

Efficient and Customizable Attention Engine for LLM Inference Serving

MLSys25 Best Paper

Zihao Ye^{1 2}, Lequn Chen³, Ruihang Lai⁴, Wuwei Lin², Yineng Zhang, Stephanie Wang¹, <u>Tianqi Chen</u>^{2 4}, Baris Kasikci¹, Vinod Grover², Arvind Krishnamurthy¹, <u>Luis Ceze</u>^{1 2}

> ¹University of Washington, ²NVIDIA ³Perplexity AI, ⁴CMU

> Zevin @ Reading Group 2025/6/10

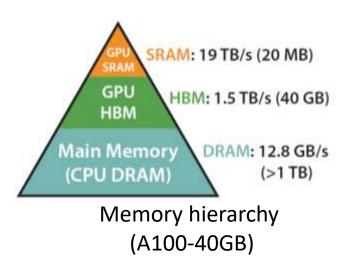
Efficient and Customizable Attention Engine for LLM Inference Serving

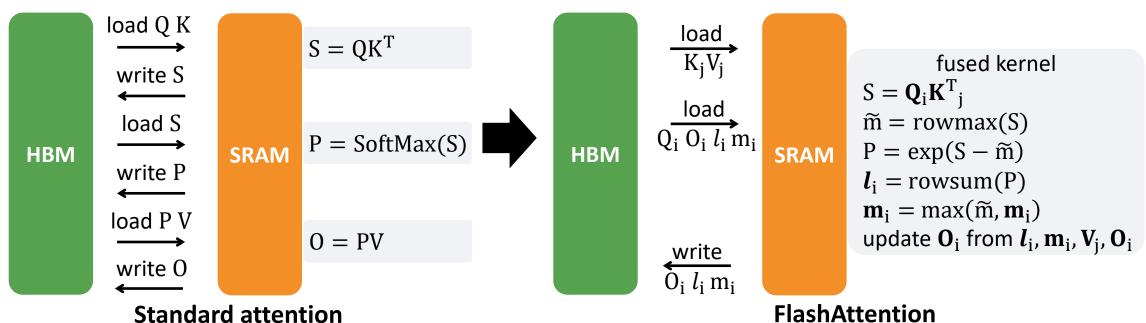
We already have FlashAttention, PagedAttention, RadixAttention, SpecInfer, StreamingLLM, Quest, DuoAttention, FlexAttention, ...

Why do we still need a new attention engine?

□FlashAttention

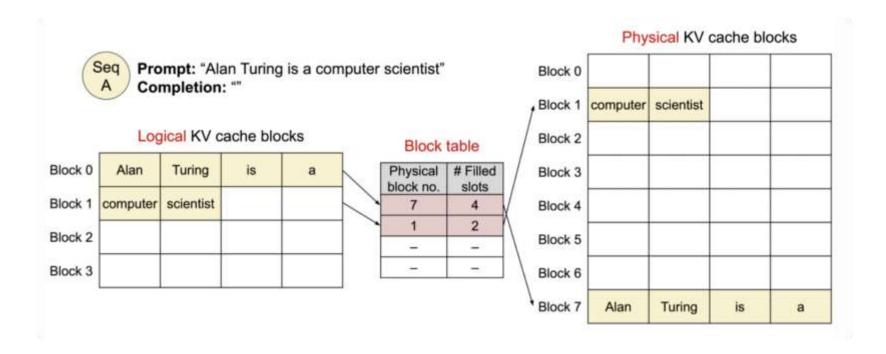
- ❖GPU-friendly memory access
- ❖FlashAttention2&3
 - ➤ Loop optimization
 - ➤ Pipeline optimization for Hopper





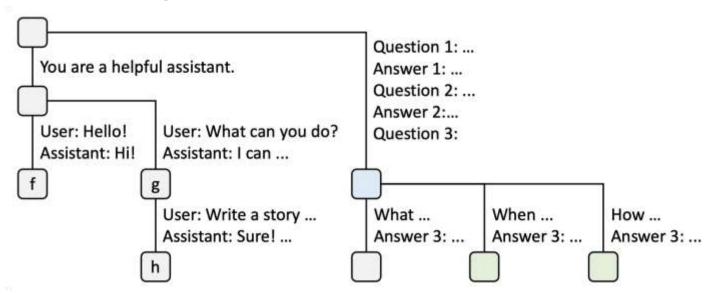
□PagedAttention (vLLM) [SOSP23]

