
Efficient and Customizable Attention 
Engine for LLM Inference Serving

Zevin @ Reading Group 2025/6/10

MLSys25 Best Paper

Zihao Ye1 2, Lequn Chen3, Ruihang Lai4, Wuwei Lin2, 
Yineng Zhang, Stephanie Wang1, Tianqi Chen2 4, Baris Kasikci1, 

Vinod Grover2, Arvind Krishnamurthy1, Luis Ceze1 2 

1University of Washington, 2NVIDIA
3Perplexity AI, 4CMU



Attention 
Engine

We already have
FlashAttention, PagedAttention, RadixAttention, SpecInfer, 

StreamingLLM, Quest, DuoAttention, 
FlexAttention, ...

Why do we still need a new attention engine?



3

Background

write O

load Q K 

write S

load S

write P

load P V

HBM SRAM

Standard attention

S = QKT

O = PV

P = SoftMax(S)

fused kernel
S = 𝐐i𝐊

T
j

෥m = rowmax(S)
P = exp S − ෥m
𝒍i = rowsum(P)
𝐦i = max ෥m, 𝐦i

update 𝐎i from 𝒍i, 𝐦i, 𝐕j, 𝐎i

HBM SRAM

load 
KjVj

load
 Qi Oi 𝑙i mi

write 
Oi 𝑙i mi

FlashAttention

❑FlashAttention

❖GPU-friendly memory access

❖FlashAttention2&3

➢Loop optimization

➢Pipeline optimization for Hopper
Memory hierarchy 

(A100-40GB)



4

❑PagedAttention (vLLM) [SOSP23] 

❖Paged KV cache management for variable sequence lengths

❖page_size=16 for tradeoff of throughput and fragmentation

Background



5

❑RadixAttention (SGLang) [NeurIPS24]

❖Designed for prefix-sharing

➢multi-round conversation, AI agent, etc.

❖Shared prefix organized as a Radix tree

❖page_size=1 for higher cache hit rate

Background



6

❑Speculative decoding (SpecInfer) [ASPLOS24] 

❖Tree-based parallel verification for speculative decoding

Background



7

❑New attention variants from researchers

❖KV cache compression:

➢StreamingLLM

➢Quest

❖Speculative decoding:

➢SpecInfer

➢Medusa

❑Efficient implementation in production

❖Requiring fusion with FlashAttention, PagedAttention, etc.

Motivation

dense sliding window streamingllm

Issue 1: Hard to fuse variants with FA



8

❑FlashAttention can be further optimized

❖For decoding (query_length = 1)

➢suboptimal tile size

➢tile size selected for prefill (64, 128) 

❖For batch of different sequence length

➢ low GPU utilization (some SMs left idle)

Motivation

Issue 2: FlashAttention can be optimized



9

❑Overview

FlashInfer Design



10

❑Abstraction of Block Sparse Matrix

❖Expressing different structures

➢PagedAttention

➢RadixAttention

➢Masks

Unified KV Cache Format



11

❑Composable Formats for prefix sharing

❖Small block size for unique KV

❖Big block size for shared KV

Unified KV Cache Format



12

❑Composable Formats for prefix sharing

❖Small block size for unique KV

❖Big block size for shared KV

Unified KV Cache Format

← KV →
1 2 3 4 5 6 7 8 9...

↑
Q
↓

1

2

3

4

5

6

← KV →
1 2 3 4 5 6 7 8 9...

↑
Q
↓

1

2

3

4

5

6

↑
Q
↓

1

2

3

4

5

6

KV cache 
(6/8/10/12/13)
shared by Q123

KV cache (9)
shared by Q456

KV cache
not shared

Moving to SMEM

No benefits from
moving to SMEM

1 2 3 4 5 6 7 8 9...

