dLoRA: Dynamically Orchestrating Requests
and Adapters for LORA LLM Serving

Author: Bingyang Wu?, Ruidong Zhul, Zili Zhang?, Peng
Sun?, Xuanzhe Liu! and Xin Jin1

1 Peking University 2 Shanghai Al Lab

OSDI 2024
Presented by Chizheng Fang

USTC, CHINA

= ADSLAB

*% A R O

Outline

e Background

Background

e LoRA (Low-Rank Adaptation): A popular approach to fine-tune
LLMs
e h=Wx +

¢ Compared to fully fine-tuning GPT-3 175B, LoRA can reduce the
number of trainable parameters by 10,000x and the GPU
consumption by 3x

Output |]
Pretrained I\ B=0 /
Weights .
W e Raxd ! > \A
/A =N(0,6%) \I adapter

Input | |
d

“LoRA: Low-Rank Adaptation of Large Language Models.”

Background

e LoRA introduces no inference overhead when serving a single
LoRA LLM

Output | I Output | |
Pretrained \l b =0 / Finetuned
Weights ' Weights
W e R /A=N(0,0%) \ W + BA € R%xd
Input | I Input | |
d d
Fine-tuning

Merged Inference

Background

e Cloud providers may host many adapters for a LLM

Cloud GenAl Service

/ """ Customized LoRA Adapter\

: @ User 1: Summarization
Pretrained LLM

Background
e Cloud providers may host many adapters for a LLM
e Different users may use different adapters for different

scenarios Cloud GenAl Service
Requests / """ Customized LoRA Adapter\
O(/) R— E
M — esponse i
D p— @ User 1: Summarization
Inference APIs Pretrained LLM

g
% 4

O</“>. Requests $ User 3: Coding

\— Response
4 —— aen
Inference APlIs \ /

|

Outline

e Challenges

Challenge(1): Intra-replica
e Merged inference: Former LoRA serving system forces other

types of requests to wait until the completion of the current
batch.

Output | |
BS
Finetuned
Weights MAX_BS
W + BA € R4xd
Input | |

Low GPU utilization

Challenge(2): Inter-replica
e The burst of variable requests leads to severe load imbalance
under static LoRA placement

e Input and output lengths of requests are highly variable

[Queueing Delay

—h
-
o

~J
&)

N
&)

Time Breakdown(%)
(&)
o

o

Severe load imbalance 1 2 3 4 5 6 7 8

Replicas

Outline

e Design

dLoRA Overview

e Insights: dynamically orchestrate requests and LoRA adapters

e Methods:
¢ Intra-replica: dynamic batching + memory management

____________ .
I Load Balancer.."’l P LLM Replicas .. :
: : Proactive I 3 Requests
: Mechanism : I %
| Cross-adapter Batchin
. ® Balance (H E P g :
Inter-replica | g 'l Dispatcher HE *
I Request: Ii GPU Base Model coni \
y eactive H E Adapter 0 | | Adapter 1 Intra-repllca
I Mechanism il ; :
: "‘l ILP Solver : Memory Management —
I L
: Migration . 51 Migration i
I Plan Migration Controller I
H : . : I
| : N : 3 :
: i L} Re-balance — Global Monitor il
: 3 Trigger i I

dLoRA Overview

e Insights: dynamically orchestrate requests and LoRA adapters

e Methods :
¢ Intra-replica: dynamic batching + memory management

r— Requests
[v

Cross-adapter Batching
B

GPU 'Base Model \
PRl “en .
Adapter 0 | [Adapter 1 Intra-replica

$ <

Memory Management —

dLoRA Overview

e Insights: dynamically orchestrate requests and LoRA adapters

e Methods:
¢ Intra-replica: dynamic batching + memory management

1

| Load Balancer.,‘..l s LLM Replicas ...

: : Proactive — 3 Requests

: Mechanism : N *

| Cross-adapter Batchin

. o _: Balance Ii p)

Inter-replica | g -l Dissalcher : T

| Request; I GPU " [Base Model

| Reactive Ii Adapter 0 | | Adapter 1

I Mechanism i 7

: ""I ILP Solver : Memory Management —

: || [Wgration]| % L | 11_Migation |

: Plan ;I Migration Controller fl

| : N : 3 :

: i L} Re-balance . Global Monitor il

: ! Trigger iy S

Dynamic Batching

OutputO | | |] Outputl
_B,ER™? / Pretrained _B, erR™® /
Weights
/ Ay € RTXd \ W e RdXd / A, E RT‘Xd \
Input0 | | | ! Inputl

14

Dynamic Batching

e Unmerged Inference: share the same computation among
different requests

Output |] Output0 [1 [] Outputl
Finetuned XBo € R™4 / Pretrained \ B, € RIS /
Weights Weights
dxd
W + BA € R¥ / A, eR™4 \ | WE€ERY /A, eRTXA \
lnput ! ! lnputo ! ! I l |nput1
d d d

Merged Inference Unmerged Inference 15

Dynamic Batching

e Unmerged Inference: share the same computation among
different requests

Batched as W X [xq, x]

W'=W + BA Yo =|\Wxo|+|BodoXo| computed in parallel
y=W'x y1 =|Wxq|+|B1A{x4
Output |] Output0 |] [] Outputl
Finetuned \ By € Rer / Pretrained \ B, € Rer /
Weights Weights
W + BA € R%xd /A er@ \ | WeRP1 /A eRE \
Input | | Input0 | ! ! | Inputl
d d d

Merged Inference Unmerged Inference 16

Dynamic Batching

e Merged Inference: vy =W'x

e Unmerged Inference: yo = Wxy + ByAyxg

¢ introduces two additional matrix multiplications and one additional
matrix addition in each layer.

