HydraServe: Minimizing Cold Start Latency for Serverless LLM Serving in Public Clouds

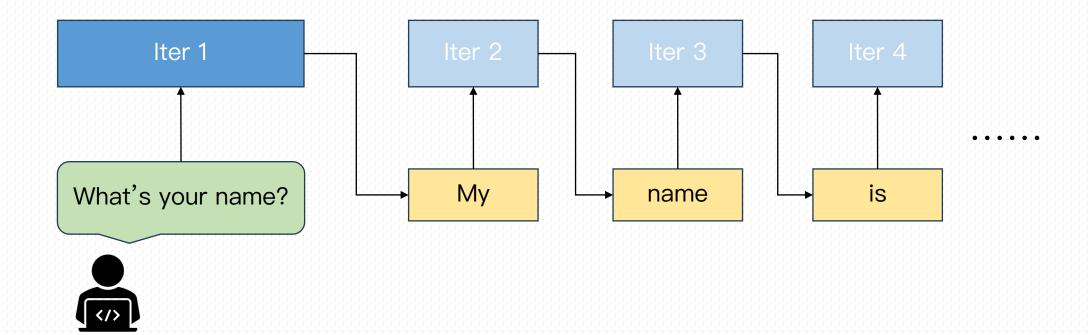
Authors: Chiheng Lou, Sheng Qi, Chao Jin, Dapeng Nie, Haoran Yang,

Yu Ding, Xuanzhe Liu, Xin Jin

Presented by Jiyang Wang

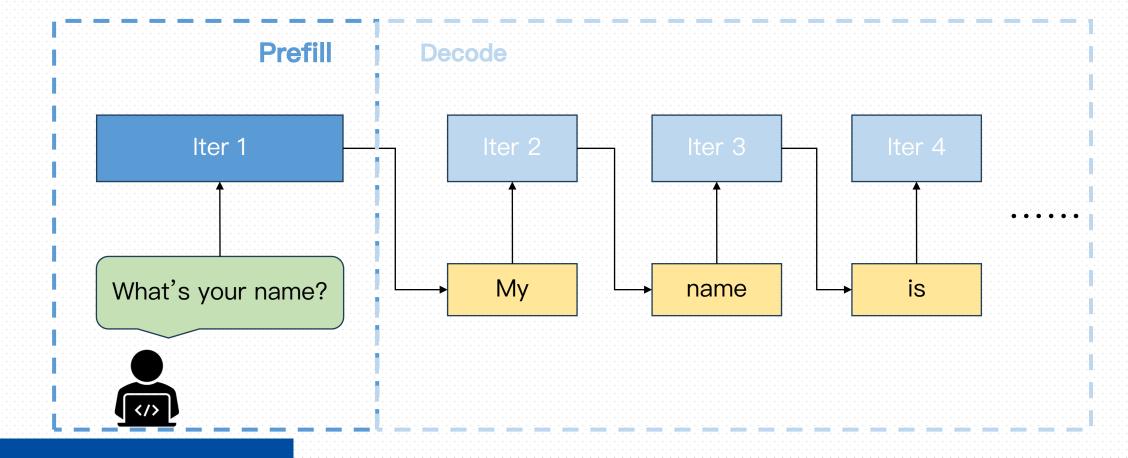
Background: LLM Inference

□Autoregressive manner



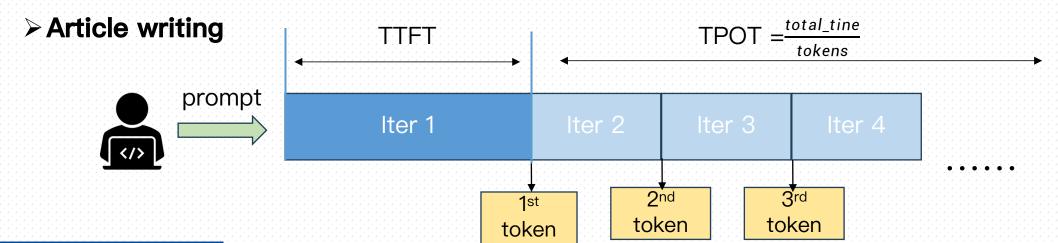
Background: LLM Inference

- □ Autoregressive manner
- □Prefill & decode



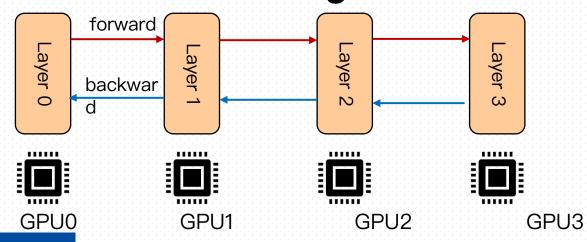
Background: LLM Inference

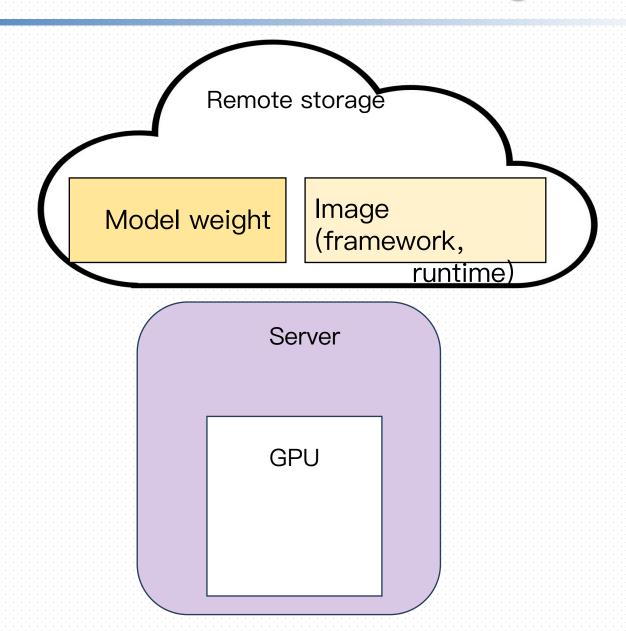
- □ Autoregressive manner
- □Prefill & decode
- ☐Service level objectives (SLOs)
 - ❖Time to first token (TTFT)
 - > Real-time chatbot
 - ❖Time per output token (TPOT)

