FAST-DLLM V2: Efficient Block-Diffusion LLM

Chengyue Wu^{1,2} Hao Zhang² Shuchen Xue² Shizhe Diao² Yonggan Fu² Zhijian Liu² Pavlo Molchanov² Ping Luo¹ Song Han^{2,3} Enze Xie²

¹ The University of Hong Kong ² NVIDIA ³ MIT

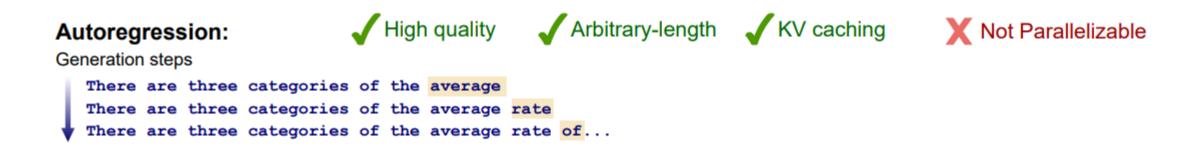
arXiv:2509.26328

Presented by Xiliang Xian

Outline

- □ Background
- □ Design
- **□** Evaluations
- □ Discussion

Auto-Regressive(AR) LLM



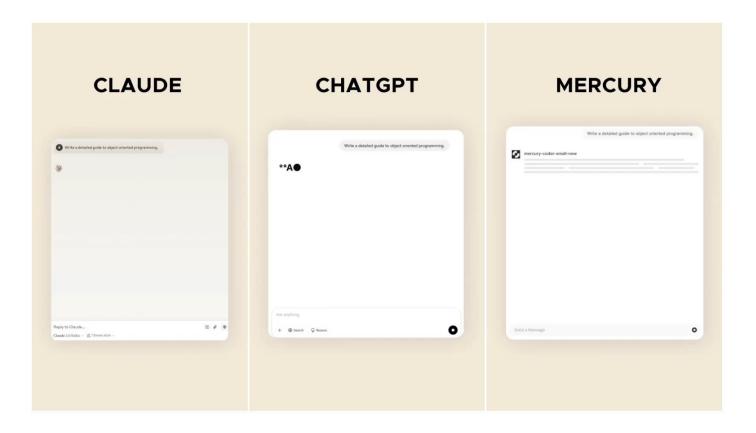
☐ produces one token at a time in strict left-to-right order

What is DLLM?

☐ Diffusion large language model

Why DLLM?

□ DLLMs show **superior speed** vs Auto-Regressive(AR) LLM with **comparable performance**



A Glimpse into Recent Development

- ☐ Closed-source model
- Gemini Diffusion
- Mercury (claimed to achieve 1109 tokens/s on H100s)
- Seed Diffusion (claimed to achieve 2146 tokens/s on H20s)
- **□** Open-source model
- LLaDA (train from scratch)
- Dream (fine-tune from Qwen-2.5 7B)

Introduction

- ☐ Model Apply Block Diffusion
- ☐ Data Efficient Fine-tune Training Model
- ☐ Introduce Approximate KV Cache for Full Attention
- ☐ Introduce **Tokens** Parallel Decoding

Classification

Diffusion model

continuous diffusion discrete diffusion

uniform diffusion masked diffusion

Noise type

Random token

Fixed token

Masked Diffusion Model (MDM)

Mainstream Formulation in DLLM

☐ Training details:

most Encoder-only (full attention)

❖ Forward:

Mask Ratio $t \sim U(0,1)$

* Reverse denoising:

[MASK]	is	large	[MASK]	model	
LLM	is	large	language	model	

Masked Diffusion Model (MDM)

☐ Inference details:

Prompt [MASK] [MASK] [MASK] [MASK] [MASK]

Prompt [MASK] is [MASK] language [MASK]

.....