- ❖Paged KV cache management for variable sequence lengths
- page_size=16 for tradeoff of throughput and fragmentation



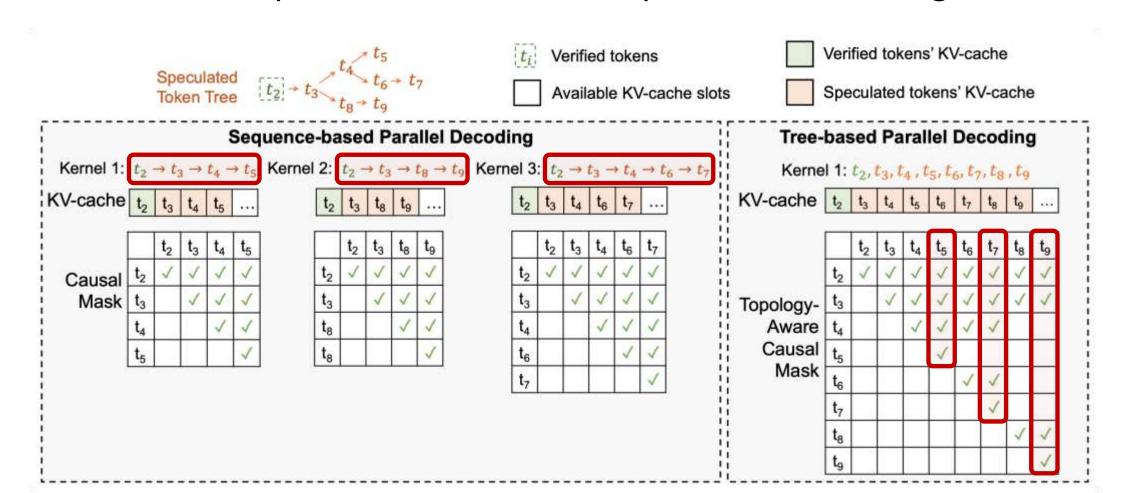
□RadixAttention (SGLang) [NeurlPS24]

- Designed for prefix-sharing
 - > multi-round conversation, AI agent, etc.
- Shared prefix organized as a Radix tree
- page_size=1 for higher cache hit rate



□Speculative decoding (SpecInfer) [ASPLOS24]

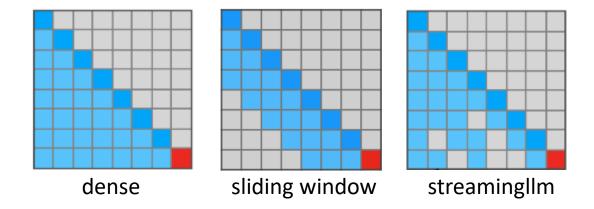
Tree-based parallel verification for speculative decoding



Motivation

□New attention variants from researchers

- **❖**KV cache compression:
 - > StreamingLLM
 - > Quest
- Speculative decoding:
 - ➤ SpecInfer
 - ➤ Medusa



□Efficient implementation in production

Requiring fusion with FlashAttention, PagedAttention, etc.

Issue 1: Hard to fuse variants with FA

Motivation

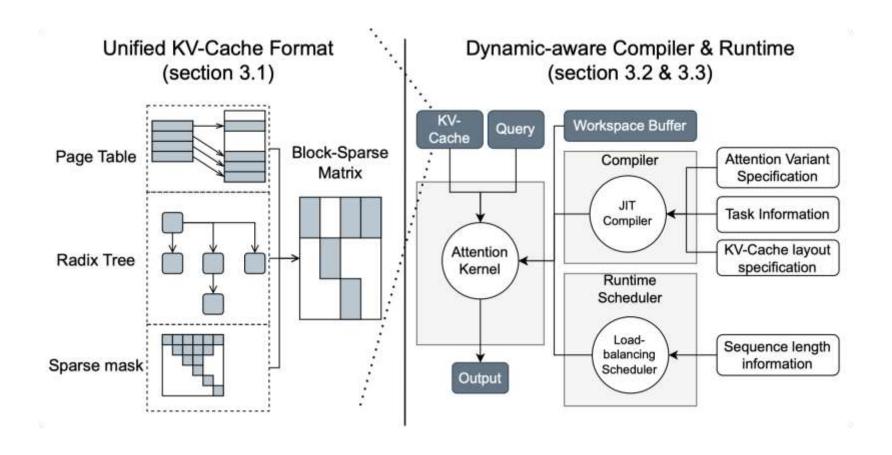
□FlashAttention can be further optimized

