Shift Parallelism: Low-Latency, High-Throughput LLM Inference for Dynamic Workloads

Mert Hidayetoglu, Aurick Qiao, Michael Wyatt, Jeff Rasley, Yuxiong He, and Samyam Rajbhandari

Snowflake Al Research

arXiv 2025.9

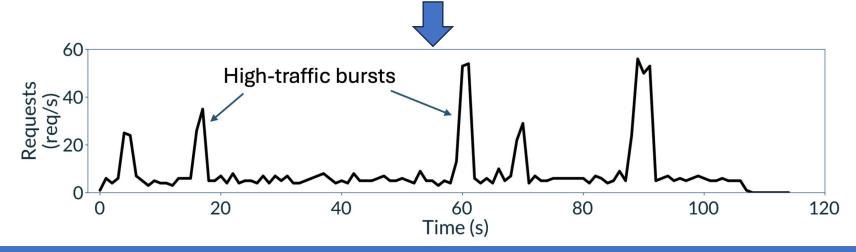
Presented by Jiaan Zhu, Qinghe Wang, Long Zhao

Outline

- Background & Motivation
- Design & Implementation
- Evaluation
- Conclusion

- Inference Workload Characteristics
 - ◆ Interactive workloads (Chat, Agent)
 - need low completion latency, which depends on TTFT and TPOT
 - ◆ Batch workloads (summarization of hundreds of documents)
 - require high throughput rather than low completion latency

Mixed workload leads to highly bursty traffic patterns

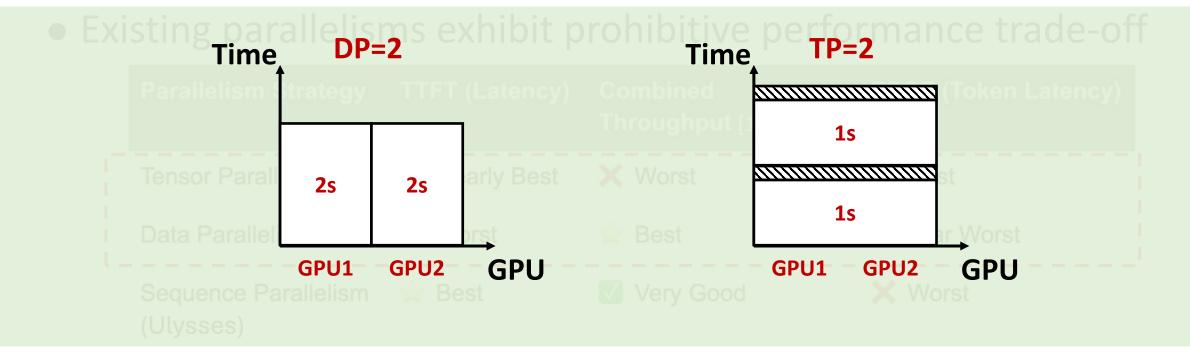


But different workload subject to different quality-of-service metrics

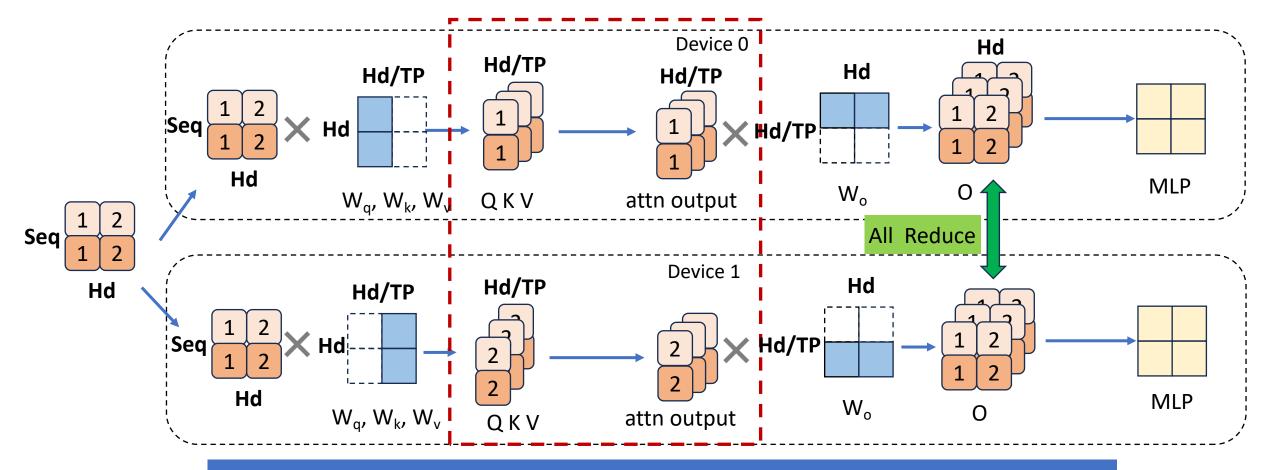
- Existing inference framework utilize various parallelisms
 - ◆ To reduce the latency or increase throughput
- Existing parallelisms exhibit prohibitive performance trade-off

