Shift Parallelism: Low-Latency, High-Throughput LLM
Inference for Dynamic Workloads

Mert Hidayetoglu, Aurick Qiao, Michael Wyatt, Jeff Rasley, Yuxiong
He, and Samyam Rajbhandari

Snowflake Al Research

arXiv 2025.9

Presented by Jiaan Zhu, Qinghe Wang, Long Zhao

USTC, CHINA

éé ADSLAB

RHAHRBRAARRE 1

Outline

e Background & Motivation

Background

e Inference Workload Characteristics
¢ Interactive workloads (Chat, Agent)
m need low completion latency, which depends on TTFT and TPOT

o Batch workloads (summarization of hundreds of documents)
m require high throughput rather than low completion latency

Mixed workload leads to highly bursty traffic patterns

\ 4

(N
o

. High-traffic bursts |
2 540
83 / ™~
52
2 =20
o 4 Y . . : : \.
0 20 40 60 80 100 120
Time (s)

But different workload subject to different quality-of-service metrics

Background

e Existing inference framework utilize various parallelisms
o To reduce the latency or increase throughput

e Existing parallelisms exhibit prohibitive performance trade-off

Parallelism Strategy TTFT (Latency) Combined TPOT (Token Latency)
Throughput [1]

Tensor Parallelism .. Nearly Best X Worst .. Best

Data Parallelism X Worst .. Best ¥ Near Worst

Sequence Parallelism .. Best Very Good X Worst

(Ulysses)

[1] Combined Throughput (token/sec) means total number of tokens processe by the inference system per unit of time

Background

e Existing inference framework utilize various parallelisms
o To reduce the latency or increase throughput

Time, DP=2 Time ~ TP=2
1s
AN,
2s 2s
1s
GPU1 GPU2 GPU GPU1 GPU2 GPU

[1] Combined Throughput (token/sec) means total number of tokens processe by the inference system per unit of time

Background

e Tensor parallelism
o TP partitions input along weight along hidden size or head dim

o m e - e - e - e e En e Em e R e Em e Em e N e Sm e EE S RN e Em e EE S RN S Em S EE S N S Sm G Em G e e em em Em e e e em e e B T T T T T T T T T T T —

~

Devicel |
: Hd

| |
— X l"d/TPI
!

attn output :

S e e e e, e, e, e e e - —m—————————— - — . — - - — - S — - S — S N — - S — B — = = = = e = e = o = e =

—_———m——— oy

\ 4

W MLP

(o)

QKYV is partitioned along head dimension 6

Background

e Sequence parallelism (Ulysses)
o SP partitions input along the sequence dim while keeping the weights unchanged

___ _—..__—..__—.-_‘__-..__l.___
| Device 0 I \
| Hd i
attn score attn output MLP ;

All to All

Device 1 : \
. e
> l > > !
| Z]r’ I i
| :
l /

3
=
=
=

In SP- Ulysses, QKV is also partitioned along head dimension

Background

e Single parallelism strategy suits only one type of workload

e Can parallelisms be combined to support different workloads?
¢ Choosing the parallelism strategy based on the real-world traffic pattern

o
o

" A Parallelism] M

% &40 "

iy |

> O B Parallelism

v = 20;

i

o+ 5 : ; : : \
0] 20 40 60 80 100 120
Time (s)
Parallelism Strategy TTFT (Latency) Combined TPOT (Token Latency)
Throughput

Tensor Parallelism .. Nearly Best X Worst .. Best
Data Parallelism X Worst .. Best ¥ Near Worst
Sequence Parallelism . Best Very Good X Worst

(Ulysses)

Background

e Analysis of parallelism strategy combinations

¢ DP + X

m Achieving high throughput and low latency

m They have different KV cache layout, switching requires costly data movement@
¢ TP +SP

m Achieving high throughput and low latency
m SP has the same KV cache layout as TP