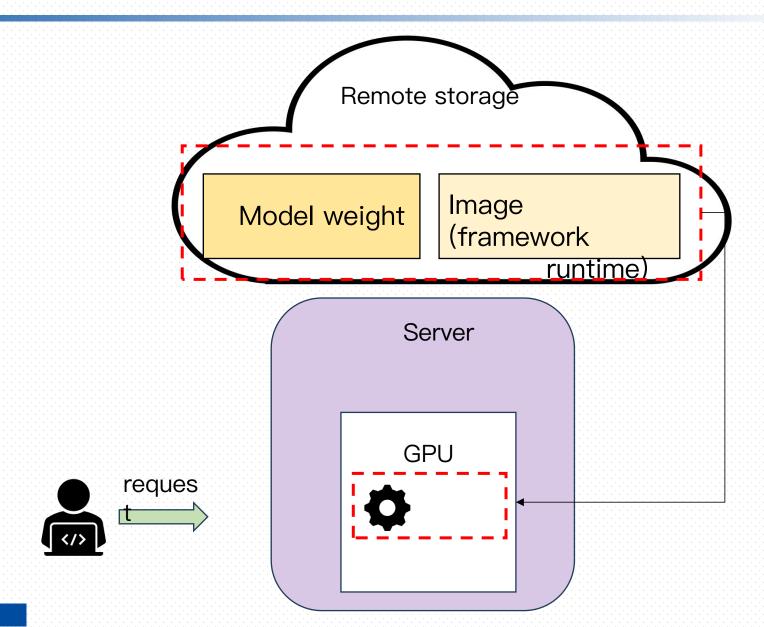


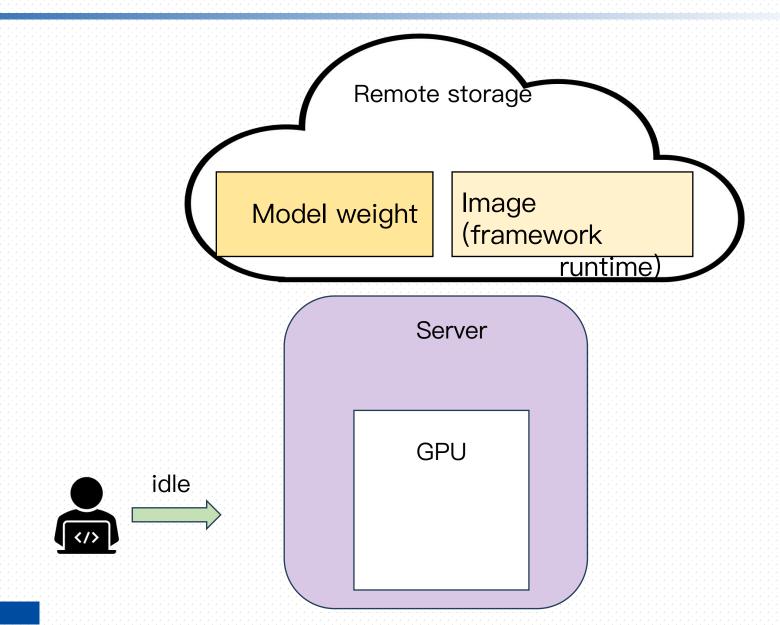
Background: LLM

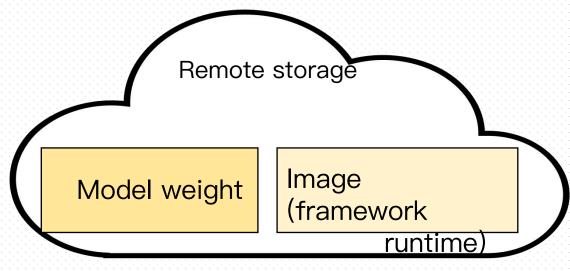
- □ Autoregressive manner
- □Prefill & decode
- ☐ Service level objectives (SLOs)
 - ❖Time to first token (TTFT)
 - ❖Time per output token (TPOT)
- □Pipeline parallelism in training











·

For user: Pay-per-use billing

For production: long-tail models

Server

■Network bandwidth constraints

❖Sharing among multiple instances

- **■Network bandwidth constraints**
 - **❖Sharing among multiple instances**
 - **Cost-efficiency requirement**

User — GPU capabilities is important

Prioritize cost saving

Provider Minimize cost per GPU

Cost of AWS EC2 instance (L40S

U(\$/h)
51
208 ~120
124 %
356
719 ~400
316 %
540
540
208 424 356 719 316 540

- **■Network bandwidth constraints**
 - **❖Sharing among multiple instances**
 - **Cost-efficiency requirement**

GPU capabilities is important

User—

Prioritize cost saving

Provider Minimize cost per GPU

Cost of AWS EC2 instance (L40S

Instance	MGP(GB)	Band.(Gbps)	#GPU	Cost(\$/h)	Cost/GPU(\$/h)	
g6e.xlarge	32	up to 20	1	1.861	1.861	
g6e.2xlarge	64	up to 20	1	2.24208	2.24208	~120
g6e.4xlarge	128	20	1	3.00424	3.00424	%
g6e.8xlarge	256	25	1	4.52856	4.52856	
g6e.16xlarge	512	35	1	7.57719	7.57719	~400
g6e.12xlarge	384	100	4	10.49264	2.62316	%
g6e.24xlarge	768	200	4	15.06559	3.76640	, ,
g6e.48xlarge	1536	400	8	30.13118	3.76640	

Cold start latency is long

Reduce CPU, memory and network resources

- **■Network bandwidth constraints**
 - **❖Sharing among multiple instances**
 - **Cost-efficiency requirement**

