experts.

23

❑AMX Tiling-aware Memory Layout

❑Cache-Friendly AMX Kernels

❑Adaptive AVX-512 Kernel for Low ARI Scenarios

❑Fuse MoE Ops

❑Dynamic Task Scheduling

Design - Unleashing the Full Potential of the CPU

x

x

… Threads

input experts

Task queue

tackle workload imbalance

24

❑AMX Tiling-aware Memory Layout

❑Cache-Friendly AMX Kernels

❑Adaptive AVX-512 Kernel for Low ARI Scenarios

❑Fuse MoE Ops

❑Dynamic Task Scheduling

Design - Unleashing the Full Potential of the CPU

Memory bandwidth constraints

Thread synchronization overhead

Better CPU resource utilization

25

❑Asynchronous CPU-GPU Task Scheduling Mechanism

Design - Better CPU-CPU/GPU Coordination

Attn Shared Attn

CPU

GPU

a b c

Threads
Can’t be captured by CUDA graph

submit sync

Attention Router Shared Experts

Shared Attn

a b c

26

❑Asynchronous CPU-GPU Task Scheduling Mechanism

Design - Better CPU-CPU/GPU Coordination

Attn Shared Attn Shared Attn

CPU

GPU

a b c

Threads

submit sync

cudaLaunchHostFunc Attention Router Shared Experts

a b c

27

❑Asynchronous CPU-GPU Task Scheduling Mechanism

❑NUMA-aware Tensor Parallelism

Design - Better CPU-CPU/GPU Coordination

Node 0

a e

b f

c g

d h

Node 1

a e

b f

c g

d h

Local Weights/States

Remote Weights/States

Input

Up

Gate

Act Inter. Down Output

Expert parallel is inefficient when imbalance.

28

❑Asynchronous CPU-GPU Task Scheduling Mechanism

❑NUMA-aware Tensor Parallelism

Design - Better CPU-CPU/GPU Coordination

Node 0 Node 1

Local Weights/States

Remote Weights/States

Input Act Output

Tensor parallel can balance the work.

Input Executed by Node 0 Output

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

Up

Gate

Inter.

Down

Copy Reduce

29

❑Asynchronous CPU-GPU Task Scheduling Mechanism

❑NUMA-aware Tensor Parallelism

Design - Better CPU-CPU/GPU Coordination

High overhead of kernel invocation and synchronization

Inefficient cross-socket memory access

Better CPU-CPU/GPU coordination

30

❑Hybrid CPU/GPU inference

❑Hybrid CPU/GPU inference + Expert Deferral

Design – Expert Deferral

Attn Shared Attn Shared Attn

CPU

GPU

a b c a b c

idle idle

idle

0.Attn 0.Shared 1.Attn 1.Shared 2.Attn

CPU

GPU

0.a 0.b 0.c 1.a 1.b 1.c

31

Design – Expert Deferral

Norm

Router

Shared a

+

Norm

Attention

+

b c d e

Norm

Router

Shared a

+

+

b c d e

Layer k MoE

Layer k+1 Attention

Layer k+1 MoE

Workflow

32

Design – Expert Deferral

Norm

Router

Shared a

+

Norm

Attention

+

b c d e

Norm

Router

Shared a

+

+

b c d e

Layer k MoE

Layer k+1 Attention

Layer k+1 MoE

Norm

Router

Shared a

+

Norm

Attention

+

b c d e

Norm

Router

Shared a

+

+

b c d e

Layer k MoE

Layer k+1 Attention

Layer k+1 MoE

+

+

Workflow

a Immediate experts

c deferred experts

33

❑How to decide the expert

deferral configuration?

Design – Expert Deferral

34

❑How to decide the expert

deferral configuration?

Design – Expert Deferral

GPU utilization: 28%

CPU utilization: 74%

CPU GPU timelines in the MoE layer of DeepSeek V3

35

❑How to decide the expert

deferral configuration?

Design – Expert Deferral

Get the best number of experts.

Heuristic ways:

1. Achieve full CPU utilization

2. Ensure 2 immediate experts to maintain model accuracy

CPU GPU timelines in the MoE layer of DeepSeek V3

36

❑Build on HuggingFaceTransformer:

❖Lightweight injection framework

➢Use a YAML file to drive the substitution

❖Expose pybind11 to expose CPU kernels

Implementation – Flexible Module Injection

Example configuration for adapting DeepSeek-V3

37

❑Background

❑Motivation

❑Challenge

❑Design

❑Evaluation

❑Conclusion

Outline

38

Summary

Attn Shared

CPU

GPU

a b c

Underutilized CPU compute resources

CPU-GPU/CPU coordination

Background

Motivation Design

Framework

• Memory bandwidth constraints

• Thread synchronization overhead

• CPU-GPU: high overhead of kernel invocation and

synchronization

• CPU-CPU: inefficient cross-socket memory access

Unleashing the Full Potential of the CPU

• Cache-Friendly AMX kernels, Adaptive AVX-512 kernel

• Fuse MoE ops, Dynamic task scheduling

Better CPU-CPU/GPU Coordination

• CUDA Graph friendly kernel launch

• NUMA-aware tensor parallelism

Expert Deferral

HuggingFace Transformers

KTransformersModels

Heterogeneous Hardware

AMX,

FlashInfer,

Marlin

Hybrid CPU/GPU inference

39

❑Hardware

❖CPU:

❖GPU: a NVIDIA A100, a RTX 4080, Pcie 4.0

❑Models:

❖DeepSeek-V3-0324, DeepSeek V2.5-1210, Qwen2-57B-A14B

❑Datasets:

