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l Inference Workload Characteristics
u Interactive workloads (Chat, Agent)
n need low completion latency, which depends on TTFT and TPOT

u Batch workloads (summarization of hundreds of documents)
n require high throughput rather than low completion latency
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Background

Mixed workload leads to highly bursty traffic patterns  

 But different workload subject to different quality-of-service metrics



l Existing inference framework utilize various parallelisms
u To reduce the latency or increase throughput

l Existing parallelisms exhibit prohibitive performance trade-off
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Background

[1] Combined Throughput (token/sec) means total number of tokens processe by the inference system per unit of time
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l Tensor parallelism 
u TP partitions input along weight along  hidden size or head dim
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l Sequence parallelism (Ulysses)
u SP partitions input along the sequence dim while keeping the weights unchanged 
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l Single parallelism strategy suits only one type of workload
l Can parallelisms be combined to support different workloads?
u Choosing the parallelism strategy based on the real-world traffic pattern
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Background

 A Parallelism 

B Parallelism 



l Analysis of parallelism strategy combinations
u DP + X
n Achieving high throughput and low latency
n They have different KV cache layout, switching requires costly data movement

u TP + SP
n Achieving high throughput and low latency
n SP has the same KV cache layout as TP
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l An illustration of the KV-cache distribution in TP and SP
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Background

Same KV head layout
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l Base config: (SP, TP)  
u Use for large batches. minimizing TTFT and better throughput.

l Shift config: (SP=1, TP=P)
u Use for small batches, set TP across the full node. minimizing TPOT.

 A Parallelism 

B Parallelism 

Key ideas

Base config: (SP, TP) 

Shift config: (SP=1, TP=P)

 When to switch?  Simply set a Threshold.



Further Challenges
l 1. Support SP for Inference
u Early designs lack support for GQA
u Load imbalance occurs under low-traffic conditions

l 2. How to shift between base config and shift config?
u How to ensure KV cache consistency?
n head ordering is different in (SP, TP) and (SP=1, TP=P)

u How to ensure weight compatibility?
n Weight layouts differ across the two configs.
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Design of Shift Parallelism
l 1. Support SP for Inference
u Early designs lack support for GQA
u Load imbalance occurs under low-traffic conditions

KV head is 4, when SP=8, can not spilt along the head dim

TP solves this by replicating the KV weights, and doing redundant computation.
SP needs to design a more efficient communication strategy to share KV.

QKV Spilt along head dim



Design of Shift Parallelism
l 1. Support SP for Inference
u Early designs lack support for GQA
n Solution: Multi-step neighborhood collectives

u Load imbalance occurs under low-traffic conditions

*Blocks with different colors represent different parts of the sequence 
*The numbers 0, 1, 2, 3 denote the GPU id.
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Design of Shift Parallelism
l 1. Support SP for Inference
u Early designs lack support for GQA
u Load imbalance occurs under low-traffic conditions (decoding)
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Design of Shift Parallelism
l 1. Support SP for Inference
u Early designs lack support for GQA
u What problems does Load imbalance cause? (decoding)
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Design of Shift Parallelism
l 1. Support SP for Inference
u Early designs lack support for GQA
u What problems does Load imbalance cause? (decoding)
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Design of Shift Parallelism
l 1. Support SP for Inference
u Early designs lack support for GQA
u What problems does Load imbalance cause? (decoding)
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Design of Shift Parallelism
l 2. How to shift between base config and shift config?
u How to ensure KV cache consistency?
n Head ordering is different in (SP, TP) and (SP=1, TP=P)

* The number means GPU rank

 The order of the heads does not 
follow the increasing rank order

 Ranks 0 and 1 together compose the full model weights
Same sequence part

 each GPU has different part of (seq, head) combination



Design of Shift Parallelism
l 2. How to shift between base config and shift config?
u How to ensure KV cache consistency?
n Solution: Reorder the heads when using shift config (SP=1,TP = SPxTP)

reorder the heads

Matching KV head order



Design of Shift Parallelism
l 2. How to shift between base config and shift config?
u How to ensure weight compatibility?
n Weight layouts differ across the two configs.

Option1: On-the-fly slicing Option2: Separate Models

Advantage: No memory overhead.
Disadvantage: Each slicing requires matrix transposition 
due to an FP8 hardware limitation of Hopper tensor cores.