User — GPU capabilities is important

Prioritize cost saving

Provider Minimize cost per GPU

Cost of AWS EC2 instance (L40S

(-100							
Instance	MGAP(GB)	Band.(Gbps)	#GPU	Cost(\$/h)	Cost/GPU(\$/h)		
g6e.xlarge	32	up to 20	1	1.861	1.861		
g6e.2xlarge	64	up to 20	1	2.24208	2.24208	~120	
g6e.4xlarge	128	20	1	3.00424	3.00424	%	
g6e.8xlarge	256	25	1	4.52856	4.52856	, ,	
g6e.16xlarge	512	35	1	7.57719	7.57719	~400	
g6e.12xlarge	384	100	4	10.49264	2.62316	%	
g6e.24xlarge	768	200	4	15.06559	3.76640	10	
g6e.48xlarge	1536	400	8	30.13118	3.76640		

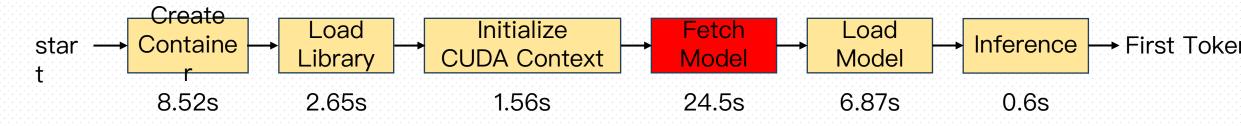
Cold start latency is long

Reduce CPU, memory and network resources

Trade-off between cold start latency & cost

- **■Network bandwidth constraints**
- □Breakdown of cold starts

Llama2-7B on A10 GPU using vLLM



- **❖ Model fetching :** From remote storage to local memory
- ❖ Model loading: Transfer weights to GPU; CUDA graph & KV cache init

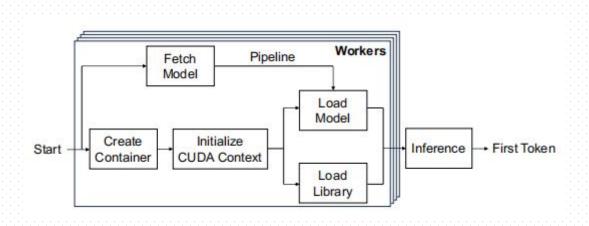
☐ Model fetching can be parallelism

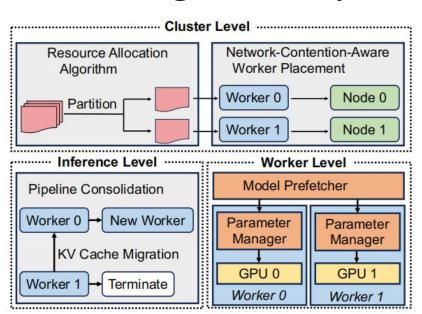
Each worker only host a part of model

- ☐ Model fetching can be parallelism
 - **Each** worker only host a part of model
- Model loading and library loading use different resource
 - **❖**The two phases can be parallelism

- ☐ Model fetching can be parallelism
 - **Each** worker only host a part of model
- Model loading and library loading use different resource
 - **❖**The two phases can be parallelism
- Model fetching and loading can be pipelined
 - **❖**At tensor granularity to hide overhead

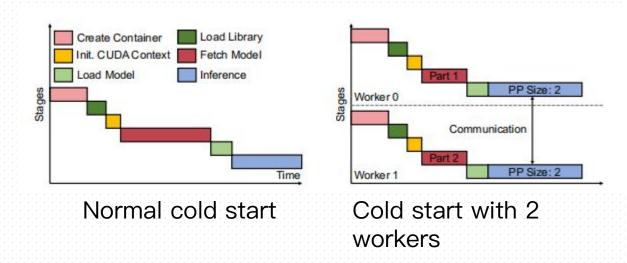
- ☐ Model fetching can be parallelism in different worker
- □Parallel Model loading and library loading inside same worker
- ☐ Model fetching and loading pipelined at tensor granularity





□Cluster-level overall design

- Multiple workers on different servers
- ❖Each worker fetches a part of model
- Workers exchange intermediate results during inference

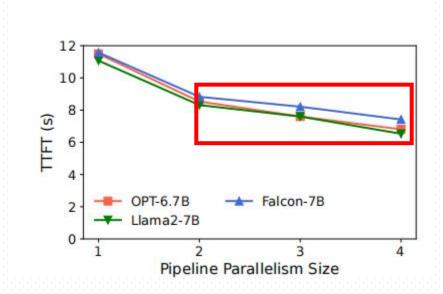


□Trade-off analysis

Setup: 4 servers (A10, 188GB memory, 16 Gbps network bandwidth)

Larger parallelism sizes reduce model fetching time

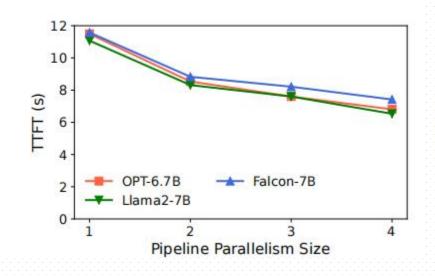
> Other stage also matters

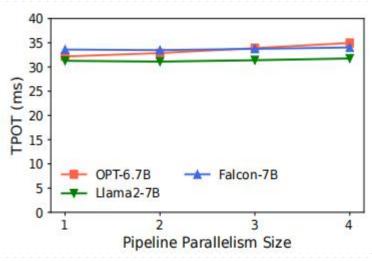


□Trade-off analysis

Setup: 4 servers (A10, 188GB memory, 16 Gbps network bandwidth)

- Larger parallelism sizes reduce model fetching time
- ❖Pipeline parallelism has a modest impact on TPOT
 - > 8 KB of inter-layer results per token in Llama2-7B



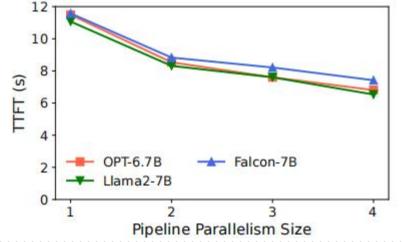


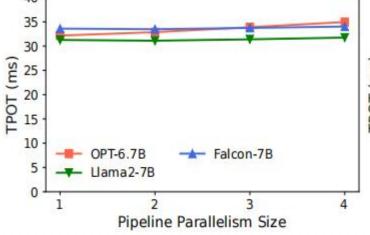
□Trade-off analysis

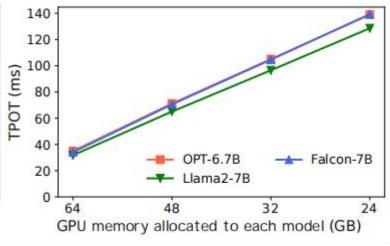
Setup: 4 servers (A10, 188GB memory, 16 Gbps network bandwidth)