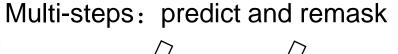
Prompt LLM is large language model

- Way for variable-length sequence:
 - Discard tokens after first <EOS>(end of sentence)

Predict all masked tokens simutaneously

Random remask, low confidence remask, etc

- ☐ Data Efficient Fine-tune Training
- ☐ Introduce Approximate KV Cache for Full Attention
- ☐ Introduce **Tokens** Parallel Decoding



Block Diffusion (ICLR 25)

☐ Apply Block Diffusion ☐ Data Efficient Fine-tune Training ■ Semi-Autoregressive ☐ Introduce Approximate KV Cache for Full Attention ☐ Introduce **Tokens** Parallel Decoding **Autoregression:** Generation steps There are three categories of the average There are three categories of the average rate There are three categories of the average rate of ... X Lower quality X Fixed-length X No KV caching I Parallelizable Diffusion: the reusability will continue to Repeal the reusability cuts and the law will continue to reduce the Repeal the reusability cuts and prove the law will continue to reduce the deficit. ✓ High quality ✓ Arbitrary-length ✓ KV caching ✓ Parallelizable Block Diffusion (Ours): On September 17, On September 17, 2016, we will be giving the On September 17, 2016, we will be giving the beta-release of the to our server testing ...

Limitations in MDMs

☐ Inductive bias conflict in training

- ☐ Apply Block Diffusion
- ☐ Data Efficient Fine-tune Training
- ☐ Introduce Approximate KV Cache for Full Attention
- ☐ Introduce **Tokens** Parallel Decoding
- natural language is overwhelmingly processed in a sequential order
- ☐ Inference inefficiency
 - take LLaDA as an example:
 - > Full attention is slower than causal attention
 - > Cannot leverage KV cache
 - > Reduce the number of inference steps \(\square\) Decode more tokens simutaneously
 - **□** Bad accuracy

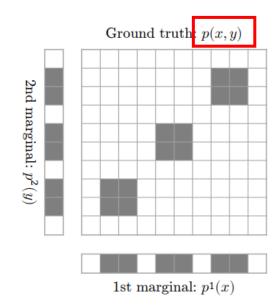
Limitations in MDMs

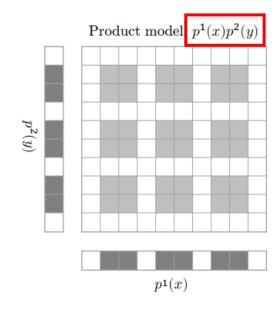
- ☐ Apply Block Diffusion
- ☐ Data Efficient Fine-tune Training
- ☐ Introduce Approximate KV Cache for Full Attention
- ☐ Introduce **Tokens** Parallel Decoding

☐ Inference inefficiency

.

- > Reduce the number of inference steps \(\square \) Decode more tokens simutaneously
 - **□** Bad accuracy