Background

e An illustration of the KV-cache distribution in TP and SP

Replicated Input

Input sequence
I
I

(<=0 |
|

(<=0]
|

“_.
|‘_’

Tensor Parallelism

/

second half

first half
Input sequence . IIII
“\ all-to-all |\‘

_

Attention Head
Parallelism

N

heads

heads

S

KV Cache Invariance

/

\

Jequence Parallelism (Ulysses)

Shift Config
aIlreduce M -
> > L
P
/ \ N
> |» L .
P
— f_\
M
. |0 |> - L —o
P
- —
all-to-all PN
M
— |0 | > > L >
P
= —

Base Config

Same KV head layout

10

Outline

e Design & Implementation

Key ideas

e Base config: (SP, TP)
o Use for large batches. minimizing TTFT and better throughput.

e Shift config: (SP=1, TP=P)

o Use for small batches, set TP across the full node. minimizing TPOT.

0 Base config: (SP, TP)

” A Parallelism | M
R .'
2 B Parallelism
2 £20
0.4 . | . . — N\
0 20 40 60 80 100 120

Shift config: (SP=1, TP=P) Time(s)

When to switch? Simply set a Threshold.

Further Challenges

e 1. Support SP for Inference
o Early designs lack support for GQA
¢ Load imbalance occurs under low-traffic conditions

Further Challenges

e 1. Support SP for Inference
o Early designs lack support for GQA
¢ Load imbalance occurs under low-traffic conditions

e 2. How to shift between base config and shift config?

¢ How to ensure KV cache consistency?

m head ordering is different in (SP, TP) and (SP=1, TP=P)
¢ How to ensure weight compatibility?

m Weight layouts differ across the two configs.

Design of Shift Parallelism

e 1. Support SP for Inference
o Early designs lack support for GQA

Multi-head Grouped-query Multi-query
First /s _
Input half R I ﬁ//&_\] Values
ence Q = M
-] =)o --
e e R S S S
Si“‘i‘:d T altoallX $¥ ;; ~ 2% ¥all-to-al Keys U D |:| D D
a £ N A
g | o \ ToaeereR L 2 X F ¥ | M
- | K 4"“““"‘ heads || /IIII—*) DR S A S SR (UL SO SO S W s S T A TN oo L A T N g
R 1 J006p000 OOooooon
\'H-_ __—J_Fﬁk —o—'/ L Juuuuyuuuuuwyl

e
/Head Parallelism

QKV Spilt along head dim KV head is 4, when SP=8, can not spilt along the head dim

TP solves this by replicating the KV weights, and doing redundant computation.
SP needs to design a more efficient communication strategy to share KV.

Design of Shift Parallelism

e 1. Support SP for Inference

o Early designs lack support for GQA
m Solution: Multi-step neighborhood collectives

s parallel SP =4, #KV heads =2 Replicated
©q. raratie Head Parallel

0 — > r I
— O 1
1 /al-H/o;/aH:/ all-gather 0f2 reorder 0]2

n == > -
2 ,/(0’ 2) 1 3 (O, 2, 1, 3) 1 3
=] 9 B @9
_heads ~—— kv_heads_re
hy=2 kr Replicate x 2 P

*Blocks with different colors represent different parts of the sequence
*The numbers 0, 1, 2, 3 denote the GPU id.

Design of Shift Parallelism

e 1. Support SP for Inference

¢ Load imbalance occurs under low-traffic conditions (decoding)

During decoding , each request input is 1 token, SP can only spilt on batch dim !

Input (embedded token) WK proj K vectors Output(Q*KT)

4)

)

RegRU2) ¢ . W 21 G2k2
ReGRU3 Load g3kl g3k2 g3k3
> imbalance

Reqd /

GPU4
Reqg5
_ L - New token - Computed token / kv / output

AN

Y

AN

N

Design of Shift Parallelism

e 1. Support SP for Inference

¢ What problems does Load imbalance cause? (decoding)

During prefill, SP splits K and V along the head dimension.