- For decoding (query_length = 1)
 - > suboptimal tile size
 - > tile size selected for prefill (64, 128)
- For batch of different sequence length
 - ➤ low GPU utilization (some SMs left idle)

Issue 2: FlashAttention can be optimized

FlashInfer Design

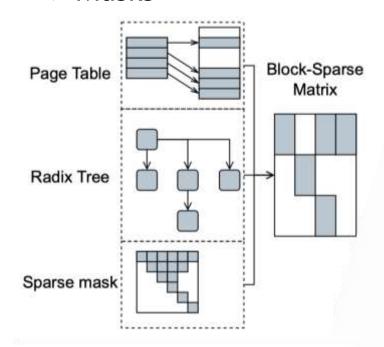
□Overview

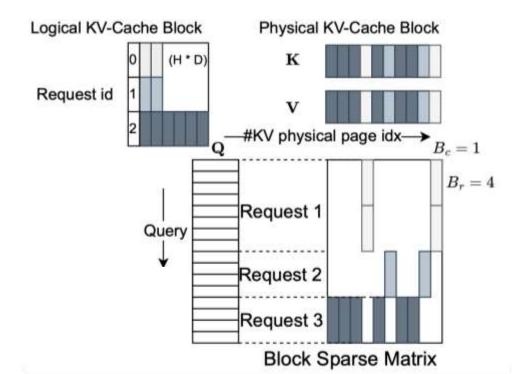


Unified KV Cache Format

□Abstraction of Block Sparse Matrix

- Expressing different structures
 - ➤ PagedAttention
 - > RadixAttention
 - **≻** Masks