¢ computation BAx is 38.9% of computation Wx.

—t —— Wx —=— BAX

oo
o

»
Q

Require a combine approach e e il

Latency(us)

o

2 4 6 8 10 12 14 16
Batch Size

Dynamic Batching

e Executed at iteration granularity
o lteration: output a token

e Assume current state is unmerged

e Calculate their ratio of the throughput of merged and unmerged

¢ Ifratio > o i¢cn, SWitch to merged
¢ Otherwise, remain unmerged

Output | J Output0 [] |] Outputl
Finetuned XBo € R™4 / Pretrained \ B, € RIS /
Weights Weights
W + BA € R%x4 /A er@ \ | WeR™® | /A erma \
Input [! Input0 | | | | Inputl
d d d
Merged Inference Unmerged Inference 18

Dynamic Batching

e Executed at iteration granularity
o lteration: output a token

e Assume current state is merged

e Calculate their ratio of the throughput of merged and unmerged
o Ifratio < fSqyitcn, SWitch to unmerged
¢ Otherwise, remain merged

Output | J Output0 [] |] Outputl
Finetuned XBo € R™4 / Pretrained \ B, € RIS /
Weights Weights
W + BA € R%x4 /A er@ \ | WeR™® | /A erma \
Input [! Input0 | | | | Inputl
d d d
Merged Inference Unmerged Inference 19

Dynamic Batching

e Executed at iteration granularity
o lteration: output a token

e Assume current state is merged
e Calculate their ratio of the throughput of merged and unmerged

o Ifratio < Ly itcn, SWitch to unmerged

¢ Otherwise, remain merged

Aswitch aNd Bowiten are key parameters

Output | J Output0 |] |] Outputl
Finetuned \Bo E R / Pretrained \ B, € RIAS /
Weights Weights
W + BA € Rdxd /A eR<d \ | WeRP /A, e RTA \
lnput ! ! lnputo | | |] Inputl
d d d
Merged Inference Unmerged Inference 20

Dynamic Batching

e How to choose a.iten, and Beyiten

e Insights:
o Switching overhead can be amortized across multiple future iterations.

o Despite the unavailability of future knowledge, leveraging historical
retrospection is possible.

Unmerged inference Maintaining the status quo Merged inference
is better (switching overhead) is better

| | ,

Y U

Bswitch Aswitch

Dynamic Batching

e Iteration granularity breakpoints, such as replica switching,

changesin R, .., Or after processing a set number of iterations.

e Based on the data collected from the preceding period.

N, : number of the iterations in the previous period Algorithm 2 Adaptive Threshold Tuning

B;: Rmerged[: maxbs] in iy, iteration 1: Input: Candidate period N;, Merged batches B),Bs,...,By,
/ A . 3 .
B;: Brcgs in gy iteration Switching overhead tys, Current switching threshold O,
ty: switching overhead 2: Output: New switching threshold 0,4
3: function ADAPTIVETUNING(Ny, {B;}, ta, Ogwitch)
Ny
4: Tmerge = N Z' | . |
Y.! IterationTime(B;)+1y
Ny)
B
5: Tunmerge =R ZF! -
Y., IterationTime(B!)
Unme:gide ti_tr:frence Ma(lg:altzlt:g g;ho(-‘; ::itéjasd?uo Mergedbirgerence 6: if Tonerge > Tunmerge then
is better
1 | 7 Cswitch = Oswitch — Ydec
| | 8: else
|[Rmergel B U U 9: Olswitch = switch X Ymul
—B switch Aswitch
| Beess| 10: return Ol,rch

22

Dynamic Batching

e Starvation prevention:

¢ Allocating a credit to each LoRA adapter, transferred to any preempted
adapter.

¢ When the credits of certain adapters exceed a threshold, prioritizing
processing requests with these adapters.

e Memory management

¢ Employing a swapping mechanism that swaps LoRA adapters and KV
cache between GPU and host memory

o Could be overlapped with execution using prefetching techniques.

