
Triton-distributed: Programming Overlapping Kernels
on Distributed AI Systems with the Triton Compiler

Shared by Zhou Ouxiang

2025.6.17

Size Zheng1,2,† , Wenlei Bao1,† , Qi Hou1 , Xuegui Zheng1 , Jin Fang1 , Chenhui
Huang1 , Tianqi Li1,3 , Haojie Duanmu1,4 , Renze Chen1,3 , Ruifan Xu1,3 , Yifan Guo1,5 ,

Ningxin Zheng1 , Ziheng Jiang1 , Xinyi Di1 , Dongyang Wang1 , Jianxi Ye1 ,
Haibin Lin1 , Li-Wen Chang1 , Liqiang Lu5 , Yun Liang3 , Jidong Zhai2 , Xin Liu1,†

1ByteDance Seed, 2Tsinghua University, 3Peking University,
4Shanghai Jiao Tong University, 5Zhejiang University

†Corresponding authors

2

TL;DR（Too Long; Didn’t Read）

The authors developed Triton-distributed to achieve
performance competitive with low-level CUDA/C++ at a
fraction of the development cost.

The approach requires minimal changes to existing Triton
compute kernels.

It enables rapid hardware support, making it ideal for
adapting AI workloads across a diverse ecosystem of chips.

3

Outline

Background

The Triton-distributed Architecture & Programming Model

Overlapping Optimizations in Triton-distributed

Experiments & Evaluations

Conclusion

4

Outline

Background

The Triton-distributed Architecture & Programming Model

Overlapping Optimizations in Triton-distributed

Experiments & Evaluations

Conclusion

5

Background: Beyond a Single Chip

Large Language Models (LLMs) have outgrown the
memory and compute capacity of single accelerators.

Distributed systems, composed of multiple accelerators,
are now essential for both training and inference.

This shift introduces significant new complexities.

6

Background: Computation-Communication Overlap

As cluster scale grows, hiding
communication latency behind
computation time becomes vital.

Effective overlap can save
millions of GPU hours and
significant operational costs
(e.g., ByteDance's COMET
project).

Computation

CommunicationMemory Access

7

Background: Computation-Communication Overlap

Kernel Splitting

Kernel Fusion

8

Background: Computation-Communication Overlap

9

The Gap Between Programming

AI Algorithms are developed in high-level Python.

Performance-critical optimizations require low-level
CUDA/C++.

10

Background: What is Triton?

A Python-based language and
compiler for writing high-
performance GPU kernels.

It solves the problem for a
single GPU; Triton-distributed
extends this to distributed
systems.

11

Outline

Background

The Triton-distributed Architecture & Programming Model

Overlapping Optimizations in Triton-distributed

Experiments & Evaluations

Conclusion

12

Triton-distributed Architecture

power
user

ordinary user

fresh hand

CUDA/C++ for perf
Python for binding

Python for perf

Python for
functionality

our target users

Communication.py Compute.py

OpenSHMEM Prims &
non-OpenSHMEM Prims

TTIR

LLVM IR

TTGIR

PTX AMDGCNSHMEM.bc lib

extra.ll lib

User classification and our target Our compilation workflow

programmed by users

compilation
programming

SHMEM.bc lib

extra.ll lib

potential users

13

Triton-distributed Programming Model

computecomm computecomm

rank 0 rank 1

symmetric memory symmetric memory

inter-node p2p intra-node p2p compute

p2p 0:0

p2p 0:0

compute 0:1 compute 1:1

p2p 1:0

NODE 0

signal exchange

signal exchange
compute 0:1

p2p 0:1

compute 0:0 compute 1:1 compute 1:0

p2p 1:1

from NODE 1

from NODE 1
p2p 0:1

compute 0:0 compute 1:0

to NODE 1

to NODE 1

rank 0

rank 1

Symmetric Memory

Signal Exchange

Async-Task

14

Communication Primitives of Triton-distributed

15

Communication Primitives of Triton-distributed

16

Example: Inter-node Overlapping AllGather GEMM

Intra-node

Inter-node

17

Outline

Background

The Triton-distributed Architecture & Programming Model

Overlapping Optimizations in Triton-distributed

Experiments & Evaluations

Conclusion

18

Optimization Approaches and Comparison with Other Frameworks

19

Communication Kernels (1/3): Intra-Node AllGather

Primarily utilizes the dedicated Copy Engine to offload data transfer from
compute cores.

Offers two implementation modes:

Push Mode (Algo 1): Sender-initiated. Lower sync overhead, but
uncontrolled arrival order.

Pull Mode (Algo 2): Receiver-initiated. Controlled order, but requires an
extra barrier synchronization.

20

Communication Kernels (2/3): Low-Latency Inter-Node AllGather

Problem: Baseline implementations can suffer from "skew," turning parallel
sends into sequential ones and increasing latency.

21

Communication Kernels (3/3): Platform Adaptation (AMD)

The framework adapts to different
hardware topologies and behaviors.

On AMD MI308X:
Requires launching transfers on

multiple streams simultaneously to
maximize bandwidth on its full-
mesh topology.

Works around problematic driver
APIs by fusing the scatter operation
directly into the producer compute
kernel, avoiding the API call.