Advantage: Fast.
Disadvantage: More memory overhead

GPU weight

Base config: (SP, TP)  Shift config: (SP=1, TP=P)

weight
when SP=8, the shift model’s memory 
overhead is 12.5% of Base model



Implementation of Shift Parallelism
l Integration into vLLM
u The existing inference frameworks haven’t implemented SP
n Solution: Developing a plug-in system

u capturing cudagraph failed due to dynamic all-to-all communication
n Solution: Modifying compilation by relaxing vLLM’s assumptions
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1. Adaptation under bursty real-world pattern
2. Performance across various benchmarks
3. Integration with inference optimization techniques
4. Breakdown analysis of different parallelism strategies
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Evaluation



l Environments
u 8 NVIDIA H200-141GB GPUs
u NVSwitch with a bandwidth of 900GB/s

l Baselines
u SGLang
u TRT-LLM

l Models (all in FP8 quantization)
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Evaluation Setup

Model #Params #Layer Hidden Size Q Heads KV Heads
LLaMA-70B 70B 80 8192 64 8
Qwen-32B 32B 64 5120 64 8

LLaMA-17B-16E 109B/17B 48 5120 40 8
Qwen-30B-A3B 30B/3B 48 2048 32 4



l Datasets
u A mixture of requests from HumanEval and from a CodeAct agent
n Running against SWEBench
n Real-world

u A filtered real-life dataset that matches the synthetic dataset requests
u Synthetic requests with random data
u A bursty traffic pattern that resembles reallife production environment
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Evaluation Setup



l LLaMa-70B, real-world trace
u Shift Parallelism obtains 
n Lowest latency at bursty requests
n Lower median TTFT & TPOT
n Higher peak throughput than TP

l Shift Parallelism can handle the 
high-traffic bursts better
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Performance in Real-World Traffic
DP TP



l LLaMa-70B & Qwen-32B, input: 4k, output: 250
u The trend is similar to real-world traffic
n Lowest TTFT, 2nd lowest TPOT
n Better throughput than TP
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Performance Benchmarks

Latency vs. throughput tradeoff



l LLaMa-70B & Qwen-32B, input: 2k-128k, output: 250
u SP introduces faster prefill, so Shift Parallelism achieves best TTFT
u TPOT increases with the input size
n As the number of tokens read from KV cache increases -> Memory bandwidth bound

u Throughput drops significantly with larger contexts 
n Because attention time dominates the end-to-end generation
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Performance Benchmarks

Variations across context sizes



l LLaMa-70B & Qwen-32B, input: 8k, output: 250
u Completion Time = TTFT + #output * TPOT
u Shift Parallelism strictly obtains the lowest completion time across arrival rates
u In low-to-medium rates, Shift Parallelism switches back-and-forth across SP and TP 
n For minimizing latencies

u In high traffic, Shift Parallelism uses SP
n To save combined throughput
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Performance Benchmarks

Latency vs. Arrival Rate



l Already integrated Shift Parallelism with SwiftKV and speculative decoding
l Highest throughput and lowest completion time
u Outperforming the best open source systems
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Shift Parallelism in Production



l SP has a lower communication cost than TP
l The parallelization cost of vLLM is significant
u Which explains the remaining throughput gap between DP and SP
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Breakdown
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l Strength
u Demonstrates KV cache invariance between TP and SP
u Integrated SP into vLLM and combined it with other optimizations
u Innovatively switches TP and SP configs to handle bursty workloads

l Weakness
u Poor paper writing!!!
u No optimization when TP must be 8
u No analysis of switching overhead
u No mention of request waiting time
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Conclusion



l Computational Complexity of TP and SP
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Background

[1] Combined Throughput (token/sec) means total number of tokens processe by the inference system per unit of time

SP dose not increase comm cost



l Tensor parallelism: partitions weight along  hidden size
u TP in MLP
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l Tensor parallelism: partitions weight along  hidden size
u TP in Attention

Background
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l Tensor parallelism: partitions weight along  hidden size
u TP in Attention
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l Sequence parallelism (Ulysses)
u SP partitions input along the sequence dim while keeping the weights unchanged 
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