❖HumanEval, MBPP, GSM8K, StrategyQA, LiveBench

❑Baselines:

❖Fiddler, Llama.cpp

Evaluation - Setup

Intel Xeon

8452Y 36cores

DDR5 1 TB

Intel Xeon

8452Y 36cores

DDR5 1 TB

125 GB/s
220 GB/s

40

Evaluation – End2End Performance

Comparison of prefilling speed between KTransformers and the state-of-the-art baselines

41

Evaluation – End2End Performance

Comparison of prefilling speed between KTransformer and the state-of-the-art baselines

1. Llama.cpp outperform Fiddler (short prompt): superior fusion ops

2. Fiddler outperform Llama.cpp (long prompt): better utilization of

AMX instructions

3. KTransformers is better: optimized CPU kernels and improved

coordination between CPU and GPU

1

2

3

42

Evaluation – End2End Performance

Comparison of prefilling speed between KTransformers and the state-of-the-art baselines

43

Evaluation – End2End Performance

Comparison of decoding speed between KTransformers and the state-of-the-art baselines

Optimized CPU kernels and advanced

utilization of CUDA Graph

44

Evaluation – End2End Performance

Comparison of decoding speed between KTransformers and the state-of-the-art baselines

Better overlapping of CPU and GPU

computations

45

Evaluation – Expert Deferral

DeepSeek-V3 accuracy on LiveBench under Expert Deferral

KTransformers keeps good accuracy

with the number of deferred experts

less than 6.

46

Evaluation – Expert Deferral

DeepSeek-V3 accuracy on LiveBench under Expert Deferral KTransformers keeps good accuracy

with Expert Deferral compared to

with Expert Skipping.

DeepSeek-V3 accuracy on LiveBench under Expert Skipping

47

Evaluation - Breakdown

Breakdown of prefill phase

+v: AVX-512 instructions

+m: AMX instructions

+d: dynamic work scheduling

+n: NUMA-aware tensor parallelism

+c: CUDA Graph

Breakdown of decode phase

48

Evaluation - Breakdown

Breakdown of prefill phase

+v: AVX-512 instructions

+m: AMX instructions

+d: dynamic work scheduling

+n: NUMA-aware tensor parallelism

+c: CUDA Graph

Breakdown of decode phase

1. AMX better in prefill: prefill is computation heavy.

2. Dynamic work scheduling is more efficient in

prefill: decode is more load balanced.

3. NUMA-aware is efficient in decode phases:

decode is more memory bound.

4. CUDA Graph is efficient in decode: in prefill

phase, the overhead of CUDA launch is amortized

into a large number of tokens.

1

2

3

4

49

❑Background

❑Motivation

❑Challenge

❑Design

❑Evaluation

❑Conclusion

Outline

50

❑KTransformers, a system that enables efficient local

inference for large MoE models on hybrid CPU/GPU

platforms.

❖Optimize CPU ops by combining AMX-optimized kernels for better

utilization of CPU.

❖Use CPU-GPU asynchronous scheduling and NUMA-aware TP for

better CPU-CPU/GPU coordination.

❖Use the Expert Deferral strategy to maximize the utilization of

hardware.

Conclusion

Thanks

	默认节
	幻灯片 1
	幻灯片 2: Outline
	幻灯片 3: Background
	幻灯片 4: Background
	幻灯片 5: Background
	幻灯片 6: Background
	幻灯片 7: Background
	幻灯片 8: Recent Work
	幻灯片 9: Outline
	幻灯片 10: Motivation
	幻灯片 11: Motivation
	幻灯片 12: Motivation
	幻灯片 13: Motivation
	幻灯片 14: Outline
	幻灯片 15: Challenge
	幻灯片 16: Outline
	幻灯片 17: Design - Overview
	幻灯片 18: Design - Unleashing the Full Potential of the CPU
	幻灯片 19: Design - Unleashing the Full Potential of the CPU
	幻灯片 20: Design - Unleashing the Full Potential of the CPU
	幻灯片 21: Design - Unleashing the Full Potential of the CPU
	幻灯片 22: Design - Unleashing the Full Potential of the CPU
	幻灯片 23: Design - Unleashing the Full Potential of the CPU
	幻灯片 24: Design - Unleashing the Full Potential of the CPU
	幻灯片 25: Design - Better CPU-CPU/GPU Coordination
	幻灯片 26: Design - Better CPU-CPU/GPU Coordination
	幻灯片 27: Design - Better CPU-CPU/GPU Coordination
	幻灯片 28: Design - Better CPU-CPU/GPU Coordination
	幻灯片 29: Design - Better CPU-CPU/GPU Coordination
	幻灯片 30: Design – Expert Deferral
	幻灯片 31: Design – Expert Deferral
	幻灯片 32: Design – Expert Deferral
	幻灯片 33: Design – Expert Deferral
	幻灯片 34: Design – Expert Deferral
	幻灯片 35: Design – Expert Deferral
	幻灯片 36: Implementation – Flexible Module Injection
	幻灯片 37: Outline
	幻灯片 38: Summary
	幻灯片 39: Evaluation - Setup
	幻灯片 40: Evaluation – End2End Performance
	幻灯片 41: Evaluation – End2End Performance
	幻灯片 42: Evaluation – End2End Performance
	幻灯片 43: Evaluation – End2End Performance
	幻灯片 44: Evaluation – End2End Performance
	幻灯片 45: Evaluation – Expert Deferral
	幻灯片 46: Evaluation – Expert Deferral
	幻灯片 47: Evaluation - Breakdown
	幻灯片 48: Evaluation - Breakdown
	幻灯片 49: Outline
	幻灯片 50: Conclusion
	幻灯片 51

