
1

Shift Parallelism: Low-Latency, High-Throughput LLM
Inference for Dynamic Workloads

arXiv 2025.9

Mert Hidayetoglu, Aurick Qiao, Michael Wyatt, Jeff Rasley, Yuxiong
He, and Samyam Rajbhandari

Snowflake AI Research

Presented by Jiaan Zhu, Qinghe Wang, Long Zhao

l Background & Motivation
l Design & Implementation
l Evaluation
l Conclusion

2

Outline

l Inference Workload Characteristics
u Interactive workloads (Chat, Agent)
n need low completion latency, which depends on TTFT and TPOT

u Batch workloads (summarization of hundreds of documents)
n require high throughput rather than low completion latency

3

Background

Mixed workload leads to highly bursty traffic patterns

 But different workload subject to different quality-of-service metrics

l Existing inference framework utilize various parallelisms
u To reduce the latency or increase throughput

l Existing parallelisms exhibit prohibitive performance trade-off

4

Background

[1] Combined Throughput (token/sec) means total number of tokens processe by the inference system per unit of time

[1]

l Existing inference framework utilize various parallelisms
u To reduce the latency or increase throughput

l Existing parallelisms exhibit prohibitive performance trade-off

5

Background

[1] Combined Throughput (token/sec) means total number of tokens processe by the inference system per unit of time

[1]

2s 2s

DP=2

GPU

Time

GPU1 GPU2

1s

TP=2

GPU

Time

GPU1 GPU2

1s

l Tensor parallelism
u TP partitions input along weight along hidden size or head dim

6

Background

Q K V

1
1

1
1

1
1

attn output

Device 0

Q K V

1
1

1
1

2
2

attn output

O

Device 1

Wq, Wk, Wv

Hd

Hd/TP

Wq, Wk, Wv

Hd

Hd/TP

2
2

2
2

2
2

Hd/TP

Wo

Hd/TP

HdHd/TP
1
1

1
1

1
1

Hd/TP

1 2
1 2

1 2
1 2

1 2
1 2

Wo

Hd/TP

Hd

1 2
1 2

1 2
1 2

1 2
1 2

21
21

Seq

Hd

21
21

Seq

Hd

21
21

Seq

Hd

All Reduce

O

MLP

MLP

Hd

 QKV is partitioned along head dimension

l Sequence parallelism (Ulysses)
u SP partitions input along the sequence dim while keeping the weights unchanged

7

Background

21
21

Seq

Hd

1 2
1 2

1 2
1 2

Q K VWq, Wk, Wv

1
1

1
1

1
1

Q K V

1
1

attn score

1 2

attn output MLP

…

Device 0

1 2
1 2

1 2
1 2

Q K V

1
1

1
1

2
2

Q K V

2
2

attn score

1 2

attn output MLP

…

Device 1

All to All All to All

 In SP- Ulysses, QKV is also partitioned along head dimension

Hd

Hd

Hd

Wq, Wk, Wv

Hd

Hd

Hd

Hd

Hd

l Single parallelism strategy suits only one type of workload
l Can parallelisms be combined to support different workloads?
u Choosing the parallelism strategy based on the real-world traffic pattern

8

Background

 A Parallelism

B Parallelism

l Analysis of parallelism strategy combinations
u DP + X
n Achieving high throughput and low latency
n They have different KV cache layout, switching requires costly data movement

u TP + SP
n Achieving high throughput and low latency
n SP has the same KV cache layout as TP

9

Background

l An illustration of the KV-cache distribution in TP and SP

10

Background

Same KV head layout

l Background & Motivation
l Design & Implementation
l Evaluation
l Conclusion

11

Outline

l Base config: (SP, TP)
u Use for large batches. minimizing TTFT and better throughput.

l Shift config: (SP=1, TP=P)
u Use for small batches, set TP across the full node. minimizing TPOT.

 A Parallelism

B Parallelism

Key ideas

Base config: (SP, TP)

Shift config: (SP=1, TP=P)

 When to switch? Simply set a Threshold.

Further Challenges
l 1. Support SP for Inference
u Early designs lack support for GQA
u Load imbalance occurs under low-traffic conditions

l 2. How to shift between base config and shift config?
u How to ensure KV cache consistency?
n head ordering is different in (SP, TP) and (SP=1, TP=P)

u How to ensure weight compatibility?
n Weight layouts differ across the two configs.

Further Challenges
l 1. Support SP for Inference
u Early designs lack support for GQA
u Load imbalance occurs under low-traffic conditions

l 2. How to shift between base config and shift config?
u How to ensure KV cache consistency?
n head ordering is different in (SP, TP) and (SP=1, TP=P)

u How to ensure weight compatibility?
n Weight layouts differ across the two configs.