- Larger parallelism sizes reduce model fetching time
- ❖Pipeline parallelism has a modest impact on TPOT
- Worker colocation leads to longer TPOT

pipeline parallelism size = 4 $\begin{array}{c}
40 \\
35 \\
30
\end{array}$





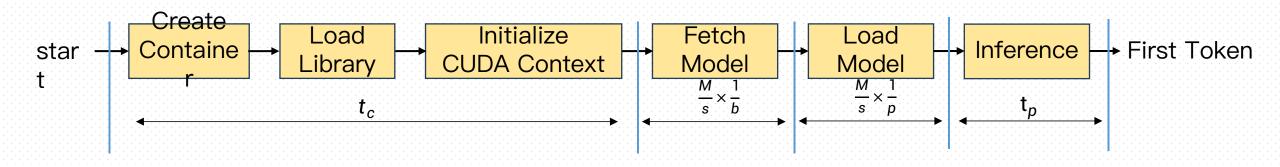


- **❖Target**
 - ➤ Satisfy TTFT & TPOT
 - > Minimum GPU sharing
- ❖Search space
 - ➤ Pipeline parallelism size (s)
 - When s > 4, yield little improvement

- **⇔**Target
 - ➤ Satisfy TTFT & TPOT
 - > Minimum GPU sharing
- ❖Search space
 - \triangleright Pipeline parallelism size (1 \le s \le 4)
 - > GPU memory to each worker
 - The same as non-parallelized (M)
 - The minimal memory required $(\frac{M}{s})$

- **❖Target**
 - ➤ Satisfy TTFT & TPOT
 - > Minimum GPU sharing
- ❖Search space
 - \triangleright Pipeline parallelism size (1 \le s \le 4)
 - > GPU memory to each worker
 - The same as non-parallelized (M)
 - The minimal memory required $\binom{M}{s}$
 - ➤ Number of full-memory workers (w)

- ❖Search space
 - ➤ Pipeline parallelism size (s)
 - > Number of full-memory workers (w)
- **❖TTFT** estimates
 - >1 worker



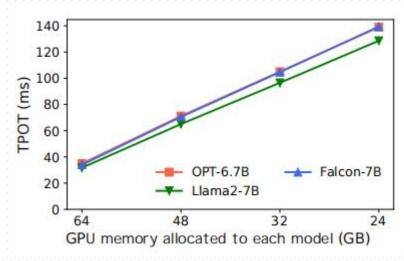
□Algorithm design

- ❖Search space
 - ➤ Pipeline parallelism size (s)
 - > Number of full-memory workers (w)

❖TTFT estimates

- >1 worker
- > Inference time for each s workers
 - Data transmission: t_n
 - Prefill
 - ✓ Full-memory workers : $t_p \times \frac{1}{s}$
 - ✓ Low-memory workers : t_p

pipeline parallelism size = 4



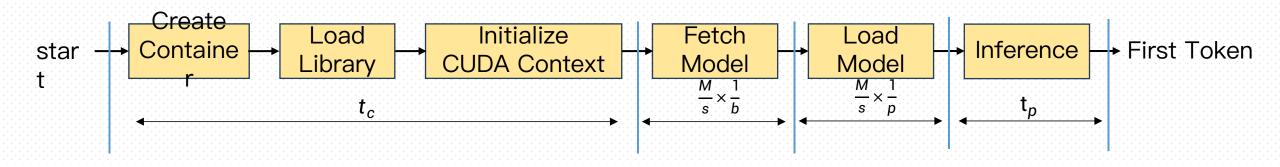
□Algorithm design

- ❖Search space
 - > Pipeline parallelism size (s)
 - > Number of full-memory workers (w)
- **❖TTFT** estimates
 - >1 worker
 - > Inference time for each s workers
 - Data transmission: t_n
 - Prefill
 - ✓ Full-memory workers : $t_p \times \frac{1}{s}$
 - ✓ Low-memory workers : t_p

Total inference time is:

$$t_p \times \left(s - w + \frac{w}{s}\right) + t_n \times s$$

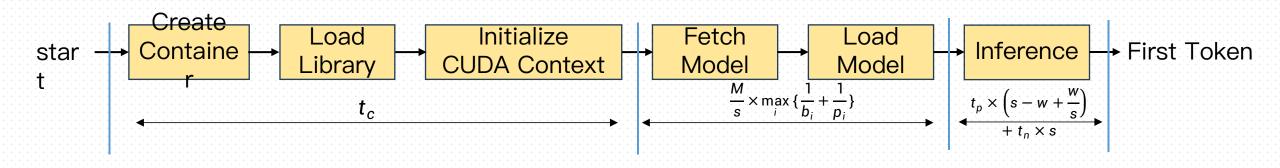
- ❖Search space
 - ➤ Pipeline parallelism size (s)
 - > Number of full-memory workers (w)
- **❖TTFT** estimates
 - >1 worker



□Algorithm design

- ❖Search space
 - ➤ Pipeline parallelism size (s)
 - > Number of full-memory workers (w)
- **❖TTFT** estimates

>s workers



- ❖Search space
 - ➢ Pipeline parallelism size (s)
 - > Number of full-memory workers (w)
- **❖TTFT** estimates

$$t_c + \frac{M}{s} \times \max_i \left\{ \frac{1}{b_i} + \frac{1}{p_i} \right\} + t_p \times \left(s - w + \frac{w}{s} \right) + t_n \times s$$

□Algorithm design

- ❖Search space
 - ➤ Pipeline parallelism size (s)
 - > Number of full-memory workers (w)
- **❖TTFT** estimates

$$t_c + \frac{M}{s} \times \max_i \left\{ \frac{1}{b_i} + \frac{1}{p_i} \right\} + t_p \times \left(s - w + \frac{w}{s} \right) + t_n \times s$$