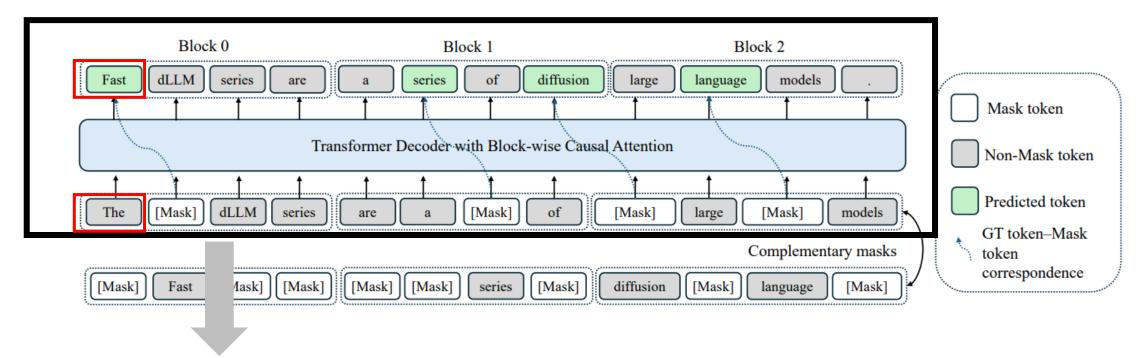
he
$$\times$$
 am is

marginal distribution ≠ joint distribution

Outline

- Background
- □ Design
- **□** Evaluations
- □ Discussion

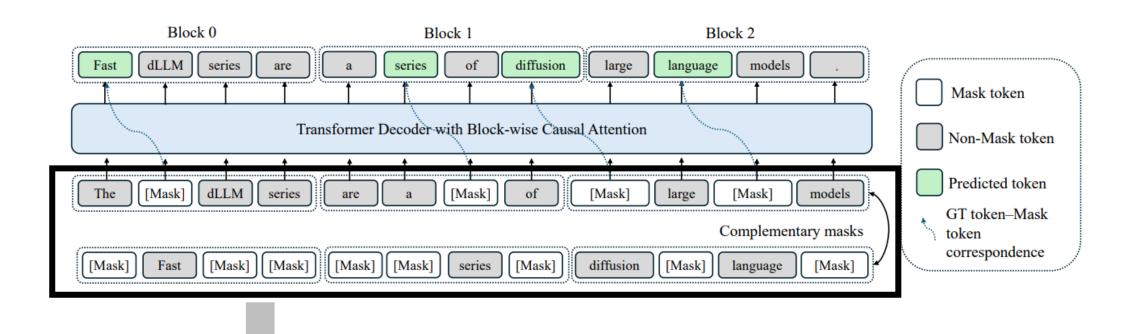
Training Process



☐ Token shift for prediction

❖ Use hidden state at i-1 to predict x_i

Training Process

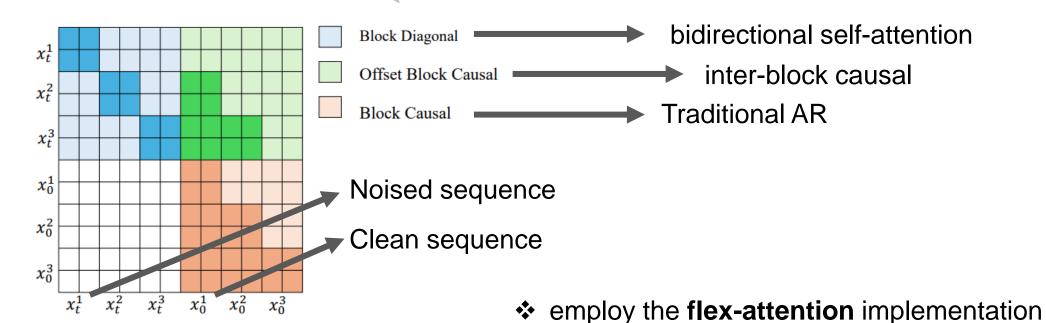


☐ Masked token prediction with **complementary** views

Training Process

dLLM series series diffusion language | models large Mask token Transformer Decoder with Block-wise Causal Attention Non-Mask token Predicted token The [Mask] dLLM series a [Mask] of GT token-Mask Complementary masks correspondence [Mask] [Mask] series [Mask] diffusion [Mask]

■ Block-wise attention

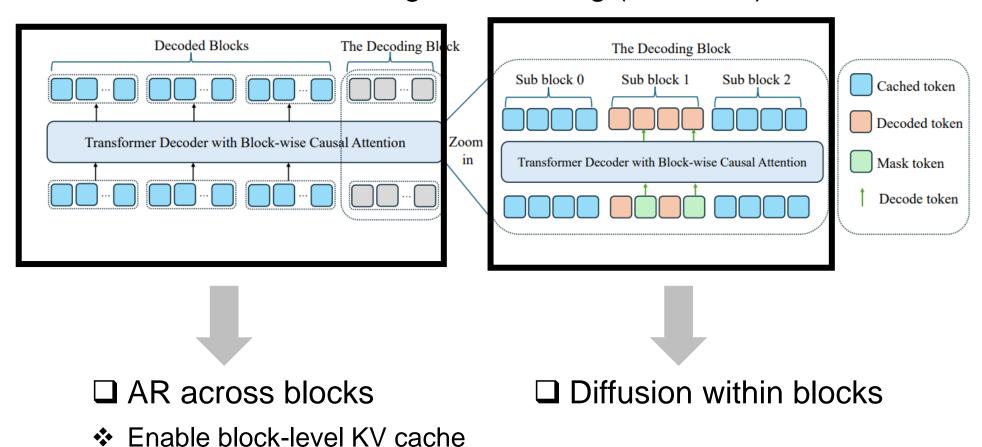


(a) Training-time attention mask.

x^b denote set of tokens in the b-th **block** (rather than the b-th **token**)

Inference Pipeline

☐ Block-wise AR decoding with caching (Semi-AR)



18

Diffusion within blocks

Cannot leverage KV cache?

