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Outline

e Background & Motivation



Background

e Inference Workload Characteristics
¢ Interactive workloads (Chat, Agent)
m need low completion latency, which depends on TTFT and TPOT

o Batch workloads (summarization of hundreds of documents)
m require high throughput rather than low completion latency

Mixed workload leads to highly bursty traffic patterns
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But different workload subject to different quality-of-service metrics



Background

e Existing inference framework utilize various parallelisms
o To reduce the latency or increase throughput

e Existing parallelisms exhibit prohibitive performance trade-off

Parallelism Strategy TTFT (Latency) Combined TPOT (Token Latency)
Throughput [1]

Tensor Parallelism .. Nearly Best X Worst .. Best

Data Parallelism X Worst .. Best ¥ Near Worst

Sequence Parallelism .. Best Very Good X Worst

(Ulysses)

[1] Combined Throughput (token/sec) means total number of tokens processe by the inference system per unit of time



Background

e Existing inference framework utilize various parallelisms
o To reduce the latency or increase throughput

Time, DP=2 Time ~ TP=2
1s
AN,
2s 2s
1s
GPU1 GPU2 GPU GPU1 GPU2 GPU

[1] Combined Throughput (token/sec) means total number of tokens processe by the inference system per unit of time



Background

e Tensor parallelism
o TP partitions input along weight along hidden size or head dim
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Background

e Sequence parallelism (Ulysses)
o SP partitions input along the sequence dim while keeping the weights unchanged
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In SP- Ulysses, QKV is also partitioned along head dimension




Background

e Single parallelism strategy suits only one type of workload

e Can parallelisms be combined to support different workloads?
¢ Choosing the parallelism strategy based on the real-world traffic pattern
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Parallelism Strategy TTFT (Latency) Combined TPOT (Token Latency)
Throughput

Tensor Parallelism .. Nearly Best X Worst .. Best
Data Parallelism X Worst .. Best ¥ Near Worst
Sequence Parallelism . Best Very Good X Worst

(Ulysses)



Background

e Analysis of parallelism strategy combinations

¢ DP + X

m Achieving high throughput and low latency

m They have different KV cache layout, switching requires costly data movement@
¢ TP +SP

m Achieving high throughput and low latency
m SP has the same KV cache layout as TP



Background

e An illustration of the KV-cache distribution in TP and SP
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Outline

e Design & Implementation



Key ideas

e Base config: (SP, TP)
o Use for large batches. minimizing TTFT and better throughput.

e Shift config: (SP=1, TP=P)

o Use for small batches, set TP across the full node. minimizing TPOT.

0 Base config: (SP, TP)
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Shift config: (SP=1, TP=P) Time(s)

When to switch? Simply set a Threshold.



Further Challenges

e 1. Support SP for Inference
o Early designs lack support for GQA
¢ Load imbalance occurs under low-traffic conditions



Further Challenges

e 1. Support SP for Inference
o Early designs lack support for GQA
¢ Load imbalance occurs under low-traffic conditions

e 2. How to shift between base config and shift config?

¢ How to ensure KV cache consistency?

m head ordering is different in (SP, TP) and (SP=1, TP=P)
¢ How to ensure weight compatibility?

m Weight layouts differ across the two configs.



Design of Shift Parallelism

e 1. Support SP for Inference
o Early designs lack support for GQA
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e
/Head Parallelism

QKV Spilt along head dim KV head is 4, when SP=8, can not spilt along the head dim

TP solves this by replicating the KV weights, and doing redundant computation.
SP needs to design a more efficient communication strategy to share KV.



Design of Shift Parallelism

e 1. Support SP for Inference

o Early designs lack support for GQA
m Solution: Multi-step neighborhood collectives
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Design of Shift Parallelism

e 1. Support SP for Inference

¢ Load imbalance occurs under low-traffic conditions (decoding)

During decoding , each request input is 1 token, SP can only spilt on batch dim !
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Design of Shift Parallelism

e 1. Support SP for Inference

¢ What problems does Load imbalance cause? (decoding)

During prefill, SP splits K and V along the head dimension.
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Design of Shift Parallelism

e 1. Support SP for Inference

¢ What problems does Load imbalance cause? (decoding)

During decoding, output need a all2all communication.
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Design of Shift Parallelism

e 1. Support SP for Inference

¢ What problems does Load imbalance cause? (decoding)

The batchsize dim is mismatch on each GPU rank.
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Design of Shift Parallelism

e 2. How to shift between base config and shift config?

¢ How to ensure KV cache consistency?
m Head ordering is different in (SP, TP) and (SP=1, TP=P)

Same sequence part (a) Base Config. (SP=3, TP= Ranks 0 and 1 together compose the full model weights
\ d d , _ SPXTP
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each GPU has different part of (seq, head) combination
* The number means GPU rank



Design of Shift Parallelism

e 2. How to shift between base config and shift config?

¢ How to ensure KV cache consistency?
m Solution: Reorder the heads when using shift config (SP=1,TP = SPxTP)

Matching KV head order

(a) Base Config. (SP=3, TP=2) ' (b) Shift Config. (SPxTP=6)]
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Design of Shift Parallelism

e 2. How to shift between base config and shift config?

¢ How to ensure weight compatibility?
m Weight layouts differ across the two configs.

Optionl: On-the-fly slicing Option2: Separats” viodels
Advantage: No memory overhead. Advantage: hast.
Disadvantage: Each slicing requires matrix transposition Disadvantage. ' ure memory overhead

due to an FP8 hardware limitation of Hopper tensor cores.