❖TPOT estimates

$$t_d \times \left(s - w + \frac{w}{s}\right) + t_n \times s$$

□Algorithm design

- **❖Search space**
 - > Pipeline parallelism size (s)
 - > Number of full-memory workers (w)
- **❖TTFT** estimates
- ***TPOT** estimates
- ***Server selection**
 - > Priority smallest $\max_{i} \{ \frac{1}{b_i} + \frac{1}{p_i} \}$

Algorithm 1 Resource Allocation Algorithm

Input: time cost of container creation and runtime initialization t_c , data transmission t_n , prefill t_p , and decoding t_d ; model size M; GPU server network bandwidth b_i and PCIe bandwidth p_i ; user specified requirements SLO_{TTFT} and SLO_{TPOT}. **Output:** pipeline parallelism size s, #full-memory workers w, and selected GPU servers g.

$$S \leftarrow \emptyset$$

$$\mathbf{for} \ s \in \{1, 2, \cdots, 4\} \ \mathbf{do}$$

$$\mathbf{for} \ w \in \{0, 1, \cdots, s\} \ \mathbf{do}$$

$$i_1, i_2, \cdots, i_k \leftarrow \text{Servers that fit a model of size } M.$$

$$j_1, j_2, \cdots, j_l \leftarrow \text{Servers that fit a model of size } M/s.$$

$$j'_1, \cdots, j'_{l'} \leftarrow \text{MergeSort}((j_1, \cdots, j_l), (i_{w+1}, \cdots, i_k))$$

$$g \leftarrow (i_1, i_2 \cdots, i_w, j'_1, \cdots, j'_{s-w})$$

$$\max_{\mathbf{ratio}} \leftarrow \max_{x \in g} \left(\frac{1}{b_x} + \frac{1}{p_x}\right)$$

$$\mathsf{TTFT} \leftarrow t_c + \frac{M}{s} \times \max_{\mathbf{ratio}} + t_p \times (s - w + \frac{w}{s}) + t_n \times s$$

$$\mathsf{TPOT} \leftarrow t_d \times (s - w + \frac{w}{s}) + t_n \times s$$

$$\mathsf{TPOT} \leftarrow t_d \times (s - w + \frac{w}{s}) + t_n \times s$$

$$\mathsf{TFTFT} \leq \mathsf{SLO}_{\mathsf{TTFT}} \ \mathsf{and} \ \mathsf{TPOT} \leq \mathsf{SLO}_{\mathsf{TPOT}} \ \mathsf{then}$$

$$S \leftarrow S \cup \{(s, w, g)\}$$

if S is \emptyset then

return $(1,1,(i_1))$ \triangleright Use single worker if no solution **else**

 $c \leftarrow$ Scheme that incurs minimal GPU sharing from S **return** c

□Network-Contention

Model fetching & Inference (small intermediate results)

Prioritize inference packets

□Network-Contention

- Model fetching & Inference (small intermediate results)
- Workers fetch models on the same GPU

□Network-Contention

- Model fetching & Inference (small intermediate results)
- Workers fetch models on the same GPU

A GPU server with N workers comes a new one

- > Bandwidth estimates : $\frac{B}{N+1}$
- ➤ Worker_i time to fetch the pending model (S_i): $T_{rest} = S_i \div \frac{B}{N+1}$

HydraServe: Cluster-Level

□Network-Contention

- Model fetching & Inference (small intermediate results)
- Workers fetch models on the same GPU

A GPU server with N workers comes a new one

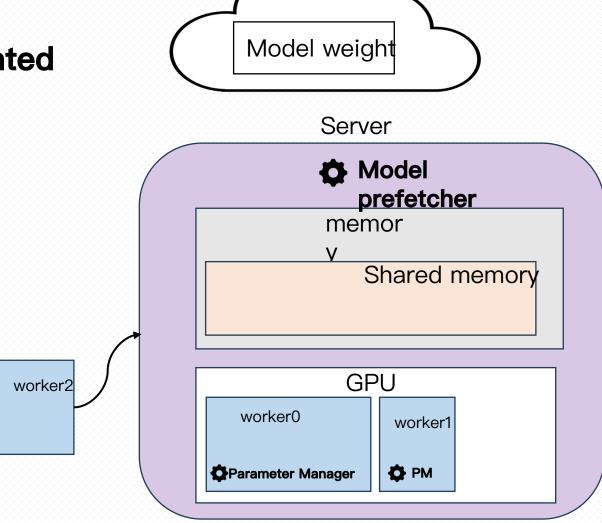
- > Bandwidth estimates : $\frac{B}{N+1}$
- ➤ Worker_i time to fetch the pending model (S_i): $T_{rest} = S_i \div \frac{B}{N+1}$
- > S_i estimates: $S_i' = S_i \frac{B}{N} \times (T_{curr} T_i')$