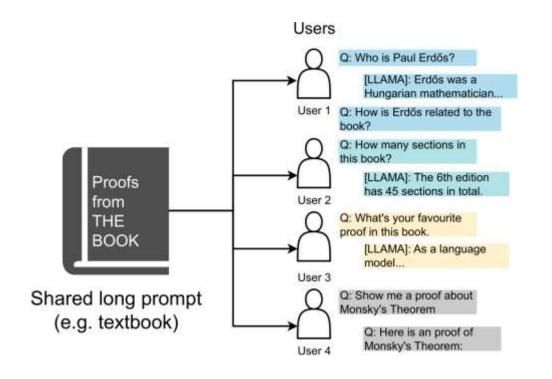


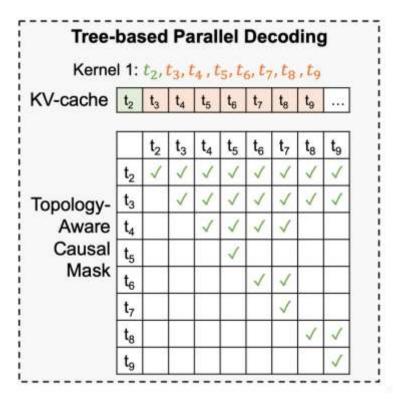


Unified KV Cache Format

□Composable Formats for prefix sharing

- ❖Small block size for unique KV
- ❖Big block size for shared KV



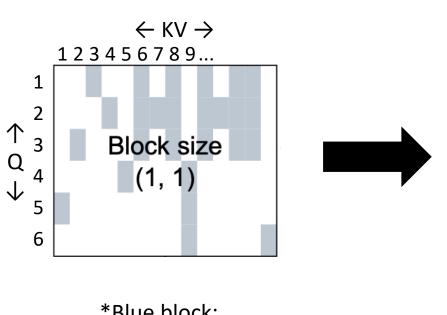


Unified KV Cache Format

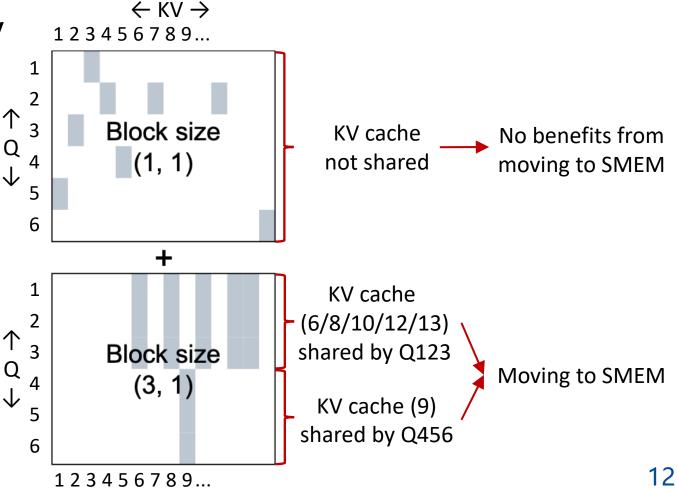
□Composable Formats for prefix sharing

❖Small block size for unique KV

❖Big block size for shared KV

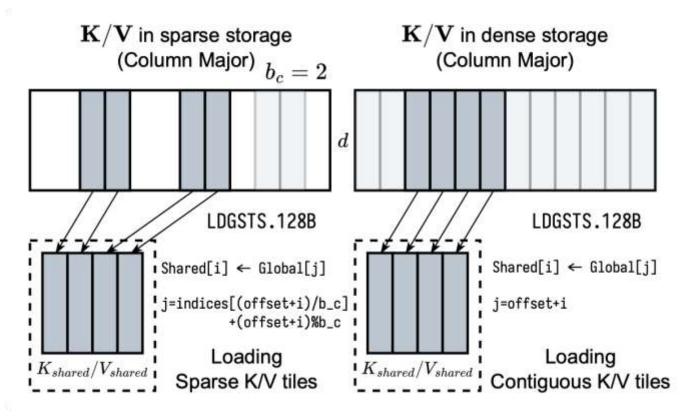


*Blue block:
This query token needs this K/V



Sparse Row Gathering

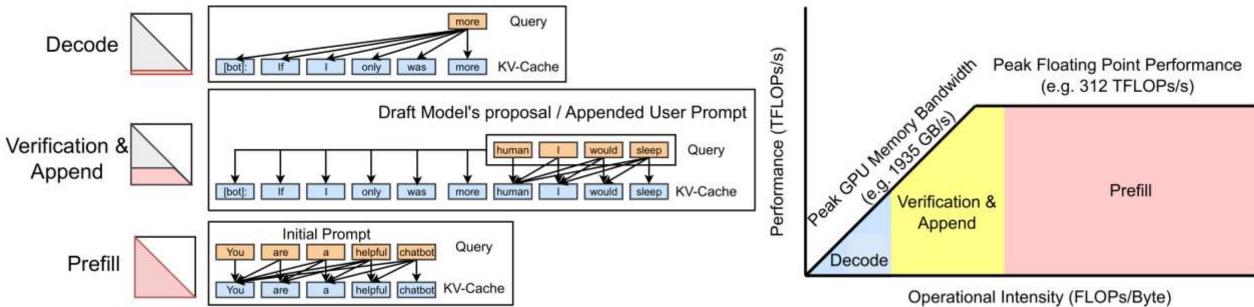
- □FlashInfer supports any block size
- **□**To align tensor core shape
 - Gathering from scattered HBM to contiguous SMEM