Design of Shift Parallelism
l 1. Support SP for Inference
u Early designs lack support for GQA
u Load imbalance occurs under low-traffic conditions

KV head is 4, when SP=8, can not spilt along the head dim

TP solves this by replicating the KV weights, and doing redundant computation.
SP needs to design a more efficient communication strategy to share KV.

QKV Spilt along head dim

Design of Shift Parallelism
l 1. Support SP for Inference
u Early designs lack support for GQA
n Solution: Multi-step neighborhood collectives

u Load imbalance occurs under low-traffic conditions

*Blocks with different colors represent different parts of the sequence
*The numbers 0, 1, 2, 3 denote the GPU id.

GPU1

GPU2

GPU3

GPU4

Design of Shift Parallelism
l 1. Support SP for Inference
u Early designs lack support for GQA
u Load imbalance occurs under low-traffic conditions (decoding)

I studyReq1

Req2

Req3

Req4

Req5
New token

q3Wq projIove

k1 k2 k3

Wk proj

q1k1

q2k1 q2k2

q3k1 q3k2 q3k3

Computed token / kv / output

During decoding , each request input is 1 token, SP can only spilt on batch dim !

Input (embedded token) K vectors Output(Q*KT)

Load
imbalance

q3

Design of Shift Parallelism
l 1. Support SP for Inference
u Early designs lack support for GQA
u What problems does Load imbalance cause? (decoding)

I study

New token

Iove k1 k2

Computed token / kv / output

GPU1

GPU2

GPU3

GPU4

K vectors

k1

k1

k1

k2

k2

k2

q3 q3 q3 q3

During decoding, new QKV need to be scattered to each GPU

scatter

Input (embedded token)

k3

k3

k3

k3

k3

Other request is similar

Differ heads

During prefill, SP splits K and V along the head dimension.

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Design of Shift Parallelism
l 1. Support SP for Inference
u Early designs lack support for GQA
u What problems does Load imbalance cause? (decoding)

I studyIove k1 k2 k3GPU1

GPU2

GPU3

GPU4

k1

k1

k1

k2

k2

k2

k3

k3

k3

q3

q3

q3

q3

During decoding, output need a all2all communication.

all2all

o

o

o

o

k

k

k

k

v

v

v

v

Output(Req1~5)
Input (embedded token)

oReq1

oReq2

o
Req4,5 o

oReq3

New token Computed token / kv / outputDiffer heads

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Design of Shift Parallelism
l 1. Support SP for Inference
u Early designs lack support for GQA
u What problems does Load imbalance cause? (decoding)

I studyIove q3

q3

q3

q3

all2all

o

o

o

o

k

k

k

k

v

v

v

v

Output(Req1~5)
Input (embedded token)

oReq1

oReq2

o
Req4,5 o

oReq3

New token Computed token / kv / outputDiffer heads

Solution: Padding batches up to a multiple of SP degree.

GPU1

GPU2

GPU3

GPU4

The batchsize dim is mismatch on each GPU rank.

Design of Shift Parallelism
l 2. How to shift between base config and shift config?
u How to ensure KV cache consistency?
n Head ordering is different in (SP, TP) and (SP=1, TP=P)

* The number means GPU rank

 The order of the heads does not
follow the increasing rank order

 Ranks 0 and 1 together compose the full model weights
Same sequence part

 each GPU has different part of (seq, head) combination

Design of Shift Parallelism
l 2. How to shift between base config and shift config?
u How to ensure KV cache consistency?
n Solution: Reorder the heads when using shift config (SP=1,TP = SPxTP)

reorder the heads

Matching KV head order

Design of Shift Parallelism
l 2. How to shift between base config and shift config?
u How to ensure weight compatibility?
n Weight layouts differ across the two configs.

Option1: On-the-fly slicing Option2: Separate Models

Advantage: No memory overhead.
Disadvantage: Each slicing requires matrix transposition
due to an FP8 hardware limitation of Hopper tensor cores.

Advantage: Fast.
Disadvantage: More memory overhead

GPU weight

Base config: (SP, TP) Shift config: (SP=1, TP=P)

weight
when SP=8, the shift model’s memory
overhead is 12.5% of Base model

Implementation of Shift Parallelism
l Integration into vLLM
u The existing inference frameworks haven’t implemented SP
n Solution: Developing a plug-in system

u capturing cudagraph failed due to dynamic all-to-all communication
n Solution: Modifying compilation by relaxing vLLM’s assumptions

l Background & Motivation
l Design & Implementation
l Evaluation
l Conclusion

25

Outline

1. Adaptation under bursty real-world pattern
2. Performance across various benchmarks
3. Integration with inference optimization techniques
4. Breakdown analysis of different parallelism strategies