Challenge(2): Inter-replica
e The burst of variable requests leads to severe load imbalance
under static LoRA placement

e Input and output lengths of requests are highly variable

[Queueing Delay

—h
-
o

~J
&)

N
&)

Time Breakdown(%)
(&)
o

o

Severe load imbalance 1 2 3 4 5 6 7 8

Replicas

Dynamic Load Balancing

e Proactive Mechanism
¢ In the long term, the pattern exhibits predictability and periodicity
¢ In the short term, the pattern is marked by unpredictability and

burstiness.
1.0
7)) &
.5 09 o Short-term
L
o 0.8;
£
o 0.7 '
B 0.6
&) ; Long-term
day0 day1 day?2 day3

Time

25

Proactive Mechanism

e Long term strategy

o Preload adapters with lowest burst tolerance to maximize the minimum
burst tolerance.

o =
© o

max number of requests o.g

be(t) = average load

o
N

O
=

Long-term

Relative Invocations

day0 day1 day?2 day3
Time

26

Proactive Mechanism

e Short term strategy

o Estimate pending time for each replica, including adapter load time(if not
loaded) and queueing time.

o Dispatch the request to the replica with the lowest estimate.

Requests
Dispatcher
@ Exec ®; : @ @ Exec
Job (@ Wait Job
Queue D Queue
GPU |1\ “** |GPU
1 ®) Upload —
Host ‘_i.: \ Host | /0

Replica 0 Replica i

Reactive Migration

e Due to the variable input and output lengths of LLM requests,
load imbalance still exists

Job Queue Job Queue
4 A ¢ }
N Al |
\ !
’ Migrate
GPU [GPU
¥ T
Host : - Host W

Replica 0 Replica i

Reactive Migration

e Use ILP to decide how to migrate

e Only triggers when the available GPU memory beyond memory
threshold or queuing delay beyond computation threshold.

e Only considers migration between top K overloaded replicas and
top K underloaded replicas.

Job Queue Job Queue
~ B e }
W I
Migrate —
GPU | GPU
K t
Host - - Host

Replica 0 Replica i

Outline

e Implementation & Evaluation

Evaluation

e Implementation
¢ Base on based on vLLM

e Experimental Setup
o Testbed: 4 nodes * 8 NVIDIA A800-80GB GPUs
¢ Models: LLaMA-2 (7B, 13B, 70B) + 128 LoRA adapters
o Dataset: ShareGPT
o Trace: Microsoft Azure function trace 2019 (MAF1) and 2021 (MAF2)

e Baselines:
¢ VLLM
¢ HuggingFace PEFT

End-to-end performance

+— VLLM (uniform allocation) = PEFT dLoRA SLO
£1.00— - £100 £1.00|
0075 0075 | 2075/,
vo 50 ‘ S— go.sm T f;o.so' i
=025 [§025 1 =025 }
-’0006’8’ 162432404856647280 —0900 8 162432404856 64 —°%0 2 4 6 8 10 12 14 16
Arrival Rate (reqs/s) Arrival Rate (reqs/s) Arrival Rate (reqs/s)

(a) Llama-2-7B, MAF1 (b) Llama-2-13B, MAF1 (c) Llama-2-70B, MAF1
=100 1 2100 — £1.00 =
0075 ' oo75 | £075
vo 50/ | vo 50 1 2050
£025 |/ 5025 | / 5025 J

S0 e R eI So.00 6' 8 6243240485664 —990 2 4 6 8 1012 14 16
Arrival Rate (reqs/s) Arrival Rate (regs/s) Arrival Rate (reqs/s)
(d) Llama-2-7B, MAF2 () Llama-2-13B, MAF2 () Llama-2-70B, MAF2

dLoRA improves the throughput by up to 57.9x compared to vLLM and up to 26.0x

compared to PEFT under the SLO requirement.
32

Effectiveness of dynamic batching

—e— Unmerged-only | 4LoRA —eo— Unmerged-only dLoRA
—s— Merged-only 7-— Merged-only
=25 -
& @6
X 20 S
S \ =9
@’1 5 ‘?’4
T —e >
o p—— (&) —
3 82
oo 1
< %0 - -
004 3 16 32 4 8 16 32
Skewness Skewness
(a) Average Latency. (b) P90 Latency.

dLoRA improves the latency by up to 3.9x compared to Merged-only and up to 2.4 x
compared to Unmerged-only.

33

Effectiveness of dynamic load balancing

—-— RR - Proactive -~ dLoRA B RR B Proactive [dLoRA

1.2 -

g3

o S

308 @l

> >,2

v =

a S

‘80.4 31

-

© >

3 (, L L
0.0 "4 8 12 16 20 24 28 32

Arrival Rate (reqs/s) Ratlo
(a) Reduction in Queuing Delay. (b) Stability under Different Ratios.

dLoRA reduces queueing delay by up to 3.6x compared to RR and 1.4x compared to
Proactive Dispatch under the SLO requirement.
dLoRA reduces average latency by up to 23.5x compared to RR and 2.39x compared to
Proactive Dispatch under the SLO requirement.

34

Outline

e Summary

Summary

e dLoRA: an efficient serving system for multi-LoRA LLMs
¢ Intra-replica: dynamically merges and unmerges adapters
¢ Inter-replica: dynamically migrates both requests and adapters

Thanks!