Tile Size Selection

□Different query requires different tile size

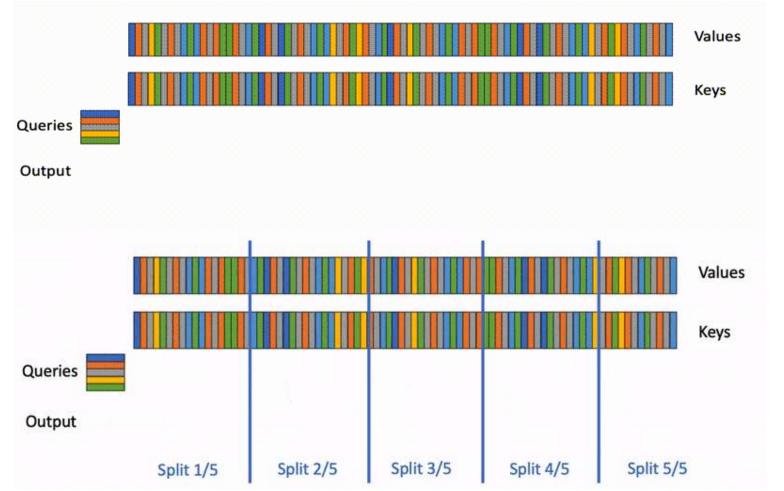
- ❖IO-bound: Decode, Append for small query length
- ❖Multiple tile-size options: (1, 16, 32, 64, 128) x (32, 64, 128)
 - > FlashAttention only supports (64, 128) tiles
- Heuristic selection based on hardware and workload



Load Balancing Schedule

□FlashDecoding [MLSys24]

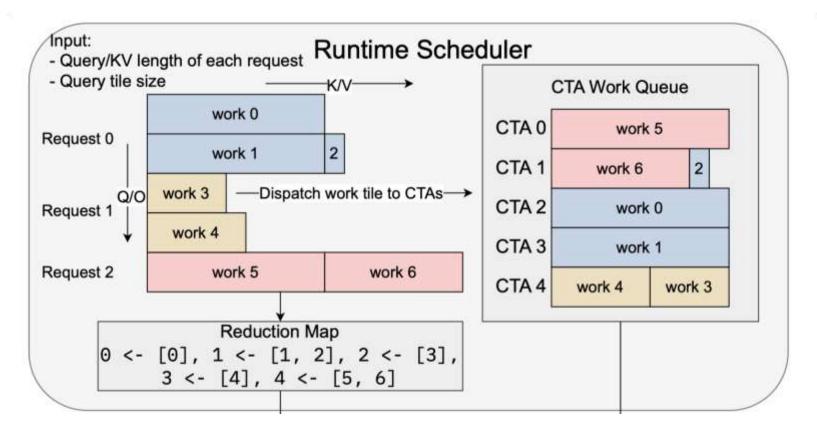
❖Split-K to efficiently leverage SMs



Load Balancing Schedule

□Dispatching the attention work to CTAs

- ❖1 CTA (thread block) for 1 SM
- Avoiding idle SM due to load imbalance



Attention Specification

- **□Similar to FlexAttention**
- □Accept CUDA code string

Attention Specification in Python

```
spec decl = r"""
template <typename Params_, typename KernelTraits_>
struct FlashSigmoid {
  using Params = typename Params_;
  using KernelTraits = typename KernelTraits ;
  static constexpr bool use softmax = false;
  float scale, bias;
  FlashSigmoid(const Params& params, int batch_idx, uint8_t*
smem_ptr) {
    // Copy from CUDA constant memory to registers
    scale = params.scale;
    bias = params.bias;
  float LogitsTransform(const Params& params, float
logit_score, int batch_idx, int qo_idx, int kv_idx, int
qo_head_idx, int kv_head_idx) {
    return 1. / (1. + expf(-(logits score * scale + bias)));
attn spec = AttentionSpec(
  "FlashSigmoid",
  dtype q, dtype kv, dtype o, idtype, head dim, is sparse,
  additional_vars=[("scale", "float"), ("bias", "float")],
  additional tensors=[],
  spec decl=spec decl
```

Programming Interface

□Init:

❖JIT compilation

□Plan:

- Dynamic load balancing schedule
- Multiple layers use the same plan
 - > cost amortized

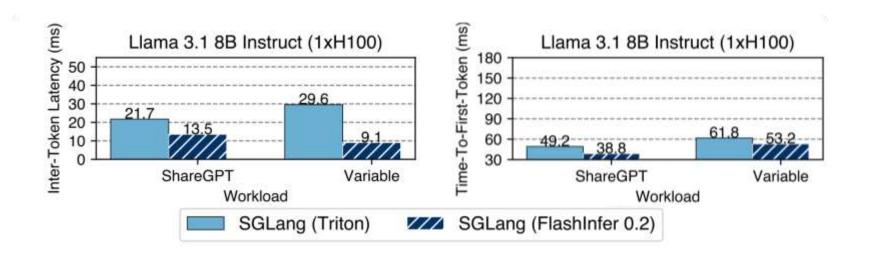
□Run:

