
1

StreamRL: Scalable, Heterogeneous, and Elastic RL for
LLMs with Disaggregated Stream Generation

Presented by Muxin Liu

Author: Yinmin Zhong1 Zili Zhang1 Xiaoniu Song2 Hanpeng Hu2

Chao Jin1 Bingyang Wu1 Nuo Chen2 Yukun Chen2 Yu Zhou2

Changyi Wan2 Hongyu Zhou2 Yimin Jiang3 Yibo Zhu2 Daxin Jiang2

1 School of Computer Science, Peking University 2 StepFun 3 Unaffiliated

arXiv : 2504.15930

⚫ Background

⚫ Challenges for Disaggregation

⚫ Design

⚫ Evaluation

⚫ Conclusion

2

Outline

⚫ Reinforcement learning

3

Background

Agent

Environment

Action At
State St Reward Rt

Rt+1

St+1

⚫ Reinforcement learning for LLMs

4

Background

LLM(Actor Model)

Reward Model,
Critic Model, etc.

Generated
tokens At

Prompt St Reward Rt

Rt+1

Prompt + generated
tokens St+1

⚫ Two primary stages in RL: generation and training

5

Background

LLM
Generation

Once upon a time,

there was a man……

Reward
Model

LLM
Training

Reward

⚫ Two representative RL framework architectures
◆ Disaggregated architecture, such as OpenRLHF[1]
◼ Reuse existing infrastructures ☺

◼ Resource idleness 

Background

[1] Jian Hu, Xibin Wu, Weixun Wang, Dehao Zhang, Yu Cao, et al. 2024. OpenRLHF: An Easy-to-use,
Scalable and High-performance RLHF Framework. arXiv preprint arXiv:2405.11143 (2024).

6

⚫ Two representative RL framework architectures
◆ Colocated architecture, such as verl[2]
◼ Resolve the resource idleness

Background

[2] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. 2024. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv:2409.19256 (2024)

7

⚫ Problems with colocation: resource coupling
◆ Generation: memory bandwidth bound
◆ Training: compute bound
◆ Share the same resource quantities and hardware types
◼ But they have divergent computational characteristics

Background

8

⚫ Problems with colocation: resource coupling
◆ Prevent selecting the most cost-effectiveness hardware

Background

9

NVIDIA GPU specifications

⚫ Problems with colocation: resource coupling
◆ Profile the execution latency of each stage
◼ 7B LLM with 8192 sequence length

Background

10

generation time quickly reaches a plateau as resources increase

⚫ Synchronous RL vs. asynchronous RL
◆ Synchronous RL: need to use the latest weights to generate
◼ Make it impossible to achieve perfect overlapping

Background

11

⚫ Synchronous RL vs. asynchronous RL
◆ Asynchronous RL: allow weights for some extent of staleness
◼ Achieve better overlapping

◼ Not compromise model performance or convergence[3, 4]

Background

12

[3] Michael Noukhovitch et.al. 2025. Asynchronous RLHF: Faster and More Efficient Off-Policy RL for Language
Models. International Conference on Learning Representations (ICLR)
[4] Taiyi Wang et.al. 2025. DistRL: An Asynchronous Distributed Reinforcement Learning Framework for On-Device
Control Agents.

⚫ Background

⚫ Challenges for Disaggregation

⚫ Design

⚫ Evaluation

⚫ Conclusion

13

Outline

⚫ The primary source of inefficiency
◆ When one stage is active, the other stage is idle

14

Challenge 1: Pipeline bubbles

15

Challenge 2: Skewness bubbles
⚫Output length has a skewed distribution in gen stage

⚫ As gen proceeds, only long-tail samples remain
◆ undermine GPU utilization

⚫ Background

⚫ Challenges for Disaggregation

⚫ Design

⚫ Evaluation

⚫ Conclusion

16

Outline

17

StreamRL Overview
⚫Generation stage: Stream Generation Service (SGS)

⚫ Training stage: Trainer

⚫Goal: address pipeline bubbles and skewness bubbles

18

Tackle Pipeline Bubbles: Overlapping Design
⚫ Strawman solution 1: Mini-batch pipelining[5]
◆ Evenly divide the samples into several mini-batches
◆ Require manually setting the mini-batch size

[5] Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi, Rachel Xin,
Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica. 2025.
DeepCoder: A Fully Open-Source 14B Coder at O3-mini Level

19

Tackle Pipeline Bubbles: Overlapping Design
⚫ Strawman solution 1: Mini-batch pipelining
◆ Problem: The seqlen of the later mini-batches gradually increase
◼ The last few mini-batches training often spill over

◼ Hard to avoid idle time in the training stage

Bubbles

20

Tackle Pipeline Bubbles: Overlapping Design
⚫Our solution: Dynamic-batch pipelining
◆ Replace the batched generation with stream generation
◆ The training stage can start earlier
◼ As soon as it receives enough samples to saturate the GPUs

21

Tackle Pipeline Bubbles: Overlapping Design
⚫ Strawman solution 2: One-step asynchronous pipelining
◆ Method: generate one additional batch
◼ While the training stage processes samples from the previous iteration

22

Tackle Pipeline Bubbles: Overlapping Design
⚫ Strawman solution 2: One-step asynchronous pipelining
◆ Problems:
① Each iter ends with a global synchronization to transmit the weights