Parallelism Strategy	TTFT (Latency)	Combined Throughput [1]	TPOT (Token Latency)
Tensor Parallelism	Nearly Best	× Worst	☆ Best
Data Parallelism	× Worst	☆ Best	▼ Near Worst
Sequence Parallelism (Ulysses)	☆ Best	✓ Very Good	× Worst

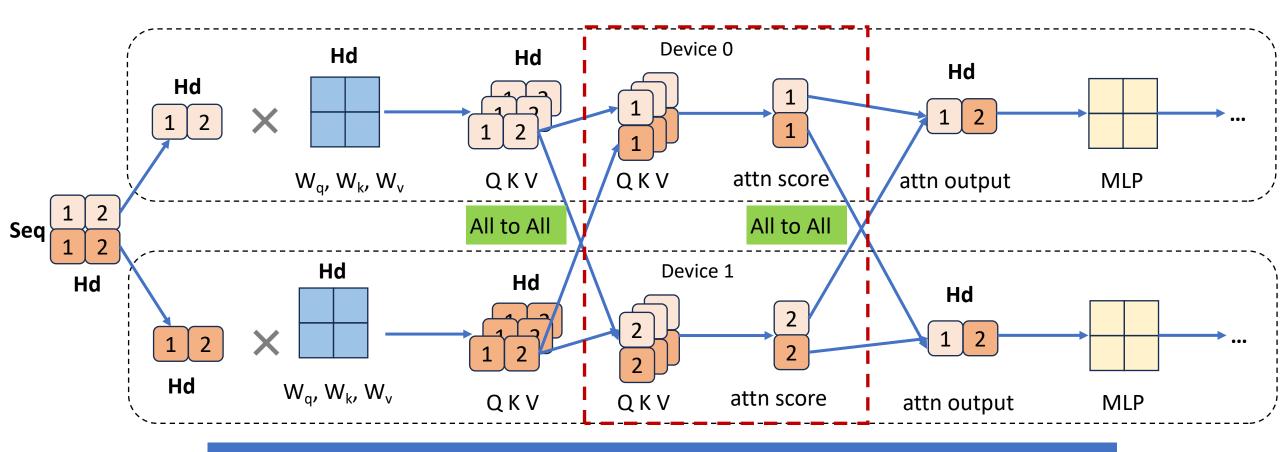
- Existing inference framework utilize various parallelisms
 - ◆ To reduce the latency or increase throughput



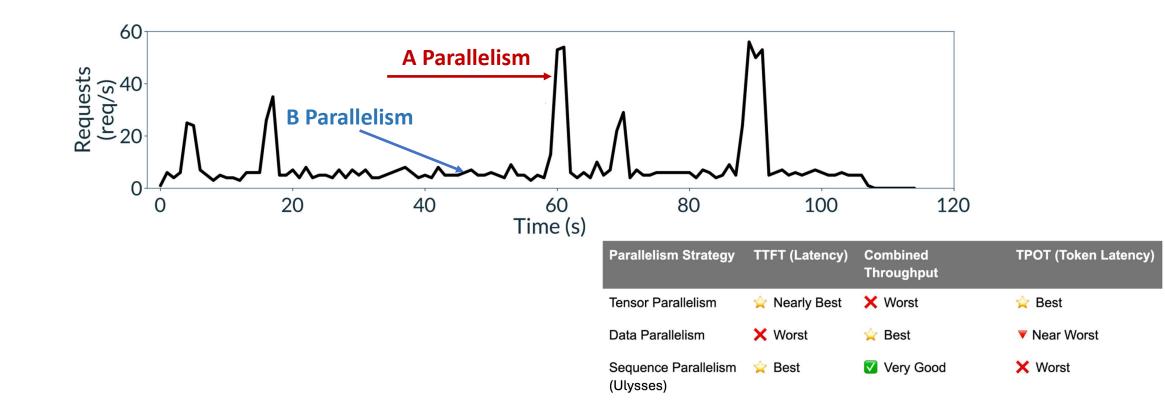
- Tensor parallelism
 - ◆ TP partitions input along weight along hidden size or head dim



- Sequence parallelism (Ulysses)
 - ◆ SP partitions input along the sequence dim while keeping the weights unchanged



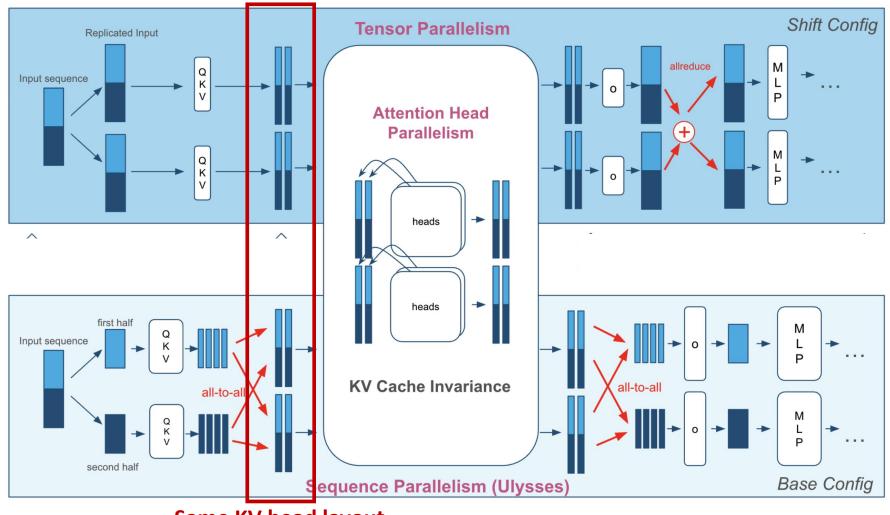
- Single parallelism strategy suits only one type of workload
- Can parallelisms be combined to support different workloads?
 - Choosing the parallelism strategy based on the real-world traffic pattern



