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Background

e LoRA (Low-Rank Adaptation): A popular approach to fine-tune
LLMs
e h=Wx +

¢ Compared to fully fine-tuning GPT-3 175B, LoRA can reduce the
number of trainable parameters by 10,000x and the GPU
consumption by 3x
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Background

e LoRA introduces no inference overhead when serving a single
LoRA LLM
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Background

e Cloud providers may host many adapters for a LLM

Cloud GenAl Service
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Background
e Cloud providers may host many adapters for a LLM
e Different users may use different adapters for different

scenarios Cloud GenAl Service
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Challenge(1): Intra-replica
e Merged inference: Former LoRA serving system forces other

types of requests to wait until the completion of the current
batch.
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Challenge(2): Inter-replica
e The burst of variable requests leads to severe load imbalance
under static LoRA placement

e Input and output lengths of requests are highly variable
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dLoRA Overview

e Insights: dynamically orchestrate requests and LoRA adapters

e Methods:
¢ Intra-replica: dynamic batching + memory management
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dLoRA Overview

e Insights: dynamically orchestrate requests and LoRA adapters

e Methods :
¢ Intra-replica: dynamic batching + memory management
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dLoRA Overview

e Insights: dynamically orchestrate requests and LoRA adapters

e Methods:
¢ Intra-replica: dynamic batching + memory management
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Dynamic Batching
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Dynamic Batching

e Unmerged Inference: share the same computation among
different requests
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Dynamic Batching

e Unmerged Inference: share the same computation among
different requests

Batched as W X [xq, x]

W'=W + BA Yo =|\Wxo|+|BodoXo| computed in parallel
y=W'x y1 =|Wxq|+|B1A{x4
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Dynamic Batching

e Merged Inference: vy =W'x

e Unmerged Inference: yo = Wxy + ByAyxg

¢ introduces two additional matrix multiplications and one additional
matrix addition in each layer.

¢ computation BAx is 38.9% of computation Wx.

—t —— Wx —=— BAX
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Dynamic Batching

e Executed at iteration granularity
o lteration: output a token

e Assume current state is unmerged

e Calculate their ratio of the throughput of merged and unmerged

¢ Ifratio > o i¢cn, SWitch to merged
¢ Otherwise, remain unmerged
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Dynamic Batching

e Executed at iteration granularity
o lteration: output a token

e Assume current state is merged

e Calculate their ratio of the throughput of merged and unmerged
o Ifratio < fSqyitcn, SWitch to unmerged
¢ Otherwise, remain merged
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Dynamic Batching

e Executed at iteration granularity
o lteration: output a token

e Assume current state is merged
e Calculate their ratio of the throughput of merged and unmerged

o Ifratio < Ly itcn, SWitch to unmerged

¢ Otherwise, remain merged

Aswitch aNd Bowiten are key parameters
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Dynamic Batching

e How to choose a.iten, and Beyiten

e Insights:
o Switching overhead can be amortized across multiple future iterations.

o Despite the unavailability of future knowledge, leveraging historical
retrospection is possible.

Unmerged inference Maintaining the status quo Merged inference
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Dynamic Batching

e Iteration granularity breakpoints, such as replica switching,

changesin R, .., Or after processing a set number of iterations.

e Based on the data collected from the preceding period.

N, : number of the iterations in the previous period Algorithm 2 Adaptive Threshold Tuning
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Dynamic Batching

e Starvation prevention:

¢ Allocating a credit to each LoRA adapter, transferred to any preempted
adapter.

¢ When the credits of certain adapters exceed a threshold, prioritizing
processing requests with these adapters.

e Memory management

¢ Employing a swapping mechanism that swaps LoRA adapters and KV
cache between GPU and host memory

o Could be overlapped with execution using prefetching techniques.



Challenge(2): Inter-replica
e The burst of variable requests leads to severe load imbalance
under static LoRA placement

e Input and output lengths of requests are highly variable
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Dynamic Load Balancing

e Proactive Mechanism
¢ In the long term, the pattern exhibits predictability and periodicity
¢ In the short term, the pattern is marked by unpredictability and

burstiness.
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Proactive Mechanism

e Long term strategy

o Preload adapters with lowest burst tolerance to maximize the minimum
burst tolerance.
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Proactive Mechanism

e Short term strategy

o Estimate pending time for each replica, including adapter load time(if not
loaded) and queueing time.

o Dispatch the request to the replica with the lowest estimate.
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Reactive Migration

e Due to the variable input and output lengths of LLM requests,
load imbalance still exists
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Reactive Migration

e Use ILP to decide how to migrate

e Only triggers when the available GPU memory beyond memory
threshold or queuing delay beyond computation threshold.

e Only considers migration between top K overloaded replicas and
top K underloaded replicas.
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Evaluation

e Implementation
¢ Base on based on vLLM

e Experimental Setup
o Testbed: 4 nodes * 8 NVIDIA A800-80GB GPUs
¢ Models: LLaMA-2 (7B, 13B, 70B) + 128 LoRA adapters
o Dataset: ShareGPT
o Trace: Microsoft Azure function trace 2019 (MAF1) and 2021 (MAF2)

e Baselines:
¢ VLLM
¢ HuggingFace PEFT



End-to-end performance
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dLoRA improves the throughput by up to 57.9x compared to vLLM and up to 26.0x

compared to PEFT under the SLO requirement.
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Effectiveness of dynamic batching
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dLoRA improves the latency by up to 3.9x compared to Merged-only and up to 2.4 x
compared to Unmerged-only.
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Effectiveness of dynamic load balancing
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dLoRA reduces queueing delay by up to 3.6x compared to RR and 1.4x compared to
Proactive Dispatch under the SLO requirement.
dLoRA reduces average latency by up to 23.5x compared to RR and 2.39x compared to
Proactive Dispatch under the SLO requirement.
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Summary

e dLoRA: an efficient serving system for multi-LoRA LLMs
¢ Intra-replica: dynamically merges and unmerges adapters
¢ Inter-replica: dynamically migrates both requests and adapters

Thanks!