Start or completion of a cold start time

We should meet: $T_{rest} \leq Deadline_i - T_{curr}$

- **□Model prefetching**
 - ❖Shared memory is pre-allocated

- □Parameter Manager
 - ❖An individual thread



worker2

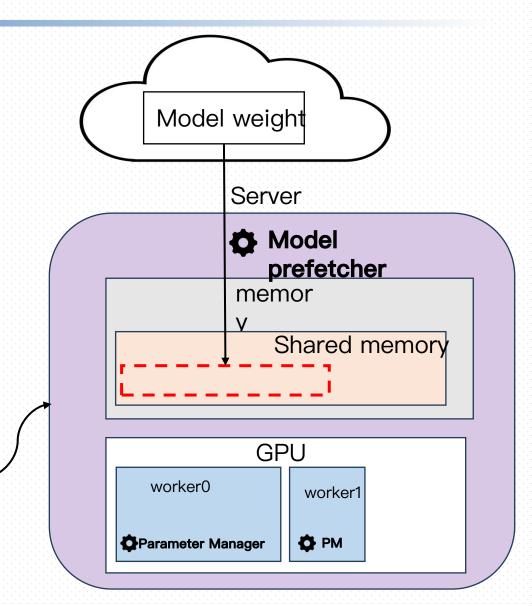
□Model prefetching

- ❖Shared memory is pre-allocated
- Starts before container creation

> Overlap container and runtime init

□Parameter Manager

❖An individual thread



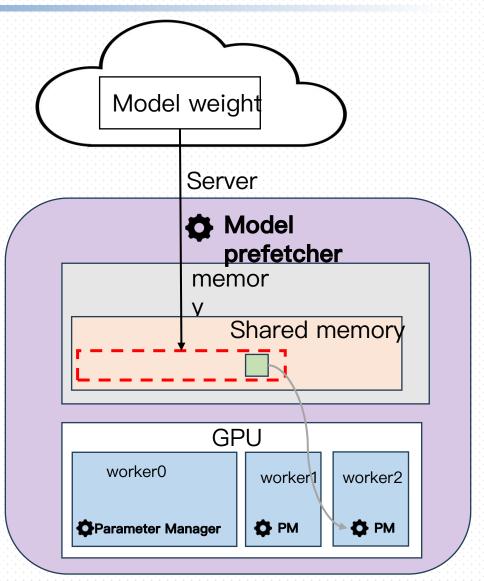
□Model prefetching

- ❖Shared memory is pre-allocated
- Starts before container creation
 - > Container and runtime init are overlapped

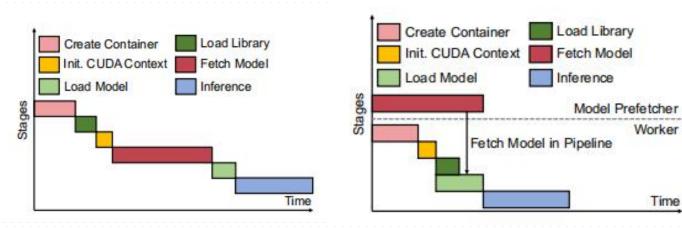
□Parameter Manager

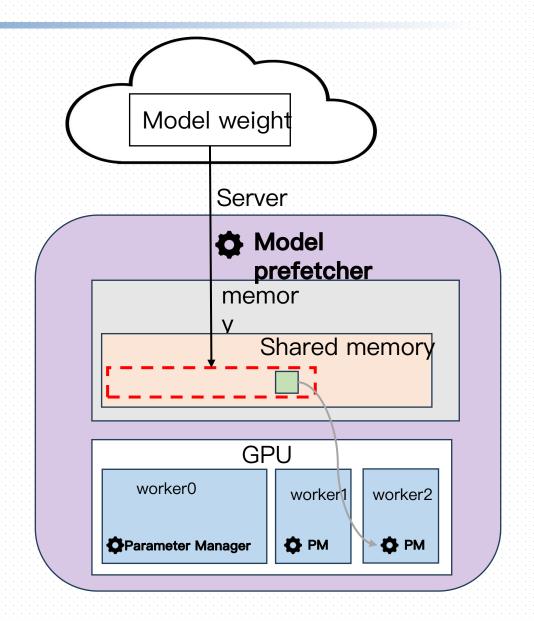
- ❖An individual thread
- Container first init it
- Streaming manner with zero-copy

Model prefetch and load can be pipelined



- **□**Model prefetching
- □Parameter Manager
- □Prioritize CUDA context init
 - Overlap library and model load





□Worker Scaling

Parameter manager continue to load the remind part

❖Scaling down

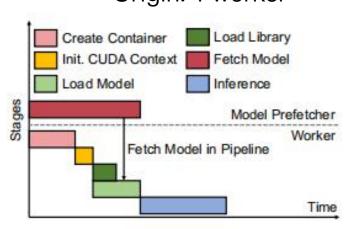
- > Only one worker fetched unloaded model
- > Default mechanism

❖Scaling up

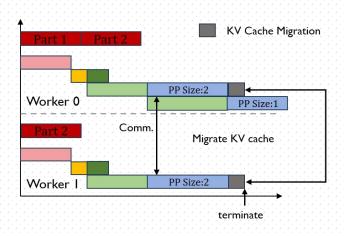
- > All workers become individual serving endpoint
- > Tackle load spikes
 - Use sliding window strategy to predict

□Worker Scaling

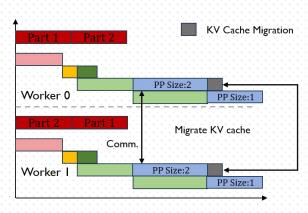
Origin: 1 worker



Scaling down

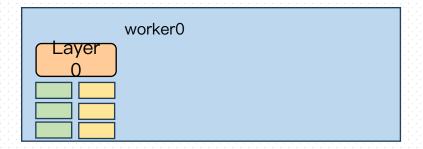


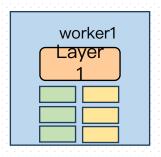
Scaling up

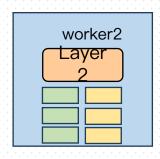


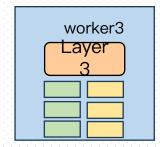
- □Worker Scaling
- □KV cache migration
 - Stop scheduling & wait for on-the-fly batches
 - ❖Gather the blocks
 - ❖Place the block at different layers

- **□Worker Scaling**
- □KV cache migration
 - Stop scheduling & wait for on-the-fly batches
 - ❖Gather the blocks
 - ❖Place the block at different layers

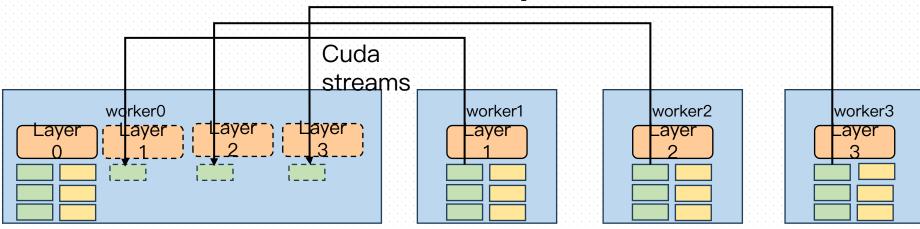








- □Worker Scaling
- □KV cache migration
 - Stop scheduling & wait for on-the-fly batches
 - ❖Gather the blocks
 - ❖Place the block at different layers