GPU 0 GPU 1

GPU 5 GPU 4

GPU 2

GPU 3GPU 6

GPU 7

 AMD MI308X Topology

point-to-point
50 GB/s

Require all the 7
links to achieve

350GB/s

22

Overlapping Computation with Swizzling Optimization

Multiple
NVSwitches

GPU 0 GPU 1

GPU 5 GPU 4

GPU 2

GPU 3GPU 6

GPU 7

 point-to-point
200 GB/s

(~170GB/s in
real system)

H800 NVLink Topology

Step 1 compute with local
data and gather data

Step 2 compute with Step 1
data and gather data

Step 3 compute with Step 2
data and gather data

Step 4 compute with
Step 3 data

each rank has
local data

23

Overlapping Computation with Swizzling Optimization

GPU 0 GPU 1

GPU 5 GPU 4

GPU 2

GPU 3GPU 6

GPU 7

 AMD MI308X Topology

point-to-point
50 GB/s

Require all the 7
links to achieve

350GB/s

Step 4: AllGather the final
4 chunks and compute

from
rank 0

from
rank 1

from
rank 2

from
rank 3

Step 1: AllGather 4
chunks and compute

Step 2: AllGather the next
4 chunks and compute

Step 3: AllGather the next
4 chunks and compute

24

Distributed Auto-Tuning and Resource Partitioning

Stream 0

Stream 1

Stream 2

local reduction kernel on 16 SMs

GEMM kernel (producer) on 116 SMs

cross node p2p kernel on 1 SM

intra-node scatter on copy engine
local reduction kernel

on 132 SMs

device to device copy

Distributed Auto-Tuning: A novel auto-tuner designed specifically
for distributed, overlapping kernels.

Resource Partitioning: A spatial optimization that maps tasks to
different hardware units to balance load and prevent bottlenecks.

25

Outline

Background

The Triton-distributed Architecture & Programming Model

Overlapping Optimizations in Triton-distributed

Experiments & Evaluations

Conclusion

26

List of Optimized Kernels

27

Intra-node Kernel Performance on Nvidia GPUs

Performance of Intra-node AllGather GEMM on 8 H800 GPUs.

Performance of Intra-node GEMM ReduceScatter on 8 H800 GPUs.

28

Inter-node Kernel Performance on Nvidia GPUs

Performance of Inter-node AllGather GEMM on 16 H800 GPUs.

Performance of Inter-node GEMM ReduceScatter on 16 H800 GPUs.

29

MoE Performance on Nvidia GPUs

Test Shapes for AllGather MoE and Performance (ms).

30

MoE Performance on Nvidia GPUs

Test Shapes for MoE ReduceScatter and Performance (ms).

31

0
50

100
150
200
250
300
350

64K 128K 256K 512K 1M

1 Node 2 Nodes 4 Nodes

0

500

1000

1500

2000

2500

3000

0 20000 40000 60000 80000 100000

1 GPU 2 GPUs 4 GPUs

8 GPUs 16 GPUs 32 GPUs

0

500

1000

1500

2000

2500

3000

0 500000 1000000 1500000 2000000

1 GPU 2 GPUs 4 GPUs

8 GPUs 16 GPUs 32 GPUs

Global KV Length Local KV Length Global KV Length

Strong Scaling Latency Weak Scaling Bandwidth Strong Scaling Bandwidth

Distributed Flash Decoding Performance

Performance of Distributed Flash Decoding.

32

Low Latency AllToAll Performance

Performance of AllToAll

33

Intra-node Kernel Performance on AMD GPUs

Performance of Intra-node AllGather GEMM on AMD GPUs.

Performance of Intra-node GEMM ReduceScatter on AMD GPUs.

34

Outline

Background

The Triton-distributed Architecture & Programming Model

Overlapping Optimizations in Triton-distributed

Experiments & Evaluations

Conclusion

35

Conclusion

Triton-distributed successfully unifies distributed
programming into Python, drastically lowering the
development barrier.

The generated code achieves performance that is
competitive with, or superior to, hand-optimized low-
level code.

The methodology is portable across different hardware
platforms, demonstrating its general applicability.

Thanks

	幻灯片编号 1
	TL;DR（Too Long; Didn’t Read）
	Outline
	Outline
	Background: Beyond a Single Chip
	Background: Computation-Communication Overlap
	Background: Computation-Communication Overlap
	Background: Computation-Communication Overlap
	The Gap Between Programming
	Background: What is Triton?
	Outline
	Triton-distributed Architecture
	Triton-distributed Programming Model
	Communication Primitives of Triton-distributed
	Communication Primitives of Triton-distributed
	Example: Inter-node Overlapping AllGather GEMM
	Outline
	Optimization Approaches and Comparison with Other Frameworks
	Communication Kernels (1/3): Intra-Node AllGather
	Communication Kernels (2/3): Low-Latency Inter-Node AllGather
	Communication Kernels (3/3): Platform Adaptation (AMD)
	Overlapping Computation with Swizzling Optimization
	Overlapping Computation with Swizzling Optimization
	Distributed Auto-Tuning and Resource Partitioning
	Outline
	List of Optimized Kernels
	Intra-node Kernel Performance on Nvidia GPUs
	Inter-node Kernel Performance on Nvidia GPUs
	MoE Performance on Nvidia GPUs
	MoE Performance on Nvidia GPUs
	Distributed Flash Decoding Performance
	Low Latency AllToAll Performance
	Intra-node Kernel Performance on AMD GPUs
	Outline
	Conclusion
	幻灯片编号 36