☐ DualCache: approximate KV cache



Sub block 0

The Decoding Block

Sub block 2

Cached token

Sub block 1

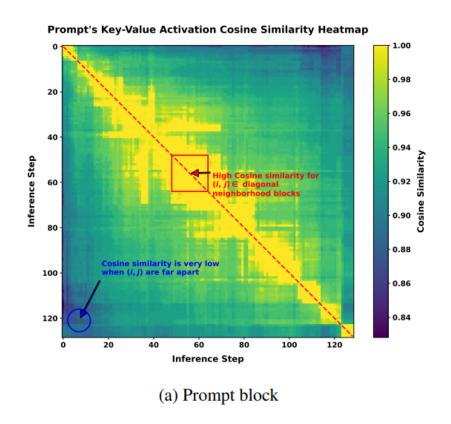
(b) **DualCache**: Bidirectional KV cache contains prefix and suffix Cache.

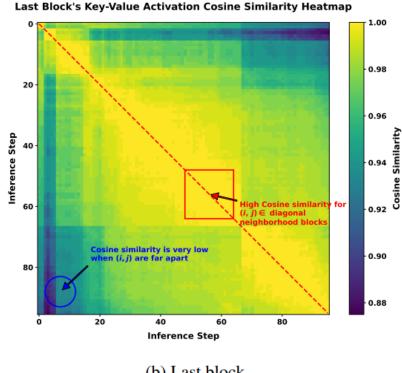
The Decoding Block

DualCache Intuition

Why works?

☐ Observation: KV activations exhibit **high similarity** across adjacent inference steps within a block





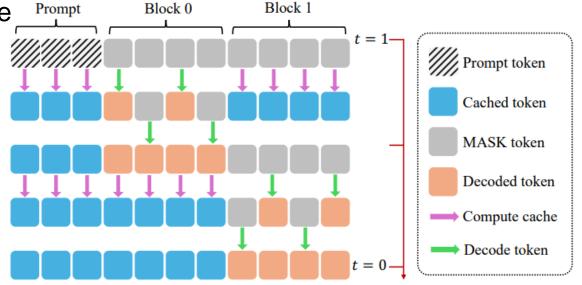
Diffusion within blocks

Cannot leverage KV cache?

☐ DualCache: approximate KV cache

Cache previous kv in one sub block inference

❖ Update when current sub block is finished



Sub block 0

The Decoding Block

Sub block 2

Cached token

Decoded token

Decode token

Mask token

Sub block 1

Transformer Decoder with Block-wise Causal Attention

(b) **DualCache**: Bidirectional KV cache contains prefix and suffix Cache.

The Decoding Block

Zoom

al Attention

Performance under different cache block size

- ☐ Smaller block size incur overhead
- ☐ larger block size diminish accuracy
- ☐ Trade-off

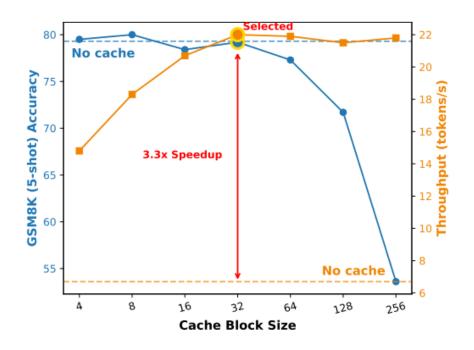
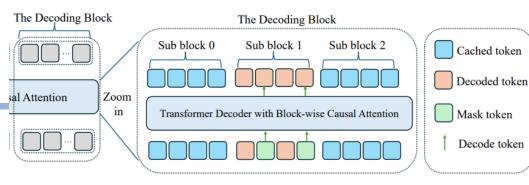


Figure 4 | Impact of Cache Block Size on Accuracy and Throughput. The orange line illustrates the effect of varying cache block size on throughput, while the blue line depicts accuracy.

Diffusion within blocks



☐ Confidence-Aware Parallel Decoding

(TL;DR) If the model is confident on many positions, parallel decoding will not introduce errors.