- Analysis of parallelism strategy combinations
 - ◆ DP + X
 - Achieving high throughput and low latency
 - They have different KV cache layout, switching requires costly data movement

- ◆ TP + SP
 - Achieving high throughput and low latency
 - SP has the same KV cache layout as TP

An illustration of the KV-cache distribution in TP and SP

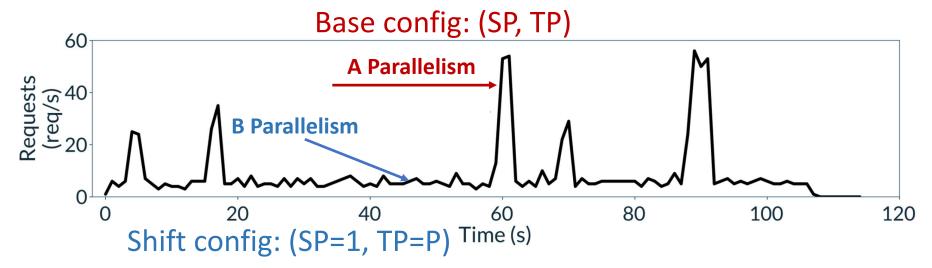


Outline

- Background & Motivation
- Design & Implementation
- Evaluation
- Conclusion

Key ideas

- Base config: (SP, TP)
 - ◆ Use for large batches. minimizing TTFT and better throughput.
- Shift config: (SP=1, TP=P)
 - ◆ Use for small batches, set TP across the full node. minimizing TPOT.



Further Challenges

- 1. Support SP for Inference
 - ◆ Early designs lack support for GQA
 - Load imbalance occurs under low-traffic conditions

- 2. How to shift between base config and shift config?
 - ◆ How to ensure KV cache consistency?
 - head ordering is different in (SP, TP) and (SP=1, TP=P)
 - ◆ How to ensure weight compatibility?
 - Weight layouts differ across the two configs.

Further Challenges

- 1. Support SP for Inference
 - ◆ Early designs lack support for GQA
 - Load imbalance occurs under low-traffic conditions

- 2. How to shift between base config and shift config?
 - ♦ How to ensure KV cache consistency?
 - head ordering is different in (SP, TP) and (SP=1, TP=P)
 - ♦ How to ensure weight compatibility?
 - Weight layouts differ across the two configs.

- 1. Support SP for Inference
 - ◆ Early designs lack support for GQA
 - ◆ Load imbalance occurs under low-traffic conditions

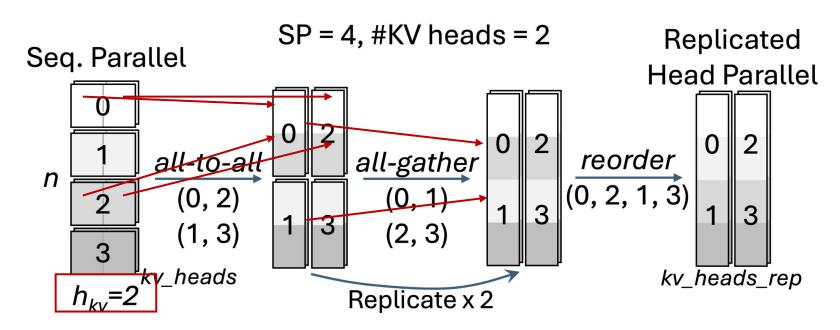


QKV Spilt along head dim

KV head is 4, when SP=8, can not spilt along the head dim

TP solves this by **replicating the KV weights**, and doing redundant computation. SP needs to design a more efficient communication strategy to share KV.