- Select best CUDA graph
- Replay CUDA graph

```
# Create workspace buffer
workspace = torch.empty(...)
seglen_info.init()
# Compile: create CUDAGraphs
graphs = []
for task_info in task_infos:
  # Init: compile kernels according to spec
  attn = AttentionWrapper(attn_spec, task_info, workspace)
  g = torch.cuda.CUDAGraph()
  # Dummy plan
  attn.plan(seglen_info)
  # Capture CUDA graphs
  with torch.cuda.graph(g):
    for i, layer in enumerate(layers):
      attn.run(...)
  graphs.append(g)
# Runtime: select the best CUDAGraph
g = select_graph(graphs)
finished = False
# Text generation loop
while not finished:
  seglen_info.update()
  # Plan per generation step
  attn.plan(seglen_info)
  # Replay CUDA-Graph
  g.replay()
```

Evaluation: End-to-End on SGLang

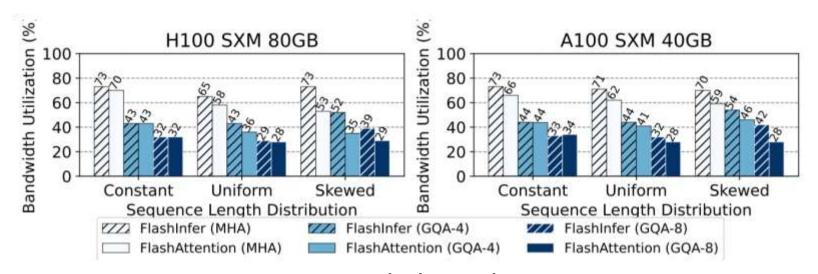
□FlashInfer outperforms Triton-based FlashAttention



Evaluation: FA Kernel

□FlashInfer outperforms FlashAttention due to

- ❖load-balancing scheduler
- ❖versatile tile-size selection

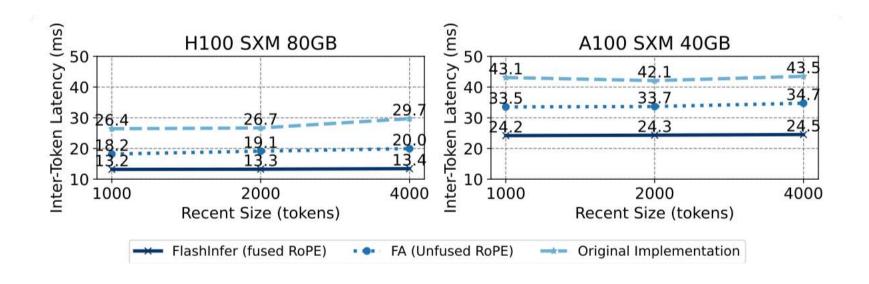


Decode kernel

Evaluation: StreamingLLM Use Case

□RoPE of StreamingLLM should be modified

- Easy fusion with FlashInfer
 - > only 20 lines of code
 - ≥ 28 30% latency reduction



Evaluation: FlexAttention

□FlexAttention:

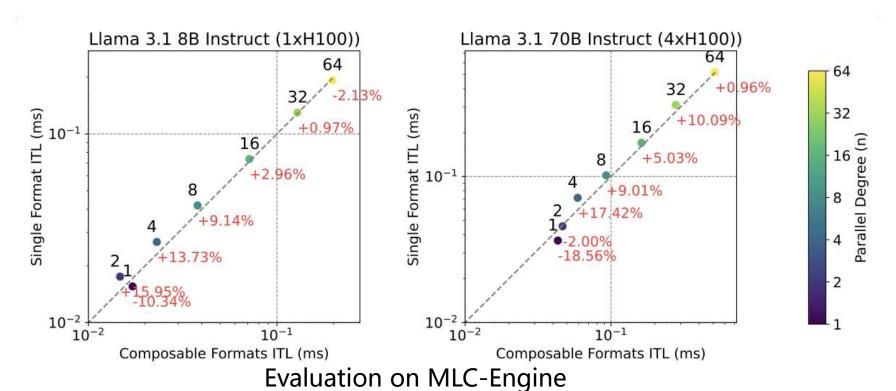
- User-friendly interface for attention variants
- Generating block-sparse Triton-based FlashAttention
- ❖Problem:
 - > Triton FA is slower than native FA
 - > Triton lag in adopting new hardware features (e.g., Hopper)