Theorem 1 (Parallel Decoding under High Confidence). Suppose there exists a specific sequence of tokens $x^* = (x_{i_1}, \ldots, x_{i_n})$ such that for each $j \in \{1, \ldots, n\}$, the model has high confidence in x_{i_j} : $p_j(X_{i_j} = x_{i_j}|E) > 1 - \epsilon$ for some small $\epsilon > 0$. Then, the following results hold:

1. Equivalence for Greedy Decoding: If $(n+1)\epsilon \leq 1$ (i.e., $\epsilon \leq \frac{1}{n+1}$), then

$$\underset{\boldsymbol{z}}{\operatorname{argmax}} p(\boldsymbol{z}|E) = \underset{\boldsymbol{z}}{\operatorname{argmax}} q(\boldsymbol{z}|E) = \boldsymbol{x}^*. \tag{4}$$

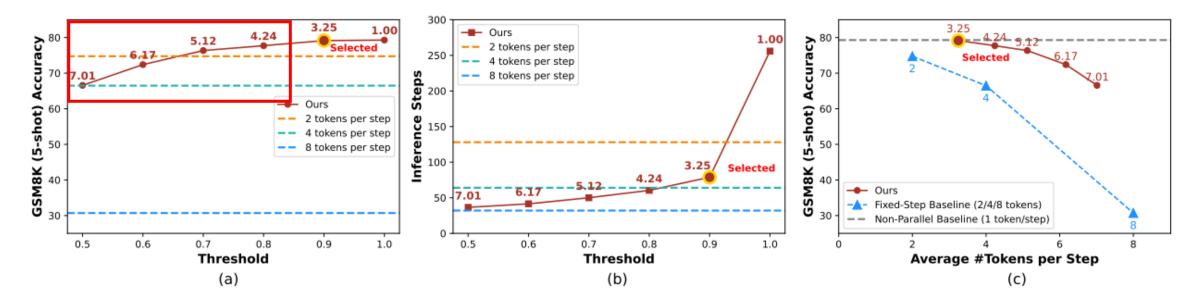
This means that greedy parallel decoding (selecting $\operatorname{argmax} q$) yields the same result as greedy sequential decoding (selecting $\operatorname{argmax} p$).

This bound is tight: if $\epsilon > \frac{1}{n+1}$, there exist distributions p(X|E) satisfying the high-confidence marginal assumption for which $\operatorname{argmax}_{\boldsymbol{z}} p(\boldsymbol{z}|E) \neq \operatorname{argmax}_{\boldsymbol{z}} q(\boldsymbol{z}|E)$.

Diffusion within blocks

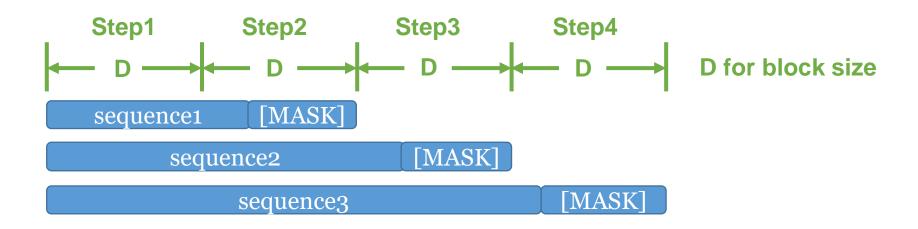
```
Algorithm 1 Block-wise Confidence-aware Parallel Decoding with (Dual) KV Cache
Require: p_{\theta}, prompt p_0, answer length L, blocks K, block size B, steps per block T, threshold \tau, use_DualCache,
    strategy \in \{threshold, factor\}, factor f
 1: x \leftarrow [p_0; [MASK], ..., [MASK]]
 2: Initialize KV Cache (single or dual) for x (fuse with decoding).
                                                                                                       // KV Cache Init
 3: for k = 1 to K do
        s \leftarrow |p_0| + (k-1)B, \ e \leftarrow |p_0| + kB
        for t = 1 to T do
 5:
            Use cache, run p_{\theta} on x^{[s,e)} if use_<u>DualCache else</u> x^{[s,:)}
                                                                                                         // Cache Reuse
 6:
           For masked x^i, compute confidence c^i = \max_x p_{\theta}(x^i|\cdot)
                                                                                                  // Confidence scoring
 7:
           if strategy == threshold then
 8:
                Unmask all i in [s,e) with c^i \geq \tau, always unmask max c^i
 9:
           else if strategy == factor then
10:
               Sort c^i in descending order as (c^{(1)}, c^{(2)}, \dots)
11:
               Find largest n such that (n+1)(1-c^{(n)}) < f
                                                                                                 Unmask dynamic number of tokens
12:
               Unmask top-n tokens, always unmask the max c^i
13:
           end if
14:
           if all x^{[s,e)} unmasked then
15:
               break
16:
           end if
17:
        end for
18:
        Update KV cache: if use_DualCache: prefix & suffix; else: prefix.
                                                                                                       // Cache Update
19:
20: end for
21: return x
```

