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Attention 
Engine

We already have
FlashAttention, PagedAttention, RadixAttention, SpecInfer, 

StreamingLLM, Quest, DuoAttention, 
FlexAttention, ...

Why do we still need a new attention engine?
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Background

write O

load Q K 

write S

load S

write P

load P V

HBM SRAM

Standard attention

S = QKT

O = PV

P = SoftMax(S)

fused kernel
S = 𝐐i𝐊

T
j

෥m = rowmax(S)
P = exp S − ෥m
𝒍i = rowsum(P)
𝐦i = max ෥m, 𝐦i

update 𝐎i from 𝒍i, 𝐦i, 𝐕j, 𝐎i

HBM SRAM

load 
KjVj

load
 Qi Oi 𝑙i mi

write 
Oi 𝑙i mi

FlashAttention

❑FlashAttention

❖GPU-friendly memory access

❖FlashAttention2&3

➢Loop optimization

➢Pipeline optimization for Hopper
Memory hierarchy 

(A100-40GB)
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❑PagedAttention (vLLM) [SOSP23] 

❖Paged KV cache management for variable sequence lengths

❖page_size=16 for tradeoff of throughput and fragmentation

Background
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❑RadixAttention (SGLang) [NeurIPS24]

❖Designed for prefix-sharing

➢multi-round conversation, AI agent, etc.

❖Shared prefix organized as a Radix tree

❖page_size=1 for higher cache hit rate

Background
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❑Speculative decoding (SpecInfer) [ASPLOS24] 

❖Tree-based parallel verification for speculative decoding

Background



7

❑New attention variants from researchers

❖KV cache compression:

➢StreamingLLM

➢Quest

❖Speculative decoding:

➢SpecInfer

➢Medusa

❑Efficient implementation in production

❖Requiring fusion with FlashAttention, PagedAttention, etc.

Motivation

dense sliding window streamingllm

Issue 1: Hard to fuse variants with FA
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❑FlashAttention can be further optimized

❖For decoding (query_length = 1)

➢suboptimal tile size

➢tile size selected for prefill (64, 128) 

❖For batch of different sequence length

➢ low GPU utilization (some SMs left idle)

Motivation

Issue 2: FlashAttention can be optimized
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❑Overview

FlashInfer Design
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❑Abstraction of Block Sparse Matrix

❖Expressing different structures

➢PagedAttention

➢RadixAttention

➢Masks

Unified KV Cache Format
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❑Composable Formats for prefix sharing

❖Small block size for unique KV

❖Big block size for shared KV

Unified KV Cache Format
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❑Composable Formats for prefix sharing

❖Small block size for unique KV

❖Big block size for shared KV

Unified KV Cache Format

← KV →
1 2 3 4 5 6 7 8 9...

↑
Q
↓

1
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4

5

6

← KV →
1 2 3 4 5 6 7 8 9...

↑
Q
↓

1

2

3

4

5

6

↑
Q
↓

1

2

3

4

5

6

KV cache 
(6/8/10/12/13)
shared by Q123

KV cache (9)
shared by Q456

KV cache
not shared

Moving to SMEM

No benefits from
moving to SMEM

1 2 3 4 5 6 7 8 9...

*Blue block: 
This query token needs this K/V



13

❑FlashInfer supports any block size

❑To align tensor core shape

❖Gathering from scattered HBM to contiguous SMEM

Sparse Row Gathering
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❑Different query requires different tile size

❖IO-bound: Decode, Append for small query length

❖Multiple tile-size options: (1, 16, 32, 64, 128) x (32, 64, 128）

➢FlashAttention only supports (64, 128) tiles

❖Heuristic selection based on hardware and workload

Tile Size Selection
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Load Balancing Schedule

❑FlashDecoding [MLSys24]

❖Split-K to efficiently leverage SMs
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❑Dispatching the attention work to CTAs

❖1 CTA (thread block) for 1 SM

❖Avoiding idle SM due to load imbalance

Load Balancing Schedule
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❑Similar to FlexAttention

❑Accept CUDA code string

Attention Specification
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❑Init:

❖JIT compilation

❑Plan: 

❖Dynamic load balancing schedule

❖Multiple layers use the same plan

➢cost amortized

❑Run:

❖Select best CUDA graph

❖Replay CUDA graph

Programming Interface
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❑FlashInfer outperforms Triton-based FlashAttention

Evaluation: End-to-End on SGLang



20

❑FlashInfer outperforms FlashAttention due to

❖load-balancing scheduler

❖versatile tile-size selection

Evaluation: FA Kernel

Decode kernel
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❑RoPE of StreamingLLM should be modified

❖Easy fusion with FlashInfer

➢only 20 lines of code

➢28 − 30% latency reduction

Evaluation: StreamingLLM Use Case
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❑FlexAttention:

❖User-friendly interface for attention variants

❖Generating block-sparse Triton-based FlashAttention

❖Problem:

➢Triton FA is slower than native FA

➢Triton lag in adopting new hardware features (e.g., Hopper)

Evaluation: FlexAttention 

TFLOPS Comparison on Causal Attention
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❑Scenario: parallel generation sharing the same prompt

❖"n" parameter in OpenAI API

❖Used to select from multiple options

➢Chain-of-Thoughts, math solving, A/B test, etc.

Ablation Study: Composable Formats

Evaluation on MLC-Engine
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❑Scenario: prefix-sharing

Ablation Study: Composable Formats
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❑Load balancing reduces ITL and TTFT

Ablation Study: Load Balancing
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❑Load balancing reduces ITL and TTFT

Ablation Study: Load Balancing
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Ablation Study: Overhead of Sparse Gathering

Prefill

❑Sparse row gathering involves overhead

❖Moving Scattered HBM to contiguous SMEM, Index management

❑FA3 leverages TMA for KV loading

❖TMA requires fixed-stride access 

➢while sparse gathering of FlashInfer requires arbitrary row indices
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❑Sparse row gathering involves overhead

❖Moving Scattered HBM to contiguous SMEM, Index management

❖No need of sparse gathering for contiguous blocks

Ablation Study: Overhead of Sparse Gathering

Decode
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❑Minor issues:

❖Some techniques are similar to existing papers

➢ load-balancing scheduler

➢sparse-row gathering

❑Expertise in CUDA 

❖FlashInfer template requires a string of CUDA code

❖FlexAttention is enough for simple verfication

➢FlexAttention only requires PyTorch code

➢Triton now also supports Hopper advanced features

Discussion
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Outline
Baseline Scenario Baseline Feature FlashInfer Feature

SGLang w/ Triton
4.1

E2E ITL, TTFT, 
ShareGPT, Variable

Overall

FlashAttention2&3
4.2

decoding of mha / 
gqa, prefill of mha

load-balancing 
scheduler
decoding: versatile 
tile-size selection

FlashAttention2&3
4.3

StreamingLLM for 
RoPE fusion

hard to manually 
fuse RoPE in FA

only 20 PyTorch 
LOC to fuse

FlexAttention G.1 normal Attention 
variants (TFLOPS)

based on Triton 
(lagging in 
adopting new 
Hopper advanced 
features)

based on 
CUDA/CUTLASS

FlexAttention G.5 fine-grained sparsity 
of Quest (latency)

large block size sparse-row 
gathering (tensor 
core for small 
block size)

FlashInfer Part Scenario Baseline

load-balancing scheduler G.3 var. seq. len., SGLang Triton, w/, w/o load-balancing scheduler

composable format
4.4, G.2

parallel generation (MLC-Engine),
shared-prefix

composable vs single format