Base config: (SP, TP) Shift config: (SP=1, TP=P) Wy, wp
ase ase
1 1 Wtotal = i

4 I ) I SP X TP
GPU

when SP=8, the shift model’s memory
overhead is 12.5% of Base model




Implementation of Shift Parallelism

e Integration into vLLM
o The existing inference frameworks haven’t implemented SP
m Solution: Developing a plug-in system

o capturing cudagraph failed due to dynamic all-to-all communication
m Solution: Modifying compilation by relaxing vLLM’s assumptions
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e Evaluation



Evaluation

1. Adaptation under bursty real-world pattern

2. Performance across various benchmarks

3. Integration with inference optimization techniques

4. Breakdown analysis of different parallelism strategies



Evaluation Setup

e Environments

¢ 8 NVIDIA H200-141GB GPUs

¢ NVSwitch with a bandwidth of 900GB/s

e Baselines

¢ SGlang
¢ TRT-LLM

e Models (all in FP8 quantization)

LLaMA-70B
Qwen-32B
LLaMA-17B-16E
Qwen-30B-A3B

70B
32B
109B/178B
30B/3B

80
64
48
48

8192
5120
5120
2048

64
64
40
32
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Evaluation Setup

e Datasets

¢ A mixture of requests from HumanEval and from a CodeAct agent
m Running against SWEBench
m Real-world

o A filtered real-life dataset that matches the synthetic dataset requests
¢ Synthetic requests with random data
o A bursty traffic pattern that resembles reallife production environment



Performance in Real-World Traffic
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Performance Benchmarks

e LLaMa-70B & Qwen-32B, input: 4k, output: 250

¢ The trend is similar to real-world traffic
m Lowest TTFT, 2nd lowest TPOT
m Better throughput than TP

a) Llama-70B b) Qwen-32B
2 A Combined 2 Combined
Lower Throughput Throughput
C_?S; per okens/sec)
oken
s D P—throughput opt.
I TP—latency opt.

Lower

s SP (UL
Latency flysnses)

per Req. ; == == « Shift Parallelism

Response Generation Response Generation
(#input tok./TTFT) (1/TPOT)

Latency vs. throughput tradeoff



Performance Benchmarks

e LLaMa-70B & Qwen-32B, input: 2k-128k, output: 250
& SP introduces faster prefill, so Shift Parallelism achieves best TTFT

¢ TPOT increases with the input size
m  As the number of tokens read from KV cache increases -> Memory bandwidth bound

& Throughput drops significantly with larger contexts
m Because attention time dominates the end-to-end generation

=p==DP—throughput opt. TP—latency opt. ==g==Shift Parallelism .
&P 4 FRE Combined Throughput
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Input Sequence Length (Tokens) Input Sequence Length (Tokens)

Variations across context sizes



Performance Benchmarks

e LLaMa-70B & Qwen-32B, input: 8k, output: 250
o Completion Time = TTFT + #output * TPOT
o Shift Parallelism strictly obtains the lowest completion time across arrival rates
¢ Inlow-to-medium rates, Shift Parallelism switches back-and-forth across SP and TP
m For minimizing latencies

¢ In high traffic, Shift Parallelism uses SP
m To save combined throughput

(a) Llama-/70B (b) Qwen-32B
45,000 35,000 a
— —e—DP = ——
Rl g som | 3
g i 2 —@— Shift Par.
g 30,000 —g— Shift Par. g 25,000
= 25,000 i— 20,000 .
S 20,000 / S 15,000 / Latency vs. Arrival Rate
2 Dol = 10,000
£ 10,000 e
8 5000 & o8
0 0
Arrival Rate (req/s) 18 ' Arrival Rate (req/s)10

32



Shift Parallelism in Production

e Already integrated Shift Parallelism with SwiftkKV and speculative decoding

e Highest throughput and lowest completion time

¢ Outperforming the best open source systems

» 40,000
S

Our implementation L
in production.

20,000 -'
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Request Completion Latency—P95 (ms)

Combined Throughput
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® VLLM—Throughput Opt.
SGLang—Latency Opt.

® SGLang—Throughput Opt.

B TRT-LLM—Latency Opt.

@ TRT-LLM—Througput Opt.

# Shift Parallelism
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Breakdown

e SP has a lower communication cost than TP

e The parallelization cost of vLLM is significant
¢ Which explains the remaining throughput gap between DP and SP

Duration

(a) Llama-70B
4x(TP= 2)| TP=8 (TP=2, SP=4)

Input Seq. Length {Tokens]
EVvLLM H Model B All-reduce
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B Attention M All-to-all *on 8xH100
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e Conclusion



Conclusion

e Strength
¢ Demonstrates KV cache invariance between TP and SP
¢ Integrated SP into vLLM and combined it with other optimizations
¢ Innovatively switches TP and SP configs to handle bursty workloads

e Weakness
o Poor paper writing!!!
¢ No optimization when TP must be 8
¢ No analysis of switching overhead
¢ No mention of request waiting time
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Background

e Computational Complexity of TP and SP

Per-GPU Complexity

Memory Compute Comm. Volume |Comm./Compute
TP m(n,w)/TP f(n,w)/TP c(n,w) TP x const
SP m(n,w) f(n,w)/SP c(n,w)/SP const

n: sequence length, w: # parameters
SP dose not increase comm cost

[1] Combined Throughput (token/sec) means total number of tokens processe by the inference system per unit of time Y



Background

e Tensor parallelism: partitions weight along hidden size

¢ TP in MLP
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Background

e Tensor parallelism: partitions weight along hidden size D Data

¢ TP in Attention
Data x Wy =  QKV

lTensor parallel
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Background

e Tensor parallelism: partitions weight along hidden size
¢ TP in Attention

[ Softmax J ( Q < KT ) X Vv X Wo = Q,K\V
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Background

e Sequence parallelism (Ulysses)
o SP partitions input along the sequence dim while keeping the weights unchanged
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