Input (embedded token)

K vectors

8 o

(\ GPU1 {

> GPU2 - <
GPU3 []

& J

e ~
GPU4 -
|

)

. Differ heads - New token

@OtM reqguest is.simila

:

Computed token / kv / output

Design of Shift Parallelism

e 1. Support SP for Inference

¢ What problems does Load imbalance cause? (decoding)

During decoding, output need a all2all communication.

Input (embedded token)

AN

N

1 111

> GPU1
GPU2 []
&
| 6pU3]
e — <
GPU4 ||
: | ;

. Differ heads - New token

Output(Reql~5)

E—
|) — Reql
o [
R R
o !
—
/ — Req3
Reqg4,5

Computed token / kv / output

Design of Shift Parallelism

e 1. Support SP for Inference

¢ What problems does Load imbalance cause? (decoding)

The batchsize dim is mismatch on each GPU rank.
Output(Reql~5)

Input (embedded token)

2)\
GPU1 stud —) Reql ° .
e - 2
GPU2 [] - . Req2 0 .
\ V4
()
GPU3
el B - o | <L 1
()

= @
GPU4 - q

] Req4,5L o
N\ /

. Differ heads - New token Computed token / kv / output

Design of Shift Parallelism

e 2. How to shift between base config and shift config?

¢ How to ensure KV cache consistency?
m Head ordering is different in (SP, TP) and (SP=1, TP=P)

Same sequence part (a) Base Config. (SP=3, TP= Ranks 0 and 1 together compose the full model weights
\ d d , _ SPXTP

0, 1 0] 1 l 0| 1
2 3)
4 5
n 2,3 9 &l 2 | 3 1 (012/4/1(3|5 > The order of the heads does not
SP.all2al . .
TP . follow the increasing rank order
4,5 4 5

input emb. q\ ’

each GPU has different part of (seq, head) combination
* The number means GPU rank

Design of Shift Parallelism

e 2. How to shift between base config and shift config?

¢ How to ensure KV cache consistency?
m Solution: Reorder the heads when using shift config (SP=1,TP = SPxTP)

Matching KV head order

(a) Base Config. (SP=3, TP=2) ' (b) Shift Config. (SPxTP=6)]
d d TP SPXTP d d SPxTP
0| 1
01 2 = |0 02/4/1/3/5| -
418 a 0,1,2
N1 2,3 ol 2|3 - 0/2(4(1(3/5 nf > Q| | (021413
= SP.all24l 3,4,5 r—
4,5 4|5
//

input emb. q_ q)/ingu?@mb.

reorder the heads

Design of Shift Parallelism

e 2. How to shift between base config and shift config?

¢ How to ensure weight compatibility?
m Weight layouts differ across the two configs.

Optionl: On-the-fly slicing Option2: Separats” viodels
Advantage: No memory overhead. Advantage: hast.
Disadvantage: Each slicing requires matrix transposition Disadvantage. ' ure memory overhead

due to an FP8 hardware limitation of Hopper tensor cores.

Base config: (SP, TP) Shift config: (SP=1, TP=P) Wy, wp
ase ase
1 1 Wtotal = i

4 I) I SP X TP
GPU

when SP=8, the shift model’s memory
overhead is 12.5% of Base model

Implementation of Shift Parallelism

e Integration into vLLM
o The existing inference frameworks haven’t implemented SP
m Solution: Developing a plug-in system

o capturing cudagraph failed due to dynamic all-to-all communication
m Solution: Modifying compilation by relaxing vLLM’s assumptions

Outline

e Evaluation

Evaluation

1. Adaptation under bursty real-world pattern

2. Performance across various benchmarks

3. Integration with inference optimization techniques

4. Breakdown analysis of different parallelism strategies

Evaluation Setup

e Environments

¢ 8 NVIDIA H200-141GB GPUs

¢ NVSwitch with a bandwidth of 900GB/s

e Baselines

¢ SGlang
¢ TRT-LLM

e Models (all in FP8 quantization)