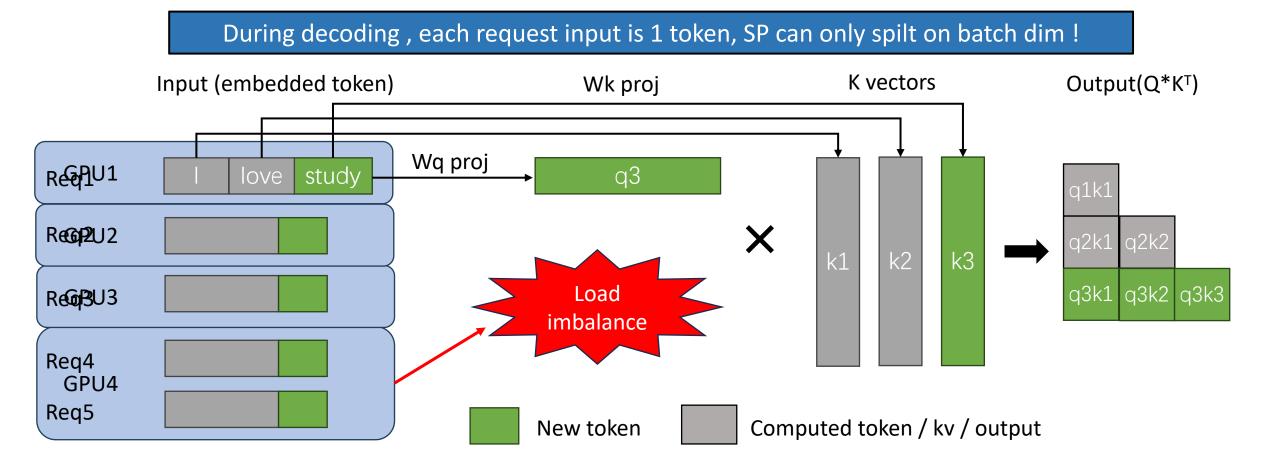
- 1. Support SP for Inference
 - Early designs lack support for GQA
 - Solution: Multi-step neighborhood collectives
 - ◆ Load imbalance occurs under low-traffic conditions



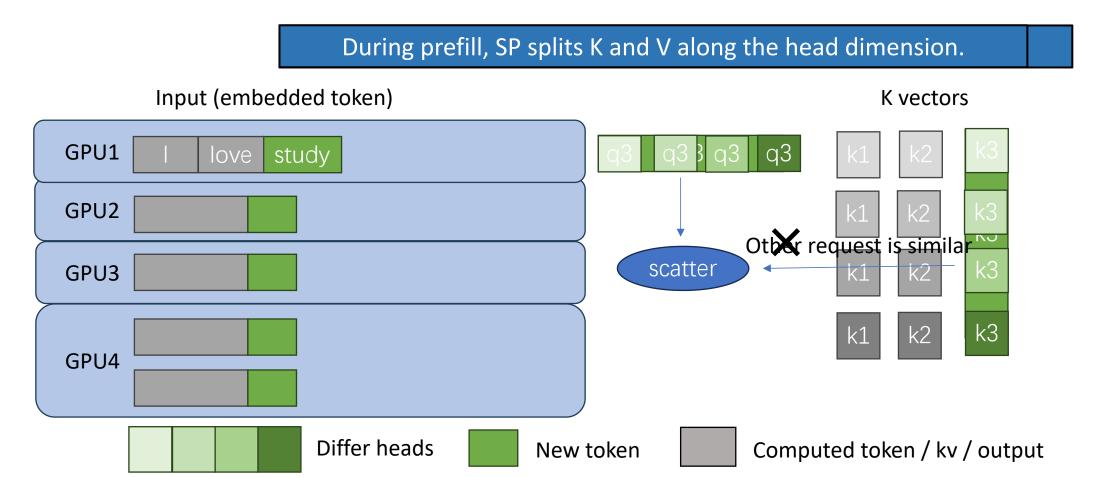
^{*}Blocks with different colors represent different parts of the sequence

^{*}The numbers 0, 1, 2, 3 denote the GPU id.

- 1. Support SP for Inference
 - ◆ Early designs lack support for GQA
 - ◆ Load imbalance occurs under low-traffic conditions (decoding)



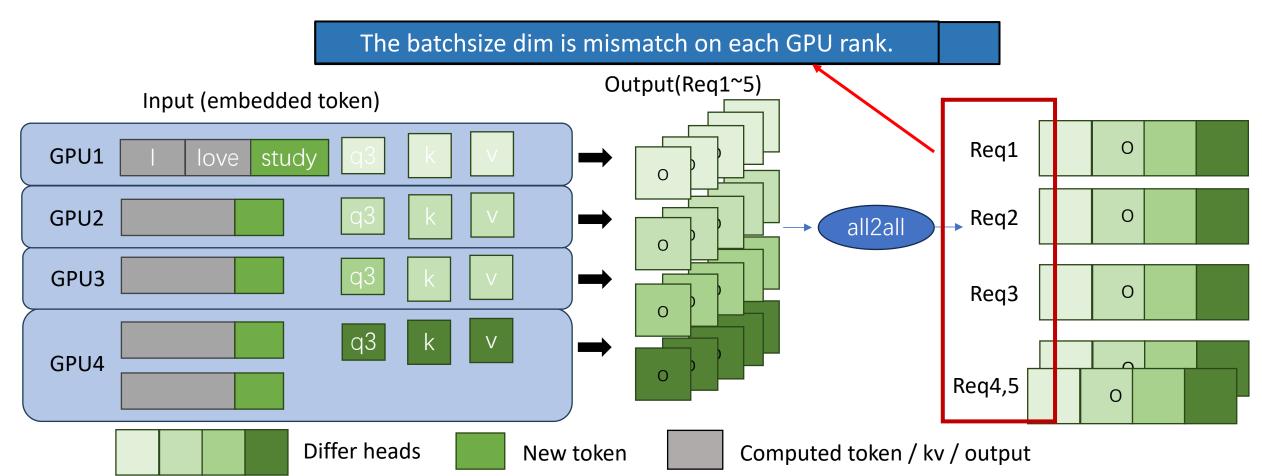
- 1. Support SP for Inference
 - ◆ Early designs lack support for GQA
 - ♦ What problems does Load imbalance cause? (decoding)