Threshold Curve



- ❖ Baseline: Ilada previous fixed-N tokens
- ❖ Setting: GSM8K, 256 length

Batch decoding with padding



☐ Adaptation to block diffusion

Outline

- Background
- □ Design
- **□** Evaluations
- **□** Discussion

Setups

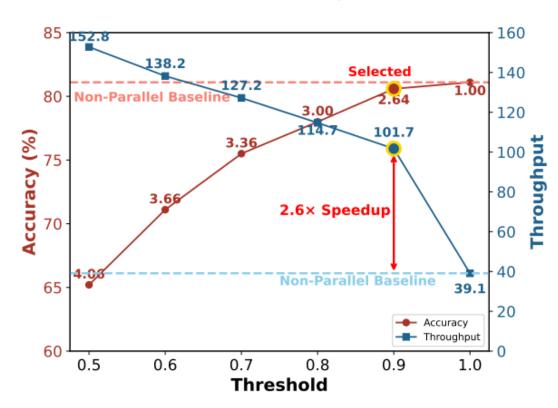
☐ Tuning model:	Qwen-2.5 1.5B and 7B instruct
□ Training dataset:	LLaMA-Nemotron post-training dataset (batch 256)
☐ Training environment:	64 NVIDIA A100 GPUs
Training configuration:	1.5B: learning rate 2×10^{-5} for 6,000 steps (costs 8h)
	7B: learning rate 1×10^{-5} for 2500 steps (costs 12h)
☐ Block size:	32
☐ Sub-Block size:	8

Benchmark Results

Model	#Params	HumanEval		MBPP		GSM8K	Math	IFEval	MMLU	GPQA	Ava
Model		Base	Plus	Base	Plus	GSWIOK	Math	IFEVai	WINILU	GIQA	Avg.
1B Models											
LlaMA-3.2	1.2B	34.1	31.1	34.1	29.4	43.0	23.8	58.9	44.4	24.1	35.9
SmolLM 2	1.7B	34.1	28.7	50.6	46.0	47.7	21.1	55.1	49.1	29.2	40.7
Qwen2.5-1.5B	1.5B	42.1	37.2	48.1	41.3	57.0	46.8	41.2	54.6	30.6	<u>44.3</u>
Qwen2.5-1.5B-Nemo-FT	1.5B	37.2	33.5	53.4	44.4	58.5	43.5	39.4	58.1	31.0	<u>44.3</u>
Fast-dLLM v2	1.5B	43.9	40.2	50.0	41.3	62.0	38.1	47.0	55.1	27.7	45.0
				7B+	Models	5					
LLaDA	8B	35.4	31.7	31.5	28.6	78.6	26.6	59.9	65.5	31.8	43.3
LLaDA-1.5	8B	52.4	-	42.8	-	83.3	42.6	58.2	66.0	36.9	-
LLaDA-MoE	7B	61.6	-	70.0	-	82.4	58.7	59.3	67.2	-	-
Dream	7B	57.9	53.7	68.3	56.1	81.0	39.2	62.5	67.0	33.0	57.6
Qwen2.5-7B	7B	51.2	47.6	57.7	49.5	71.4	73.3	70.8	68.7	33.5	58.2
Qwen2.5-7B-Nemo-FT	7B	52.4	48.2	57.1	50.0	84.1	72.0	69.5	68.6	34.2	<u>59.6</u>
Fast-dLLM v2	7B	63.4	58.5	63.0	52.3	83.7	61.6	61.4	66.6	31.9	60.3

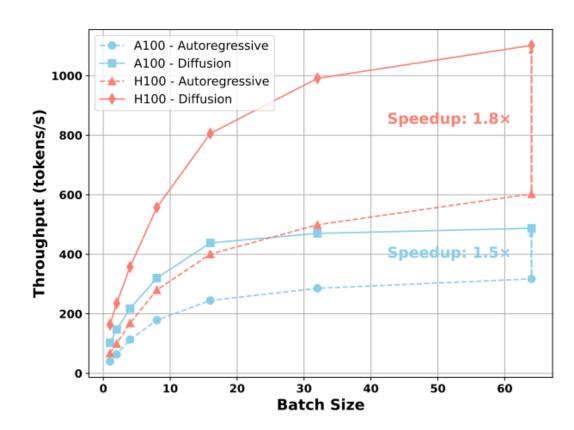
Performance

☐ Accuracy and throughput under different thresholds on GSM8K



Performance

☐ Throughput comparison between AR(Qwen2.5-7B-Instruct) and diffusion(Fast-dLLM v2 7B) generation for GSM8K