LLaMA-70B
Qwen-32B
LLaMA-17B-16E
Qwen-30B-A3B

70B
32B
109B/178B
30B/3B

80
64
48
48

8192
5120
5120
2048

64
64
40
32

&~ 0 00 00

Evaluation Setup

e Datasets

¢ A mixture of requests from HumanEval and from a CodeAct agent
m Running against SWEBench
m Real-world

o A filtered real-life dataset that matches the synthetic dataset requests
¢ Synthetic requests with random data
o A bursty traffic pattern that resembles reallife production environment

Performance in Real-World Traffic

DP P

® LLaMa—7O B’ real-WO rld tra ce = — VLLM (throughput-opt) vLLM (latency-opt) Shift Parallelism
¢ Shift Parallelism obtains ;40

m Lowest latency at bursty requests o

= Lower median TTFT & TPOT

m Higher peak throughput than TP n o

. . %EID“ [_/-‘U 1.\ P _—-—_...; ”

e Shift Parallelism can handle the =
high-traffic bursts better

'_

0

D_ —

g 80 ___,____J___,__v__]
cE ==
S 40 /f ,

0 20 40 60 80 100 120
Time (s)

Performance Benchmarks

e LLaMa-70B & Qwen-32B, input: 4k, output: 250

¢ The trend is similar to real-world traffic
m Lowest TTFT, 2nd lowest TPOT
m Better throughput than TP

a) Llama-70B b) Qwen-32B
2 A Combined 2 Combined
Lower Throughput Throughput
C_?S; per okens/sec)
oken
s D P—throughput opt.
I TP—latency opt.

Lower

s SP (UL
Latency flysnses)

per Req. ; == == « Shift Parallelism

Response Generation Response Generation
(#input tok./TTFT) (1/TPOT)

Latency vs. throughput tradeoff

Performance Benchmarks

e LLaMa-70B & Qwen-32B, input: 2k-128k, output: 250
& SP introduces faster prefill, so Shift Parallelism achieves best TTFT

¢ TPOT increases with the input size
m As the number of tokens read from KV cache increases -> Memory bandwidth bound

& Throughput drops significantly with larger contexts
m Because attention time dominates the end-to-end generation

=p==DP—throughput opt. TP—latency opt. ==g==Shift Parallelism .
&P 4 FRE Combined Throughput
50,000
Input Latency Output Latency m DP—throughput opt.
__ 100,000 __ 40 2 40,000 TP—latency opt.
-] — - 2 m Shift Parallelism
: | : N ._._..‘—‘/ g B0
Q Q -~
& 1,000 @ 20 @ 20,000
= — [¢5]
z 100 S 10 gmemp—me—e—? S 10,000
- = a]
@) 0
- 10 g 0
2k 8k 32k 128K 2k 8k 32k 128 2k 4k 8k 16k 32k 64k 128k

Input Sequence Length (Tokens) Input Sequence Length (Tokens)

Variations across context sizes

Performance Benchmarks

e LLaMa-70B & Qwen-32B, input: 8k, output: 250
o Completion Time = TTFT + #output * TPOT
o Shift Parallelism strictly obtains the lowest completion time across arrival rates
¢ Inlow-to-medium rates, Shift Parallelism switches back-and-forth across SP and TP
m For minimizing latencies

¢ In high traffic, Shift Parallelism uses SP
m To save combined throughput

(a) Llama-/70B (b) Qwen-32B
45,000 35,000 a
— —e—DP = ——
Rl g som | 3
g i 2 —@— Shift Par.
g 30,000 —g— Shift Par. g 25,000
= 25,000 i— 20,000 .
S 20,000 / S 15,000 / Latency vs. Arrival Rate
2 Dol = 10,000
£ 10,000 e
8 5000 & o8
0 0
Arrival Rate (req/s) 18 ' Arrival Rate (req/s)10

32

Shift Parallelism in Production

e Already integrated Shift Parallelism with SwiftkKV and speculative decoding

e Highest throughput and lowest completion time

¢ Outperforming the best open source systems

» 40,000
S

Our implementation L
in production.