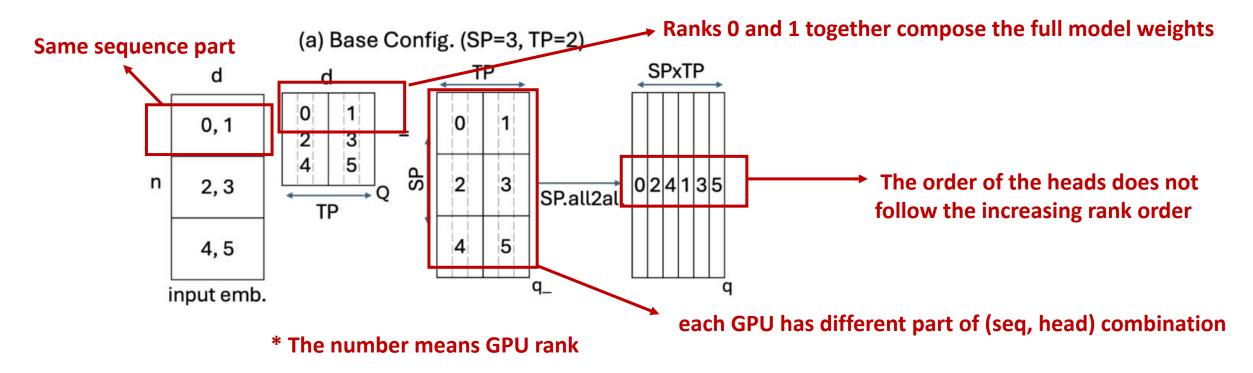
- 1. Support SP for Inference
 - ◆ Early designs lack support for GQA
 - ♦ What problems does Load imbalance cause? (decoding)

During decoding, output need a all2all communication. Output(Req1~5) Input (embedded token) 0 Reg1 GPU1 study love 0 GPU2 Req2 all2all 0 GPU3 Req3 0 0 q3 k3 GPU4 0 Req4,5 Differ heads New token Computed token / kv / output

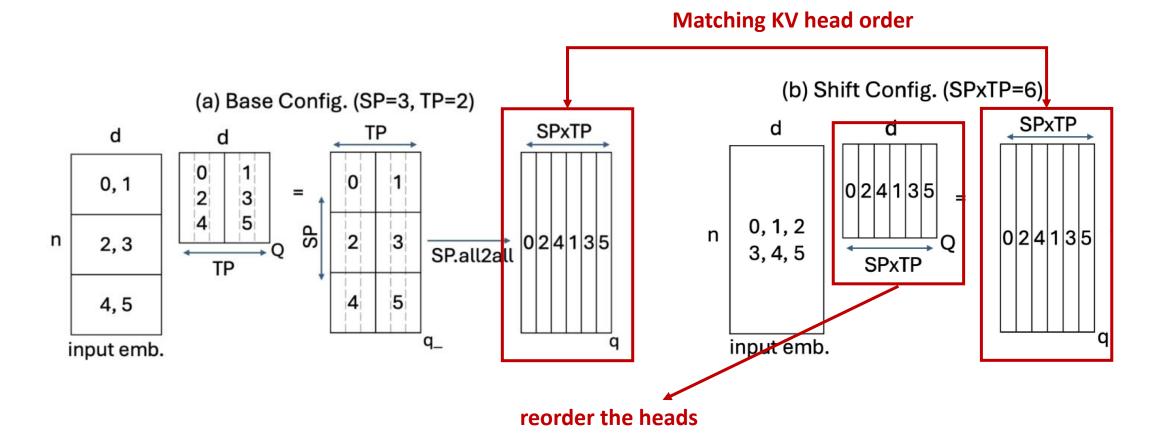
- 1. Support SP for Inference
 - Early designs lack support for GQA
 - ♦ What problems does Load imbalance cause? (decoding)



- 2. How to shift between base config and shift config?
 - ♦ How to ensure KV cache consistency?
 - Head ordering is different in (SP, TP) and (SP=1, TP=P)



- 2. How to shift between base config and shift config?
 - ♦ How to ensure KV cache consistency?
 - **Solution: Reorder the heads** when using **shift config** (SP=1,TP = SPxTP)



- 2. How to shift between base config and shift config?
 - ♦ How to ensure weight compatibility?
 - Weight layouts differ across the two configs.

Option1: On-the-fly slicing

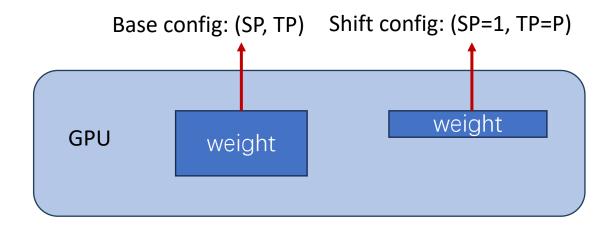
Advantage: No memory overhead.