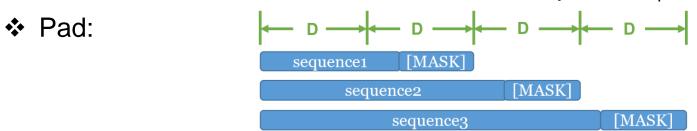


Ablation Study

❖ Based on Fast-dLLM v2 1.5B

Method	Huma	nEval	MBPP		GSM8K	Math	IFFvol	MMIII	CPOA	Ανσ
	Base	Plus	Base	Plus	GDIVIOIX	Math	II Evai	WINILO	OI QA	Avg.
Naive token shift	38.4	32.9	44.4	38.6	59.0	<u>37.3</u>	39.9	52.9	27.9	41.3
+ pad	<u>38.4</u>	<u>34.1</u>	<u>45.2</u>	38.4	<u>60.1</u>	37.0	<u>45.8</u>	<u>53.5</u>	<u>27.7</u>	<u>42.2</u>
+ pad $+$ CM	43.9	40.2	50.0	41.3	62.0	38.1	47.0	55.1	<u>27.7</u>	45.0

❖ Naive token shift: use hidden state at i-1 to predict x_i



❖ CM: complementary mask

Ablation Study

☐ Sub-Block size and Block size affect performance

Table 3 | Sub-Block size decoding improves performance, with size 8 being optimal.

Sub-Block Size	2	4	8	16	32
GSM8K HumanEval HumanEval+	62.8	61.8	<u>62.0</u>	61.3	60.2
HumanEval	42.7	<u>43.3</u>	43.9	39.6	38.4
HumanEval+	39.6	40.2	40.2	36.0	34.8

Table 4 | Inference with mismatched sizes reduces performance.

Block Size	2	4	8	16	32
GSM8K HumanEval HumanEval+	53.2	56.8	58.5	<u>59.7</u>	60.2
HumanEval	37.8	43.3	43.3	<u>38.4</u>	<u>38.4</u>
HumanEval+	34.1	<u>39.0</u>	39.6	34.1	34.8

Ablation Study

☐ Cache is a purely efficiency-enhancing feature

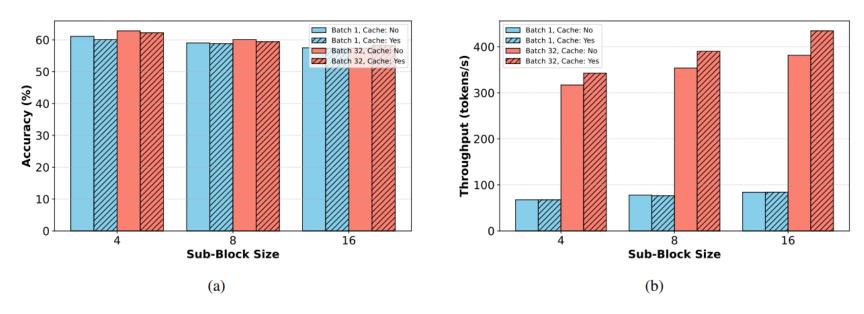


Figure 6 | Effect of small block size and sub-block cache on model performance. (a) Accuracy remains largely unaffected by the use of sub-block cache across different block sizes and batch sizes. (b) Throughput increases as small block size grows due to higher decoding parallelism. While sub-block cache has negligible effect when batch size is small, it significantly improves throughput under compute-bound settings (e.g., batch size = 32).

Outline

- Background
- □ Design
- **□** Evaluations
- **□** Discussion

Discussion

- ☐ Trade-off between accuracy and throughput in MDMs
- Parallel generation inevitably introduces conditional independence
- **☐** Arbitrary-Order Autoregressive?
- Semi-AR Semi-diffusion
- □ Data-efficient fine-tuning
- ❖ Fast-dLLM v2 achieves lossless adaptation with just ~1B tokens, compared to ~500B tokens required by Dream
- Diffusion Beats Autoregressive in Data-Constrained Settings (NeurIPS 25)

Thanks!