Seq Length	FlexAttention	FlashInfer
512	209.11	250.454
1024	294.53	406.554
2048	376.90	487.236
4096	421.00	548.388
8192	441.26	587.903
16384	453.57	612.259

Ablation Study: Composable Formats

□Scenario: parallel generation sharing the same prompt

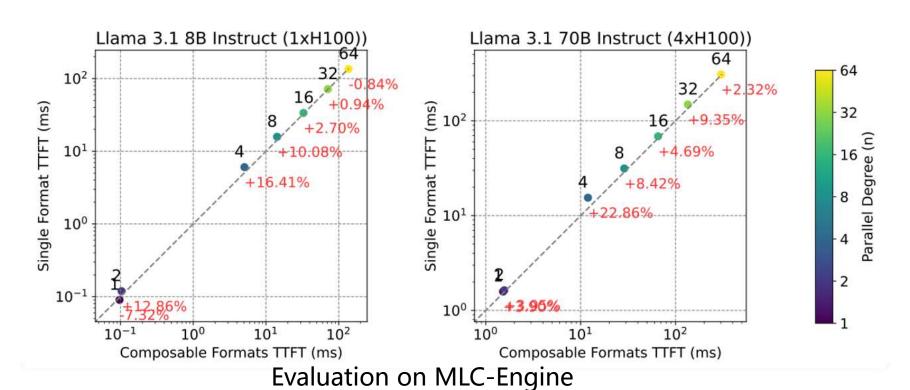
- "n" parameter in OpenAl API
- Used to select from multiple options
 - ➤ Chain-of-Thoughts, math solving, A/B test, etc.



Ablation Study: Composable Formats

□Scenario: parallel generation sharing the same prompt

- "n" parameter in OpenAl API
- Used to select from multiple options
 - ➤ Chain-of-Thoughts, math solving, A/B test, etc.



Ablation Study: Composable Formats

□Scenario: prefix-sharing

Table 5. Latency of Shared-Prefix Attention Kernels				Kernels
Shared Prefix Length	Composable (BS=16) (Composable (BS=64) (
1024	45.17	46.52	87.86	130.49
8192	88.67	226.57	125.76	931.75
32768	217.42	945.67	254.54	4090

Ablation Study: Load Balancing

□Load balancing reduces ITL and TTFT

Table 6. Load-balancing Scheduler Ablation Study (ITL)

Scenario	w/ Load- Balancing	w/o Load- Balancing	Triton
ShareGPT (RR=16)	8.96	9.16	9.36
U(512, 2048) (RR=8)	8.21	8.42	8.49
U(4096, 16384) (RR=1)	8.63	13.89	11.08

Table 7. Load-balancing Scheduler Ablation Study (TTFT)

Scenario	w/ Load- Balancing	w/o Load- Balancing	Triton
ShareGPT (RR=16)	39.05	39.42	52.92
U(512, 2048) (RR=8)	66.78	67.38	68.48
U(4096, 16384) (RR=1)	411.02	421.60	566.30

Ablation Study: Load Balancing

□Load balancing reduces ITL and TTFT

Table 6. Load-balancing Scheduler Ablation Study (ITL)

Scenario	w/ Load- Balancing	w/o Load- Balancing	Triton
ShareGPT (RR=16)	8.96	9.16	9.36
U(512, 2048) (RR=8)	8.21	8.42	8.49
U(4096, 16384) (RR=1)	8.63	13.89	11.08

Table 7. Load-balancing Scheduler Ablation Study (TTFT)