Disadvantage: Each slicing requires matrix transposition due to an FP8 hardware limitation of Hopper tensor cores.

Option2: Separate Models

Advantage: 1st.

Disadvantage. The memory overhead



$$w_{total} = \frac{w_{base}}{TP} + \frac{w_{base}}{SP \times TP}$$

when SP=8, the shift model's memory overhead is 12.5% of Base model

Implementation of Shift Parallelism

- Integration into vLLM
 - ◆ The existing inference frameworks haven't implemented SP
 - **Solution**: Developing a **plug-in** system
 - ◆ capturing cudagraph failed due to dynamic all-to-all communication
 - Solution: Modifying compilation by relaxing vLLM's assumptions

Outline

- Background & Motivation
- Design & Implementation
- Evaluation
- Conclusion

Evaluation

- 1. Adaptation under bursty real-world pattern
- 2. Performance across various benchmarks
- 3. Integration with inference optimization techniques
- 4. Breakdown analysis of different parallelism strategies

Evaluation Setup

- Environments
 - ◆ 8 NVIDIA **H200-141GB** GPUs
 - ♦ NVSwitch with a bandwidth of 900GB/s
- Baselines
 - ◆ SGLang
 - ◆ TRT-LLM
- Models (all in FP8 quantization)

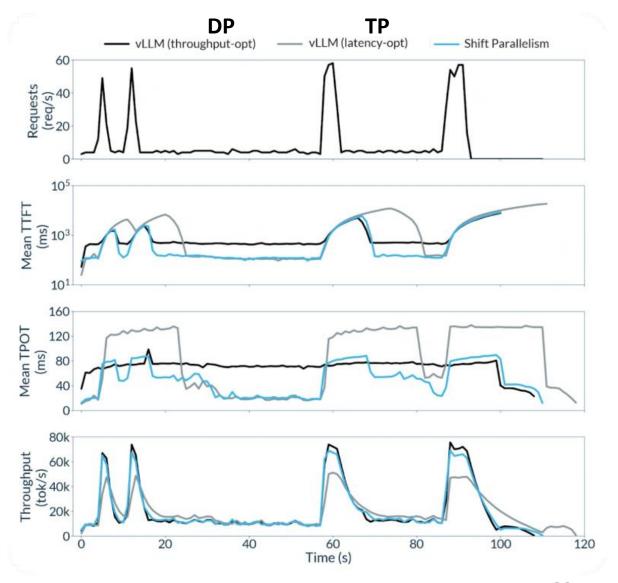
Model	#Params	#Layer	Hidden Size	Q Heads	KV Heads
LLaMA-70B	70B	80	8192	64	8
Qwen-32B	32B	64	5120	64	8
LLaMA-17B-16E	109B/17B	48	5120	40	8
Qwen-30B-A3B	30B/3B	48	2048	32	4

Evaluation Setup

- Datasets
 - ◆ A mixture of requests from HumanEval and from a CodeAct agent
 - Running against SWEBench
 - Real-world
 - ◆ A filtered real-life dataset that matches the synthetic dataset requests
 - Synthetic requests with random data
 - ◆ A bursty traffic pattern that resembles reallife production environment

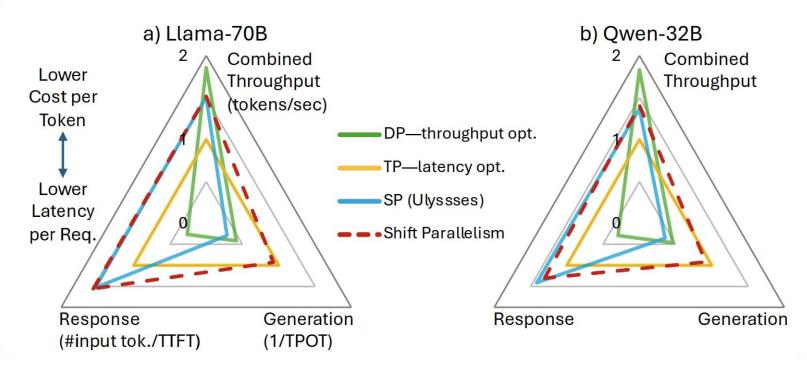
Performance in Real-World Traffic

- LLaMa-70B, real-world trace
 - ◆ Shift Parallelism obtains
 - Lowest latency at bursty requests
 - Lower median TTFT & TPOT
 - Higher peak throughput than TP
- Shift Parallelism can handle the high-traffic bursts better