*Blue block: 
This query token needs this K/V



13

❑FlashInfer supports any block size

❑To align tensor core shape

❖Gathering from scattered HBM to contiguous SMEM

Sparse Row Gathering



14

❑Different query requires different tile size

❖IO-bound: Decode, Append for small query length

❖Multiple tile-size options: (1, 16, 32, 64, 128) x (32, 64, 128）

➢FlashAttention only supports (64, 128) tiles

❖Heuristic selection based on hardware and workload

Tile Size Selection



15

Load Balancing Schedule

❑FlashDecoding [MLSys24]

❖Split-K to efficiently leverage SMs



16

❑Dispatching the attention work to CTAs

❖1 CTA (thread block) for 1 SM

❖Avoiding idle SM due to load imbalance

Load Balancing Schedule



17

❑Similar to FlexAttention

❑Accept CUDA code string

Attention Specification



18

❑Init:

❖JIT compilation

❑Plan: 

❖Dynamic load balancing schedule

❖Multiple layers use the same plan

➢cost amortized

❑Run:

❖Select best CUDA graph

❖Replay CUDA graph

Programming Interface



19

❑FlashInfer outperforms Triton-based FlashAttention

Evaluation: End-to-End on SGLang



20

❑FlashInfer outperforms FlashAttention due to

❖load-balancing scheduler

❖versatile tile-size selection

Evaluation: FA Kernel

Decode kernel



21

❑RoPE of StreamingLLM should be modified

❖Easy fusion with FlashInfer

➢only 20 lines of code

➢28 − 30% latency reduction

Evaluation: StreamingLLM Use Case



22

❑FlexAttention:

❖User-friendly interface for attention variants

❖Generating block-sparse Triton-based FlashAttention

❖Problem:

➢Triton FA is slower than native FA

➢Triton lag in adopting new hardware features (e.g., Hopper)

Evaluation: FlexAttention 

TFLOPS Comparison on Causal Attention



23

❑Scenario: parallel generation sharing the same prompt

❖"n" parameter in OpenAI API

❖Used to select from multiple options

➢Chain-of-Thoughts, math solving, A/B test, etc.

Ablation Study: Composable Formats

Evaluation on MLC-Engine



24

❑Scenario: parallel generation sharing the same prompt

❖"n" parameter in OpenAI API

❖Used to select from multiple options

➢Chain-of-Thoughts, math solving, A/B test, etc.

Ablation Study: Composable Formats

Evaluation on MLC-Engine



25

❑Scenario: prefix-sharing

Ablation Study: Composable Formats



26

❑Load balancing reduces ITL and TTFT

Ablation Study: Load Balancing



27

❑Load balancing reduces ITL and TTFT

Ablation Study: Load Balancing



28

Ablation Study: Overhead of Sparse Gathering

Prefill

❑Sparse row gathering involves overhead

❖Moving Scattered HBM to contiguous SMEM, Index management

❑FA3 leverages TMA for KV loading

❖TMA requires fixed-stride access 

➢while sparse gathering of FlashInfer requires arbitrary row indices



29

❑Sparse row gathering involves overhead

❖Moving Scattered HBM to contiguous SMEM, Index management

❖No need of sparse gathering for contiguous blocks

Ablation Study: Overhead of Sparse Gathering

Decode



30

❑Minor issues:

❖Some techniques are similar to existing papers

➢ load-balancing scheduler

➢sparse-row gathering

❑Expertise in CUDA 

❖FlashInfer template requires a string of CUDA code

❖FlexAttention is enough for simple verfication

➢FlexAttention only requires PyTorch code

➢Triton now also supports Hopper advanced features

Discussion



31



32

Outline
Baseline Scenario Baseline Feature FlashInfer Feature

SGLang w/ Triton
4.1

E2E ITL, TTFT, 
ShareGPT, Variable

Overall

FlashAttention2&3
4.2

decoding of mha / 
gqa, prefill of mha

load-balancing 
scheduler
decoding: versatile 
tile-size selection

FlashAttention2&3
4.3

StreamingLLM for 
RoPE fusion

hard to manually 
fuse RoPE in FA

only 20 PyTorch 
LOC to fuse

FlexAttention G.1 normal Attention 
variants (TFLOPS)

based on Triton 
(lagging in 
adopting new 
Hopper advanced 
features)

based on 
CUDA/CUTLASS

FlexAttention G.5 fine-grained sparsity 
of Quest (latency)

large block size sparse-row 
gathering (tensor 
core for small 
block size)

FlashInfer Part Scenario Baseline

load-balancing scheduler G.3 var. seq. len., SGLang Triton, w/, w/o load-balancing scheduler

composable format
4.4, G.2

parallel generation (MLC-Engine),
shared-prefix

composable vs single format