- □Instance startup optimizations in vLLM
 - ❖Postpone KV Cache Allocation on CPU
 - **❖Skip Online Memory Profiling**
 - ❖Direct GPU Tensor Usage (Zero-Copy)

Evaluation: Latency & Pipeline Consolidation

□Testbed

- ❖A cluster with 4 A10 servers & 4V100 servers
 - > A10 server contains single A10 GPU and 188GiB memory
 - > V100 server contains 4 V100 GPUs snd 368GiB memory
 - > Network bandwidth per server is 16Gps

Evaluation: Latency & Pipeline Consolidation

□Testbed

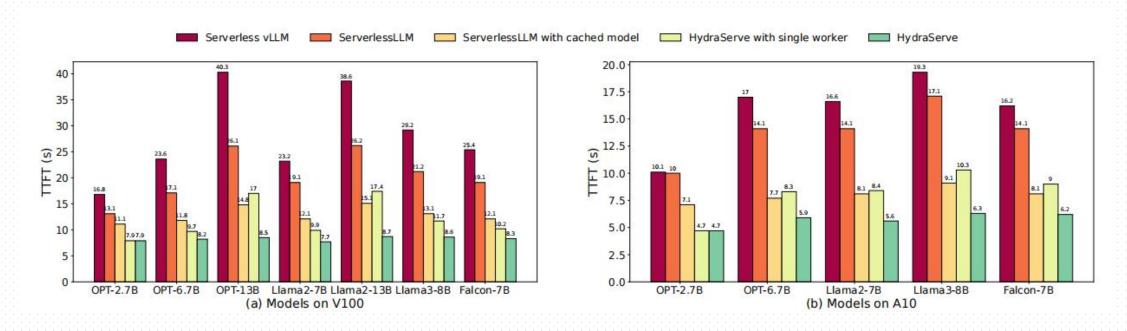
- *A cluster with 4 A10 servers & 4V100 servers
 - > A10 server contains single A10 GPU and 188GiB memory
 - > V100 server contains 4 V100 GPUs snd 368GiB memory
 - > Network bandwidth per server is 16Gps
 - > Remote storage has sufficient network capacity

□Baselines

- ❖Servrless vLLM
 - > Iterates through all servers to select a available GPU
- **❖ServerlessLLM**^[1]

Evaluation: Cold start Latency

□Latency



HydraServe reduces cold start latency by 2.1x-4.7x compared to serverless vLLM

1.7x-3.1x compared to serverlessLLM

Evaluation: Cold start Latency

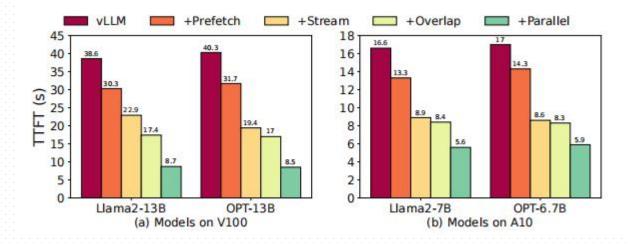
□Breakdown

❖Prefetch : model prefetcher

Stream : streaming loading & implementation optimize

Overlap: overlap library & model loading

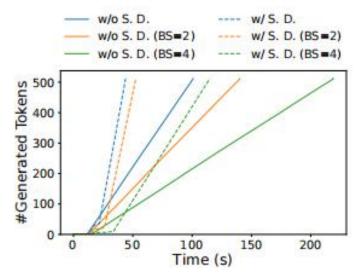
❖Parallel: parallelize the cold start



Evaluation: Pipeline Consolidation

Llama2–13B on V100, input length is 512 tokens

□Scaling down

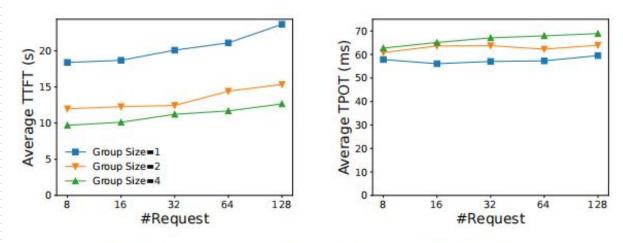


- ❖Reduce end-to-end generation time by 1. 61×-1.70×
- Maintain almost same inference speed during early start

Evaluation: Pipeline Consolidation

Llama2–13B on V100, input length is 512 tokens

□Scaling up



Maximum batch size: 8

- (a) Average TTFT of different loads.
- (b) Average TPOT of different loads.
- ❖128 concurrent requests, reduce average TTFT by 1. 87×
- **❖**Average TPOT only increase by 1. 08×−1.19×

Evaluation: End-to-End

□Testbed

- *A cluster with 2 A10 servers
 - > 4 A10 GPUs , 752GiB memory , 64Gbps network bandwidth
- ❖A cluster with 4 V100 servers
 - > 4 V100 GPUs , 368GiB memory , 16Gbps network bandwidth
- *Remote storage has sufficient network capacity

□Baselines

- ***Servrless vLLM**
 - > Iterates through all servers to select a available GPU
- **❖ServerlessLLM**☐

□Workload

❖SLO based on warm requests (1024 input tokens, 8 batch sizes)

Model	Model Size	GPU Card	TTFT	TPOT	
Llama2-7B	12.5GB	A10	1.5s	42ms	
Llama2-13B	24.2GB	V100	2.4s	58ms	

Application	TTFT	TPOT	Dataset
Chatbot Llama2-7B	7.5s	200ms	ShareGPT
Chatbot Llama2-13	12s	200ms	ShareGPT
Code Completion Llama2-7B	7.5s	84ms	HumanEval
Code Completion Llama2-13B	12s	116ms	HumanEval
Summarization Llama2-7B	15s	84ms	LongBench
Summarization Llama2-13B	24s	116ms	LongBench

TTFT and TPOT of warm request

SLOs summary

□Workload

❖SLO based on warm requests (1024 input tokens, 8 batch sizes)

Model	Model Size	GPU Card	TTFT	TPOT	
Llama2-7B	12.5GB	A10	1.5s	42ms	
Llama2-13B	24.2GB	V100	2.4s	58ms	