Performance Benchmarks

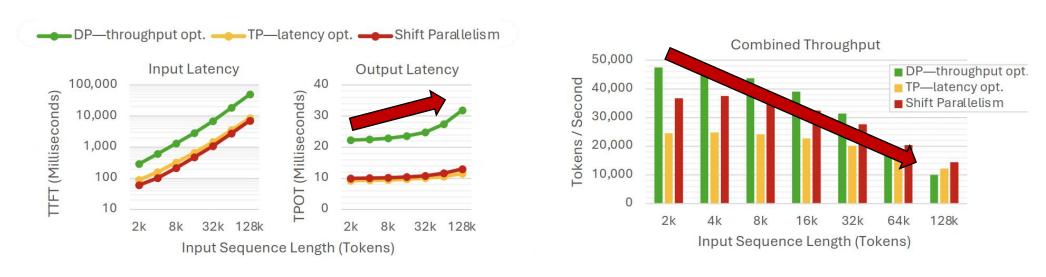
- LLaMa-70B & Qwen-32B, input: 4k, output: 250
 - ◆ The trend is similar to real-world traffic
 - Lowest TTFT, 2nd lowest TPOT
 - Better throughput than TP



Latency vs. throughput tradeoff

Performance Benchmarks

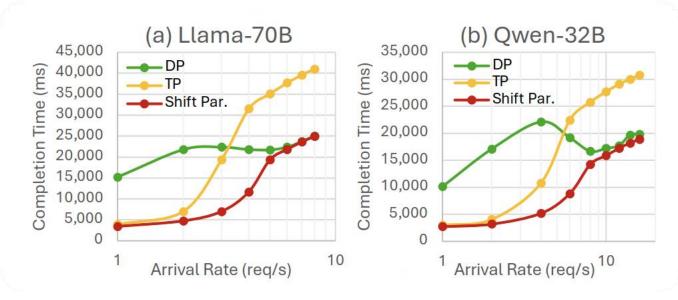
- LLaMa-70B & Qwen-32B, input: 2k-128k, output: 250
 - ◆ SP introduces faster prefill, so Shift Parallelism achieves best TTFT
 - ◆ TPOT increases with the input size
 - As the number of tokens read from KV cache increases -> Memory bandwidth bound
 - ◆ Throughput drops significantly with larger contexts
 - Because attention time dominates the end-to-end generation



Variations across context sizes

Performance Benchmarks

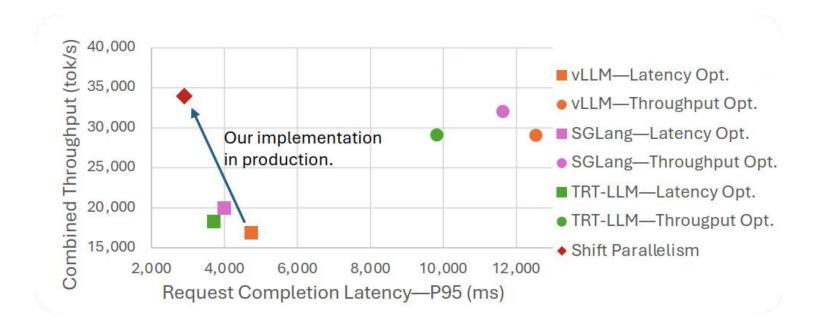
- LLaMa-70B & Qwen-32B, input: 8k, output: 250
 - ◆ Completion Time = TTFT + #output * TPOT
 - ◆ Shift Parallelism strictly obtains the lowest completion time across arrival rates
 - ◆ In low-to-medium rates, Shift Parallelism switches back-and-forth across SP and TP
 - For minimizing latencies
 - ◆ In high traffic, Shift Parallelism uses SP
 - To save combined throughput



Latency vs. Arrival Rate

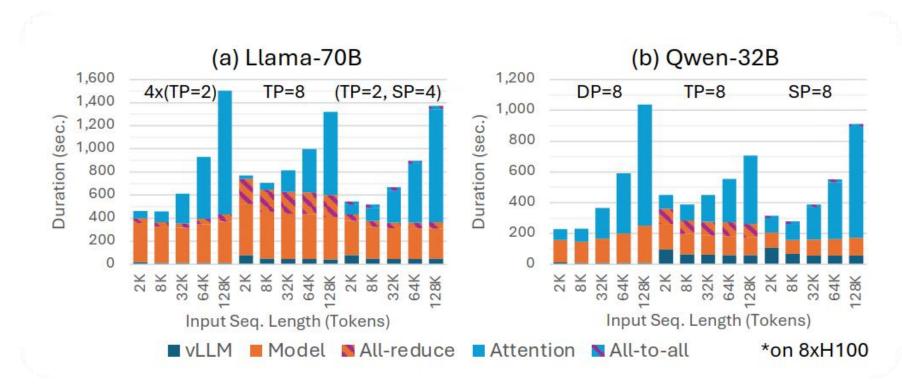
Shift Parallelism in Production

- Already integrated Shift Parallelism with SwiftKV and speculative decoding
- Highest throughput and lowest completion time
 - Outperforming the best open source systems



Breakdown

- SP has a lower communication cost than TP
- The parallelization cost of vLLM is significant
 - ◆ Which explains the remaining throughput gap between DP and SP