Scenario	w/ Load- Balancing	w/o Load- Balancing	Triton
ShareGPT (RR=16)	39.05	39.42	52.92
U(512, 2048) (RR=8)	66.78	67.38	68.48
U(4096, 16384) (RR=1)	411.02	421.60	566.30

Ablation Study: Overhead of Sparse Gathering

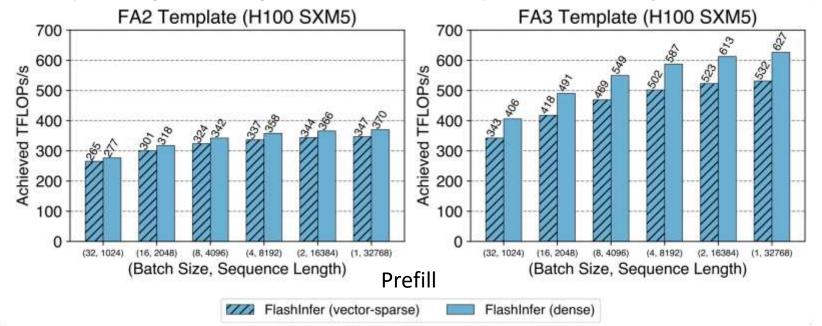
□Sparse row gathering involves overhead

Moving Scattered HBM to contiguous SMEM, Index management

□FA3 leverages TMA for KV loading

❖TMA requires fixed-stride access

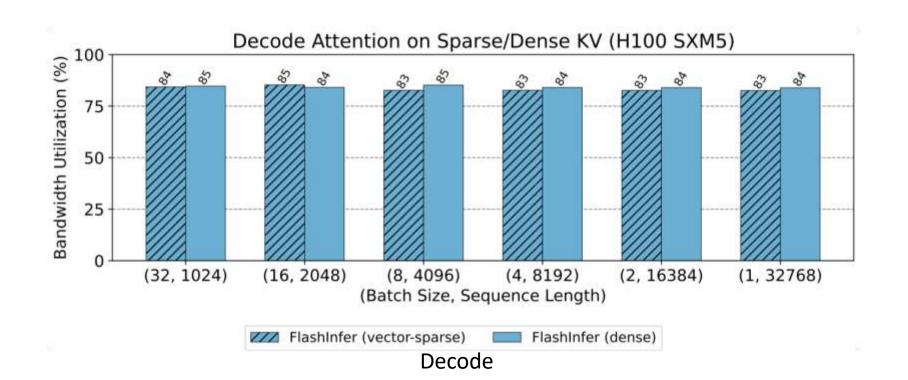
> while sparse gathering of FlashInfer requires arbitrary row indices



Ablation Study: Overhead of Sparse Gathering

□Sparse row gathering involves overhead

- Moving Scattered HBM to contiguous SMEM, Index management
- ❖No need of sparse gathering for contiguous blocks



Discussion

□Minor issues:

- Some techniques are similar to existing papers
 - ➤ load-balancing scheduler
 - > sparse-row gathering

□Expertise in CUDA

- FlashInfer template requires a string of CUDA code
- FlexAttention is enough for simple verfication
 - > FlexAttention only requires PyTorch code
 - > Triton now also supports Hopper advanced features

	Baseline	Scenario	Baseline Fea	ture	FlashInfer Feature
O	SGtang we Triton	E2E ITL, TTFT, ShareGPT, Variable			Overall
	FlashAttention2&3 4.2	decoding of mha / gqa, prefill of mha			load-balancing scheduler decoding: versatile tile-size selection
	FlashAttention2&3 4.3	StreamingLLM for RoPE fusion	hard to man fuse RoPE in		only 20 PyTorch LOC to fuse
	FlexAttention G.1	normal Attention variants (TFLOPS)	based on Trit (lagging in adopting nev Hopper adva features)	W	based on CUDA/CUTLASS
	FlexAttention G.5	fine-grained sparsity of Quest (latency)	large block s	ize	sparse-row gathering (tensor core for small block size)
fo	r Dart	Sconario		Racoli	ino

FlashInfer Part	Scenario	Baseline
load-balancing scheduler G.3	var. seq. len., SGLang	Triton, w/, w/o load-balancing scheduler
composable format	parallel generation (MLC-Engine),	composable vs single format
4.4, G.2	shared-prefix	32