20,000 -'
H

15,000
2,000 4,000 6,000 8,000 10,000 12,000

Request Completion Latency—P95 (ms)

Combined Throughput

B vLLM—Latency Opt.
® VLLM—Throughput Opt.
SGLang—Latency Opt.

® SGLang—Throughput Opt.

B TRT-LLM—Latency Opt.

@ TRT-LLM—Througput Opt.

Shift Parallelism

33

Breakdown

e SP has a lower communication cost than TP

e The parallelization cost of vLLM is significant
¢ Which explains the remaining throughput gap between DP and SP

Duration

(a) Llama-70B
4x(TP= 2)| TP=8 (TP=2, SP=4)

Input Seq. Length {Tokens]
EVvLLM H Model B All-reduce

(b) Qwen-32|3

1,200
TP=8

__ 1,000
o
@ 800
o
E 600
S 400
-
o II| I |||
0
A T T A ¥ 4 A A A ¥ b R
o @ M W M W N
InputSeq Length {Tokens}
B Attention M All-to-all *on 8xH100

34

Outline

e Conclusion

Conclusion

e Strength
¢ Demonstrates KV cache invariance between TP and SP
¢ Integrated SP into vLLM and combined it with other optimizations
¢ Innovatively switches TP and SP configs to handle bursty workloads

e Weakness
o Poor paper writing!!!
¢ No optimization when TP must be 8
¢ No analysis of switching overhead
¢ No mention of request waiting time

36

Background

e Computational Complexity of TP and SP

Per-GPU Complexity

Memory Compute Comm. Volume |Comm./Compute
TP m(n,w)/TP f(n,w)/TP c(n,w) TP x const
SP m(n,w) f(n,w)/SP c(n,w)/SP const

n: sequence length, w: # parameters
SP dose not increase comm cost

[1] Combined Throughput (token/sec) means total number of tokens processe by the inference system per unit of time Y

Background

e Tensor parallelism: partitions weight along hidden size

¢ TP in MLP
) ([om ~fw)« [

lTensor parallel

i) :

Device 0 ! Data —{ — — data !

. (- :
e A g IA" Reduce

i o i

Device1 Data — — AL D — — data —> data :

. (- :

weight

D Data

—_— -

(B*S, H) (H, H/TP) (B*S,H/TP) (H/TP, H) (B*S, H) (B*S, H)

Background

e Tensor parallelism: partitions weight along hidden size D Data

¢ TP in Attention
Data x Wy = QKV

lTensor parallel

Device 0 i Data — — — Q, K,V
_______________ R
Device 1 i Data — — — Q, K, V

(B*S, H) (H, H/TP) (B*S, H/TP)

Background

e Tensor parallelism: partitions weight along hidden size
¢ TP in Attention

[Softmax J (Q < KT) X Vv X Wo = Q,K\V

D Data

__

Device O

| = pE T E e EEE e Devicel |

I |

1 ! |

. Q . |

! ’ W

I S v I

| ! V X —» §" X —> — Data ——
I 41 Q I

| '\\ | -
| e o e e e B e e e e e e e e == — |

N e = —

(B*S, H/TP) (B*S, H/TP) (H, H/TP) (B* S, H)

Background

e Sequence parallelism (Ulysses)
o SP partitions input along the sequence dim while keeping the weights unchanged

- e e e e e e e e e e e e e e e e el o e ——

_____________________________ b _____.

I
I
I

attn score attn output MLP
All to All
I
I

12 I .

2
I

attn score : attn output MLP
|

\-—————————————’

N e e, e, —=”