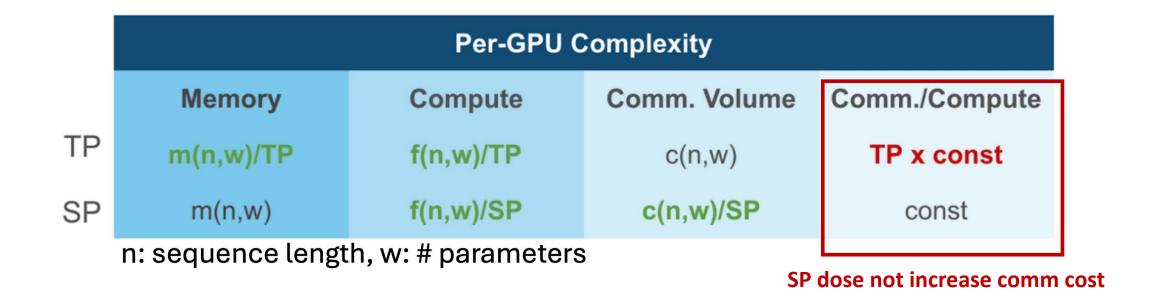
Outline

- Background & Motivation
- Design & Implementation
- Evaluation
- Conclusion

Conclusion

- Strength
 - Demonstrates KV cache invariance between TP and SP
 - ◆ Integrated SP into vLLM and combined it with other optimizations
 - ◆ Innovatively switches TP and SP configs to handle bursty workloads
- Weakness
 - ◆ Poor paper writing!!!
 - ◆ No optimization when TP must be 8
 - ◆ No analysis of switching overhead
 - ◆ No mention of request waiting time

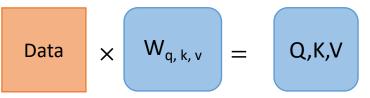
Computational Complexity of TP and SP

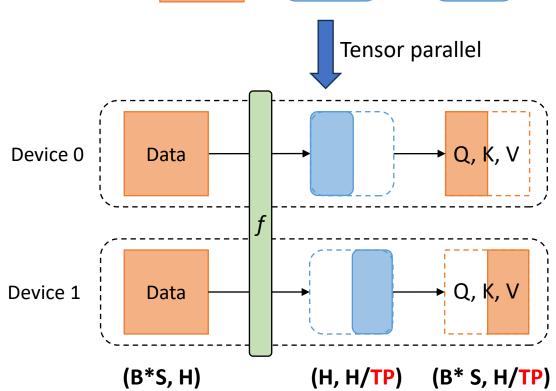


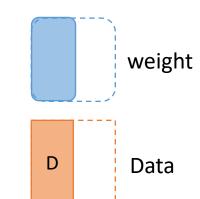
• Tensor parallelism: partitions weight along hidden size weight ◆ TP in MLP W1 W2 Data **GELU** X Data Tensor parallel Device 0 data data Data All Reduce **GELU** data Device 1 data Data D (B*S, H) (H, H/TP)(B*S, H/TP)(B*S, H) (H/TP, H)(B*S, H)

• Tensor parallelism: partitions weight along hidden size

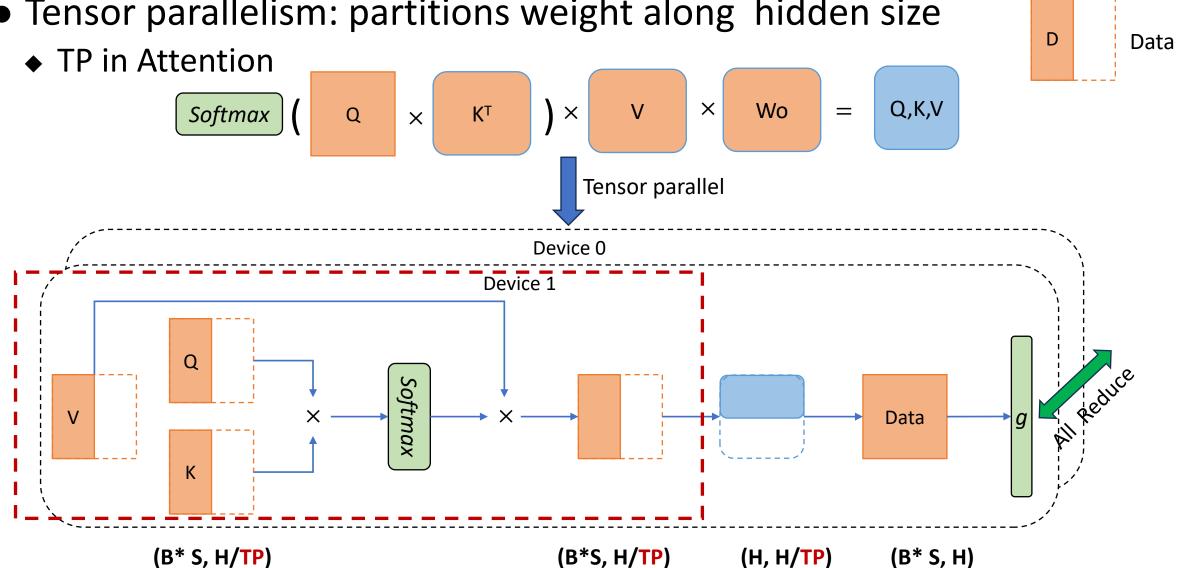
◆ TP in Attention







Tensor parallelism: partitions weight along hidden size



weight

- Sequence parallelism (Ulysses)
 - ◆ SP partitions input along the sequence dim while keeping the weights unchanged

