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Background and Motivation

➢ Shared log

1. Multi-client Append Log.

2. Totally Ordered.

3. Widely applied .

4. Ordering Semantics Vary by System

• only guarantee intra-shard ordering，e.g. Kafka 

• provide total ordering across shards， e.g. LogDevice
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Background and Motivate

➢ Need For Low-Latency Ingestion

• Databases built on shared logs require fast persistence of updates.

• High-availability logging systems demand low write latency.

• One-third of users in 2023 ranked write latency as most critical.
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Background and Motivate

❏ Shared log architecture

1. Client

Sends append and read requests.

2. Ordering Layer

Orders log records.

3. Data Layer

Stores ordered log records.
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Background and Motivation

Eager ordering introduces high latency
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Insight

Not eagerly bind a record to a position upon an append，but durable

Typical scenarios include:

⚫ Distributed DB with decoupled readers

⚫ Event sourcing 

⚫ Message queues 

⚫ High-availability journal

⚫ Activity logging

⚫ Log aggregation 
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Design

❏ Erwin-■

Shards are black boxes that can use any replication method.

❏ Erwin-st

Scalable throughput， decouple log recording.
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Erwin Architecture

1. Client

• Sends append and read requests.

2. Sequencing Layer

• Accepts and persistent stores records.

• No replica coordination.

• Fault-tolerant with f+1 replicas.

• Background ordering

3. Data Layer

Persistent stores ordered log records after the ordering phase.
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Write Flow

1. Send request

2. Immediate reply

3. Background ordering

4. Shard storage

5. Replica cleanup
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Write Flow
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Shared Log Structure

The shared log structure consists of two parts:

➢ Durable & Ordered

• Located on the shard

• Durable persistence

➢ Durable & Unordered

• Located in the sequencing layer

• Ephemeral persistence
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Determine the order

Ordering is determined by the leader without coordination among replicas.

In the absence of failures, other replicas do not participate in ordering.

x y z a c b

1    2       3

    Ordered

4        5        6

   Unordered

a c b

a b c

a b c

Leader

Follower 1

Follower 2

Sequencing layer
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Background Ordering

The ordering leader initiates background ordering.

Use a deterministic function to map global log positions to shards. 

Eg：loc(log[p]) = shard[p mod n] 

Once records are safely stored in shards, ordering replicas delete them.
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Background Ordering

4       5       6 

a c b

a b c

a b c
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Follower 2

Shard-1 Shard-2 Shard-n
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6
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Stable-gp

➢ Last-ordered-gp：

Tracks last ordered position

➢ Stable-gp：

Stable, fault-tolerant records
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Log Read

➢ Deterministic shard access

➢ Read path

1. Fast path

2. Slow path

➢ Cannot read directly from Sequencer.

a c b

a b c

a b c
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Failures and Reconfiguration

➢ Failure Check: Zookeeper

➢ Failure Recovery

1. Sealing the view

2. Flushing unordered records

3. Starting a new view

Shard-1 Shard-2 Shard-n

Stable-gp

4       5       6 
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Failures and Reconfiguration

Linearizability：The order exposed to clients for reading must not change.

1.After advancing stable-gp

The recovery replica cannot change the order

2.Before advancing stable-gp

The recovery replica will write a new order based on existing logs. 

The old order has not been read by clients, so no conflict occurs. 
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Erwin-st

Erwin sequences all records centrally, risking a bottleneck.

Erwin-st splits each record into data and identifying metadata.

a : <record-id, shard-id>
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Log Read

• Erwin-■: Deterministic assignment, direct lookup

• Erwin-st: Client-chosen shard, metadata-assisted lookup
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Failure Handling and Correctness

➢ Erwin-st handles sequencing replica failures similarly to Erwin-■.

➢ Separating metadata from data introduces two issues.

1. The sequencer receives metadata, but the shard does not receive the data.

2. Shard receives data, but Sequencer has no corresponding metadata.

4       5       6 
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Failure Handling and Correctness

➢ The sequencer receives metadata, but the shard does not receive the data.

1. Shard wait 1 RTT

2. After shard timeout:

a. Shard marks the record as a no-op

b. Shard tells replicas to replace it

c. Client skips no-op records when reading

➢Shard receives data, but Sequencer has no corresponding metadata.

Garbage Collection

4       5       6 
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Evaluation

1. Lazy vs Tradition.

2. Erwin-■ vs Erwin-st.

3. What is the impact of a sequencer replica failure on the system?



24

Experimental Environment

CPU：Intel 10-core E5-2640v4

Network：25Gb Mellanox ConnectX-4 Network Interface Card (NIC)

Storage：480GB SATA Solid-State Drive (SSD)
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Lazy vs Tradition

➢Purpose

Append advantage of Lazy Design

➢Analyze

Erwin appends within 1 RTT.
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Lazy vs Tradition

➢  Purpose

Explore lazy strategy effectiveness in reads.

➢ With Time Lag:

Erwin: lower append, higher read latency.

➢Without Lag

Erwin: lower append, higher read latency.
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Erwin-■ vs Erwin-st
➢ Purpose

How well does Erwin-st scale compared to Erwin-■?

➢ Result

1. The ST model has better scalability.

2. The bottleneck is still sequencing layer.
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Impact of failures 
➢ Purpose

What is the impact of a sequencer replica failure on the system?

➢ Setup

a sequencing replica crash
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Conclusion

➢ Pros

1. Achieves append low latency through a lazy strategy.

2. Improves scalability by decoupling log data and metadata.

3. Ensures linearizability despite asynchronous ordering.

➢ Cons

1. Reconfiguration after failure

2. Scalability is limited by the sequencing layer.

3. Not suitable for write-after-read scenarios.
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Thanks 