② Fluctuations in generation and training time across iterations

①②

23

Tackle Pipeline Bubbles: Overlapping Design
⚫Our solution: Fully asynchronous pipelining
◆ Remove weight transmission completely from the critical path
◆ No new bubbles will emerge
◼ As long as the fluctuation across iterations is limited

24

Tackle Pipeline Bubbles: Stage Balancing
⚫ Need to balance the execution times of the two stages
◆ To achieve better overlapping between SGS and Trainer

⚫ Part1: determine the optimal execution time of SGS and
Trainer under a given workload and GPU budget

⚫ Part2: determine the resource allocation for SGS and Trainer

25

Tackle Pipeline Bubbles: Stage Balancing
⚫ Parallel configuration
◆ Trainer: profiler-based approach
◼ Inspired by automated parallelism[6]

◆ SGS: skewness-aware scheduling

[6]: Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. 2022. Alpa: Automating
Inter- and Intra-Operator Parallelism for Distributed Deep Learning. In USENIX OSDI.

26

Tackle Pipeline Bubbles: Stage Balancing
⚫ Resource allocation for SGS (x) and Trainer (y)
◆ Single-datacenter deployment: x + y ≤ n
◼ n is the total GPU budget

◆ Cross-datacenter deployment: x ≤ m, y ≤ n
◼ m and n denote the GPUs in SGS and Trainer

27

Tackle Pipeline Bubbles: Dynamic adjustment
⚫ Another problem: the generation length of LLMs increases
progressively during RL training
◆ Generation time grows more significantly than training
◆ Cause imbalance between two stages

28

Tackle Pipeline Bubbles: Dynamic adjustment
⚫ Another problem: the generation length of LLMs increases
progressively during RL training

⚫ Solution:
◆ Monitor the execution time gap(𝛿) between gen and train

◆ Estimate the reduction in generation time(𝛿 ’)
◼ By adding one DP unit to SGS

◆ When 𝛿 ≥ 𝛿 ’, then add one more DP unit to SGS

29

Tackle Skewness Bubbles
⚫ The trend of per-token decoding latency for a 7B model on
an NVIDIA A100 GPU as the batch size increases
◆ Latency grows slowly before reaching compute-bound
◆ Then increases almost linearly after that

30

Tackle Skewness Bubbles
⚫ Existing systems: prompts are assigned randomly
◆ Example: DP size 2, 64 samples with 2 long-tail samples
◆ Significant interference for the long-tail samples

31

Tackle Skewness Bubbles
⚫ Solution: extract the long-tail samples
◆ Long-tail samples: smaller batch size
◆ Regular samples: large batches

32

Tackle Skewness Bubbles
⚫How to predict the output length of LLM generation?

33

Tackle Skewness Bubbles
⚫How to predict the output length of LLM generation?
◆ Estimate the relative ranks of output lengths with another model
◆ Classifies prompts based on difficulty
◼ a property inherent to the prompts themselves

34

Tackle Skewness Bubbles
⚫ Skewness-aware Scheduling Algorithm
◆ Sort the prompts by their estimated output lengths
◆ Mark the longest α% of them as long-tail samples
◼ α = 20 yields good results

◆ Estimate average output length for regular and long-tail samples
◼ P50 and P90 of output length distribution

◆ Iterate all configurations and minimize the generation time

⚫ Background

⚫ Challenges for Disaggregation

⚫ Design

⚫ Evaluation

⚫ Conclusion

35

Outline

36

Evaluation
⚫ Experimental Setup
◆ Testbed:
◼ 16 nodes * 8 NVIDIA H800-80GB GPUs, 8 * 200 Gbps RDMA network

◼ 4 nodes * 8 NVIDIA H20-96GB GPUs, 100Gbps TCP network
 For cross-datacenter experiments

◼ 80Gbps dedicated link between two clusters

◆ Models: Qwen2.5 models(7B, 32B, 72B)
◆ Dataset: internal CodeMath prompts dataset
◆ Settings: PPO algorithm

⚫ Baselines: verl, ColocationRL

37

Evaluation
⚫ End-to-end throughput (samples/s) under different
sequence length and model size settings

Compared to verl, StreamRL-Sync achieves a 1.12×–2.12× speedup, StreamRL-Async
achieves 1.30×–2.66× throughput improvement.

38

Evaluation
⚫ Ablation Studies: throughput improvement breakdown
when training 72B model on the 20K maximum length

⚫ Baseline: ColocationRL

39

Evaluation
⚫ Cross-Datacenter and Heterogeneity: end-to-end
experiment with the 7B model
◆ Cross-Datacenter: SGS 32*H20, Trainer 16*H800

The throughput normalized by the hardware cost between cross- and single-
datacenter deployment. StreamRL achieves a 1.23×–1.31× higher throughput
normalized by hardware cost.

⚫ Background

⚫ Challenges for Disaggregation

⚫ Design

⚫ Evaluation

⚫ Conclusion

40

Outline

41

Conclusion

⚫We revisit the disaggregated architecture for RL training

⚫We present StreamRL to address the pipeline bubbles
and skewness bubbles

⚫ StreamRL achieves up to a 2.66x speedup compared to
the current state-of-the-art RL framework

Thanks!

42