Application	TTFT	TPOT	Dataset
Chatbot Llama2-7B	7.5s	200ms	ShareGPT
Chatbot Llama2-13	12s	200ms	ShareGPT
Code Completion Llama2-7B	7.5s	84ms	HumanEval
Code Completion Llama2-13B	12s	116ms	HumanEval
Summarization Llama2-7B	15s	84ms	LongBench
Summarization Llama2-13B	24s	116ms	LongBench

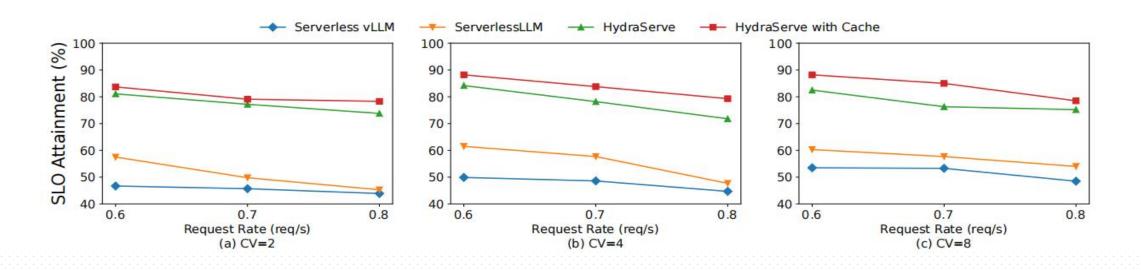
TTFT and TPOT of warm request

SLOs summary

⇔Workloads

- **➢ Microsoft Azure Function Trace**
 - Models are mapped, round-robin approach

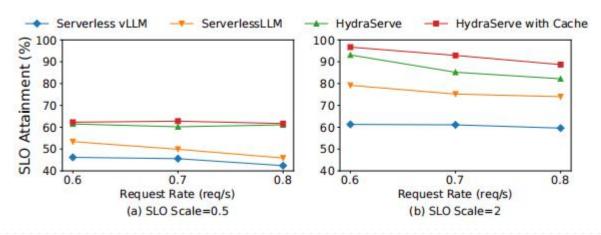
□Change the CV



- **❖**Achieve 1.43×−1.74× higher TTFT SLO during bursty requests
- **❖Caching further improve 1.11**×

□Change the SLO scales

CV fixed at 8



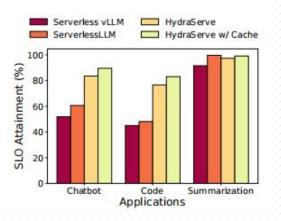
❖Tight SLO: Meet ~63% TTFT

❖Loose SLO : Achieve 1. 38×−1.52× improvement

1. 49×-1.58× improvement with caching

□ Application analysis

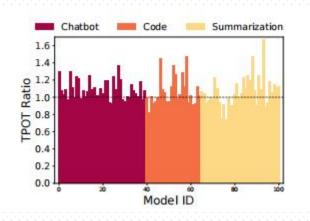
$$CV = 8$$
, RPS = 0.6

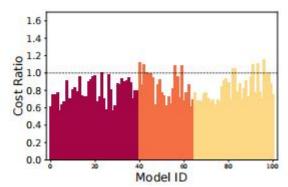


- ❖Chatbot & Code completion: 1. 61x−1.70x improvement in TTFT
- Code completion has lower TTFT SLO attainment
 - > Workers keep alive for shorter time, cause more cold starts

□TPOT and resource usage penalties

$$CV = 8$$
, RPS = 0.6

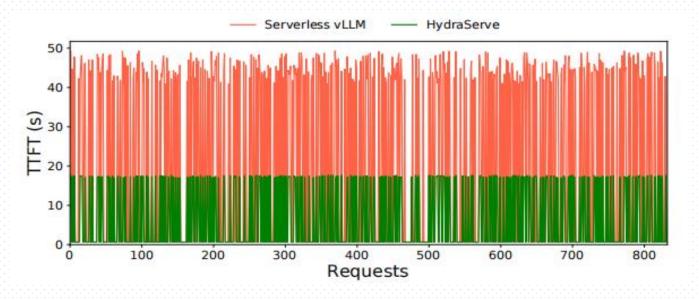




Nomalize to serverless vLLM

- **❖TPOT:** A 1.06× average increase
- Cost : HydraServe consumes lower in most case
 - > Pipeline groups merge is quickly
 - > Fast worker startup reduce GPU usage

Llama2-7B on NVIDIA A10 GPUs with 24GB GPU memory



❖HydraServe achieves an average 2.6× reduction in cold-start TTFT

□Pros:

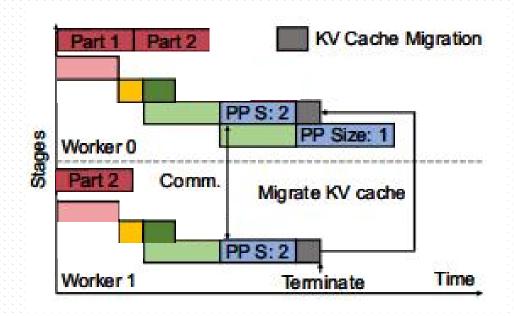
- Use pipeline parallelism to reduce fetching time
- Overlap load model and load library
- Consolidate pipeline to reduce overhead

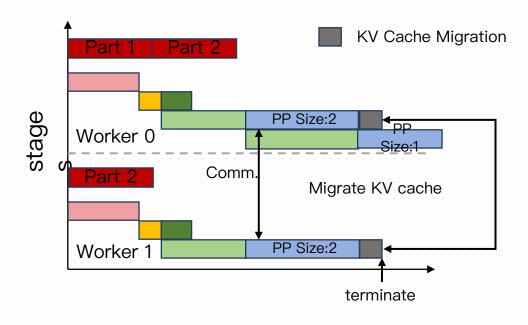
□Cons:

- Remote storage needs sufficient bandwidth
- ❖Due to lack of NVLink, evaluated models can reside in a GPU

A&Q

Background: Out-of-order execution





□Worker Scaling

❖Scaling down