26

Evaluation

l Environments
u 8 NVIDIA H200-141GB GPUs
u NVSwitch with a bandwidth of 900GB/s

l Baselines
u SGLang
u TRT-LLM

l Models (all in FP8 quantization)

27

Evaluation Setup

Model #Params #Layer Hidden Size Q Heads KV Heads
LLaMA-70B 70B 80 8192 64 8
Qwen-32B 32B 64 5120 64 8

LLaMA-17B-16E 109B/17B 48 5120 40 8
Qwen-30B-A3B 30B/3B 48 2048 32 4

l Datasets
u A mixture of requests from HumanEval and from a CodeAct agent
n Running against SWEBench
n Real-world

u A filtered real-life dataset that matches the synthetic dataset requests
u Synthetic requests with random data
u A bursty traffic pattern that resembles reallife production environment

28

Evaluation Setup

l LLaMa-70B, real-world trace
u Shift Parallelism obtains
n Lowest latency at bursty requests
n Lower median TTFT & TPOT
n Higher peak throughput than TP

l Shift Parallelism can handle the
high-traffic bursts better

29

Performance in Real-World Traffic
DP TP

l LLaMa-70B & Qwen-32B, input: 4k, output: 250
u The trend is similar to real-world traffic
n Lowest TTFT, 2nd lowest TPOT
n Better throughput than TP

30

Performance Benchmarks

Latency vs. throughput tradeoff

l LLaMa-70B & Qwen-32B, input: 2k-128k, output: 250
u SP introduces faster prefill, so Shift Parallelism achieves best TTFT
u TPOT increases with the input size
n As the number of tokens read from KV cache increases -> Memory bandwidth bound

u Throughput drops significantly with larger contexts
n Because attention time dominates the end-to-end generation

31

Performance Benchmarks

Variations across context sizes

l LLaMa-70B & Qwen-32B, input: 8k, output: 250
u Completion Time = TTFT + #output * TPOT
u Shift Parallelism strictly obtains the lowest completion time across arrival rates
u In low-to-medium rates, Shift Parallelism switches back-and-forth across SP and TP
n For minimizing latencies

u In high traffic, Shift Parallelism uses SP
n To save combined throughput

32

Performance Benchmarks

Latency vs. Arrival Rate

l Already integrated Shift Parallelism with SwiftKV and speculative decoding
l Highest throughput and lowest completion time
u Outperforming the best open source systems

33

Shift Parallelism in Production

l SP has a lower communication cost than TP
l The parallelization cost of vLLM is significant
u Which explains the remaining throughput gap between DP and SP

34

Breakdown

l Background & Motivation
l Design & Implementation
l Evaluation
l Conclusion

35

Outline

l Strength
u Demonstrates KV cache invariance between TP and SP
u Integrated SP into vLLM and combined it with other optimizations
u Innovatively switches TP and SP configs to handle bursty workloads

l Weakness
u Poor paper writing!!!
u No optimization when TP must be 8
u No analysis of switching overhead
u No mention of request waiting time

36

Conclusion

l Computational Complexity of TP and SP

37

Background

[1] Combined Throughput (token/sec) means total number of tokens processe by the inference system per unit of time

SP dose not increase comm cost

l Tensor parallelism: partitions weight along hidden size
u TP in MLP

38

Background

Data W1GELU W2() ××

Tensor parallel

weight

D Data

All Reduce

Data

Data

data data

D data data

f g

(B*S, H) (H, H/TP) (B* S, H/TP) (H/TP, H) (B*S, H) (B*S, H)

GELU
GELU

Device 0

Device 1

l Tensor parallelism: partitions weight along hidden size
u TP in Attention

Background

Data Wq, k, v Q,K,V=×

Tensor parallel

weight

D Data

Data

Data

f

(B*S, H) (H, H/TP) (B* S, H/TP)

Device 0

Device 1

Q, K, V

Q, K, V

Background weight

D Data

Q

K

V × ×

Softm
ax

Data

Device 0

g

l Tensor parallelism: partitions weight along hidden size
u TP in Attention

(B* S, H/TP) (B*S, H/TP) (H, H/TP) (B* S, H)

Q

K

V × ×

Softm
ax

Data

Device 1

g
All

Reduce

Q KT Q,K,V=×

Tensor parallel

× V × WoSoftmax ()

l Sequence parallelism (Ulysses)
u SP partitions input along the sequence dim while keeping the weights unchanged

41

Background

21
21

Seq

D

All to All

1 2
1 2

1 2
1 2

Q K VWq, Wk, Wv

1
1

1
1

1
1

Q K V

1
1

attn score

1 2

attn output MLP

…

Device 0

1 2
1 2

1 2
1 2

Q K VWq, Wk, Wv

1
1

1
1

2
2

Q K V

2
2

attn score

1 2

attn output MLP

…

Device 1

All to All

