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TL;DR（Too Long; Didn’t Read）

The authors developed Triton-distributed to achieve 
performance competitive with low-level CUDA/C++ at a 
fraction of the development cost. 

The approach requires minimal changes to existing Triton 
compute kernels. 

It enables rapid hardware support, making it ideal for 
adapting AI workloads across a diverse ecosystem of chips. 
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Background: Beyond a Single Chip

Large Language Models (LLMs) have outgrown the 
memory and compute capacity of single accelerators.

Distributed systems, composed of multiple accelerators, 
are now essential for both training and inference.

This shift introduces significant new complexities. 
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Background: Computation-Communication Overlap

As cluster scale grows, hiding 
communication latency behind 
computation time becomes vital.

Effective overlap can save 
millions of GPU hours and 
significant operational costs 
(e.g., ByteDance's COMET 
project).

Computation

CommunicationMemory Access
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Background: Computation-Communication Overlap

Kernel Splitting 

Kernel Fusion 
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Background: Computation-Communication Overlap
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The Gap Between Programming

AI Algorithms are developed in high-level Python.

Performance-critical optimizations require low-level 
CUDA/C++. 
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Background: What is Triton?

A Python-based language and 
compiler for writing high-
performance GPU kernels.

It solves the problem for a 
single GPU; Triton-distributed 
extends this to distributed 
systems. 
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Triton-distributed Architecture
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Triton-distributed Programming Model
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Communication Primitives of Triton-distributed
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Communication Primitives of Triton-distributed
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Example: Inter-node Overlapping AllGather GEMM

Intra-node

Inter-node
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Optimization Approaches and Comparison with Other Frameworks
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Communication Kernels (1/3): Intra-Node AllGather

Primarily utilizes the dedicated Copy Engine to offload data transfer from 
compute cores.

Offers two implementation modes: 

Push Mode (Algo 1): Sender-initiated. Lower sync overhead, but 
uncontrolled arrival order.

Pull Mode (Algo 2): Receiver-initiated. Controlled order, but requires an 
extra barrier synchronization.
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Communication Kernels (2/3): Low-Latency Inter-Node AllGather

Problem: Baseline implementations can suffer from "skew," turning parallel 
sends into sequential ones and increasing latency.
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Communication Kernels (3/3): Platform Adaptation (AMD)

The framework adapts to different 
hardware topologies and behaviors.

On AMD MI308X: 
Requires launching transfers on 

multiple streams simultaneously to 
maximize bandwidth on its full-
mesh topology.

Works around problematic driver 
APIs by fusing the scatter operation 
directly into the producer compute 
kernel, avoiding the API call.
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Overlapping Computation with Swizzling Optimization

Multiple
NVSwitches
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local data



23

Overlapping Computation with Swizzling Optimization
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Distributed Auto-Tuning and Resource Partitioning

Stream 0

Stream 1

Stream 2

local reduction kernel on 16 SMs

GEMM kernel (producer) on 116 SMs

cross node p2p kernel on 1 SM

intra-node scatter on copy engine
local reduction kernel 

on 132 SMs

device to device copy

Distributed Auto-Tuning: A novel auto-tuner designed specifically 
for distributed, overlapping kernels.

Resource Partitioning: A spatial optimization that maps tasks to 
different hardware units to balance load and prevent bottlenecks.
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List of Optimized Kernels
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Intra-node Kernel Performance on Nvidia GPUs

Performance of Intra-node AllGather GEMM on 8 H800 GPUs.

Performance of Intra-node GEMM ReduceScatter on 8 H800 GPUs.
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Inter-node Kernel Performance on Nvidia GPUs

Performance of Inter-node AllGather GEMM on 16 H800 GPUs.

Performance of Inter-node GEMM ReduceScatter on 16 H800 GPUs.
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MoE Performance on Nvidia GPUs

Test Shapes for AllGather MoE and Performance (ms).
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MoE Performance on Nvidia GPUs

Test Shapes for MoE ReduceScatter and Performance (ms).
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Low Latency AllToAll Performance

Performance of AllToAll
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Intra-node Kernel Performance on AMD GPUs

Performance of Intra-node AllGather GEMM on AMD GPUs.

Performance of Intra-node GEMM ReduceScatter on AMD GPUs.
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Conclusion

Triton-distributed successfully unifies distributed 
programming into Python, drastically lowering the 
development barrier.

The generated code achieves performance that is 
competitive with, or superior to, hand-optimized low-
level code.

The methodology is portable across different hardware 
platforms, demonstrating its general applicability.
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