dLoRA: Dynamically Orchestrating Requests and Adapters for LoRA LLM Serving

Author: Bingyang Wu¹, Ruidong Zhu¹, Zili Zhang¹, Peng Sun², Xuanzhe Liu¹ and Xin Jin ¹

¹ Peking University ² Shanghai AI Lab

OSDI 2024

Presented by Chizheng Fang

Outline

- Background
- Challenges
- Design
- Implementation & Evaluation
- Summary

- LoRA (Low-Rank Adaptation): A popular approach to fine-tune LLMs
 - \bullet h = Wx + BA
 - ◆ Compared to fully fine-tuning GPT-3 175B, LoRA can reduce the number of trainable parameters by 10,000x and the GPU consumption by 3x

Hu, Edward J., Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. "LoRA: Low-Rank Adaptation of Large Language Models." ICLR (2022)

 LoRA introduces no inference overhead when serving a single LoRA LLM

Cloud providers may host many adapters for a LLM

Cloud providers may host many adapters for a LLM

 Different users may use different adapters for different scenarios
 Cloud GenAl Service

Outline

- Background
- Challenges
- Design
- Implementation & Evaluation
- Summary

Challenge(1): Intra-replica

• Merged inference: Former LoRA serving system forces other types of requests to wait until the completion of the current batch.

Challenge(2): Inter-replica

- The burst of variable requests leads to severe load imbalance under static LoRA placement
- Input and output lengths of requests are highly variable

Severe load imbalance

Outline

- Background
- Challenges
- Design
- Implementation & Evaluation
- Summary

dLoRA Overview

- Insights: dynamically orchestrate requests and LoRA adapters
- Methods:
 - ◆ Intra-replica: dynamic batching + memory management
 - ◆ Inter-replica: proactive dispatching + reactive migration

dLoRA Overview

- Insights: dynamically orchestrate requests and LoRA adapters
- Methods:
 - ◆ Intra-replica: dynamic batching + memory management

dLoRA Overview

- Insights: dynamically orchestrate requests and LoRA adapters
- Methods:
 - ◆ Intra-replica: dynamic batching + memory management
 - ◆ Inter-replica: proactive dispatching + reactive migration

• Unmerged Inference: share the same computation among different requests

• Unmerged Inference: share the same computation among different requests

- Merged Inference: y = W'x
- Unmerged Inference: $y_0 = Wx_0 + B_0A_0x_0$
 - introduces two additional matrix multiplications and one additional matrix addition in each layer.
 - \bullet computation BAx is 38.9% of computation Wx.

Require a combine approach

- Executed at iteration granularity
 - ◆ Iteration: output a token
- Assume current state is unmerged
- Calculate their ratio of the throughput of merged and unmerged
 - If ratio > α_{switch} , switch to merged
 - Otherwise, remain unmerged

Merged Inference

- Executed at iteration granularity
 - ◆ Iteration: output a token
- Assume current state is merged
- Calculate their ratio of the throughput of merged and unmerged
 - If ratio $<\beta_{switch}$, switch to unmerged
 - Otherwise, remain merged

Merged Inference

- Executed at iteration granularity
 - ◆ Iteration: output a token
- Assume current state is merged
- Calculate their ratio of the throughput of merged and unmerged

Output0

- If ratio $<\beta_{switch}$, switch to unmerged
- ◆ Otherwise, remain merged

Finetuned
Weights $W + BA \in R^{d \times d}$ Input

Merged Inference

 $B_0 \in R^{r \times d}$ Pretrained Weights $W \in R^{d \times d}$ $A_1 \in R^{r \times d}$ Input Input 0 Input Input 1

 α_{switch} and β_{switch} are key parameters

Unmerged Inference

Output1

- ullet How to choose $lpha_{switch}$ and eta_{switch}
- Insights:
 - ◆ Switching overhead can be amortized across multiple future iterations.
 - ◆ Despite the unavailability of future knowledge, leveraging historical retrospection is possible.

- Iteration granularity breakpoints, such as replica switching, changes in R_{merge} , or after processing a set number of iterations.
- Based on the data collected from the preceding period.

 N_I : number of the iterations in the previous period

 $B_i: R_{merged}[: maxbs]$ in i_{th} iteration

 B_i' : B_{fcfs} in i_{th} iteration

 t_M : switching overhead

Algorithm 2 Adaptive Threshold Tuning

- 1: **Input:** Candidate period N_I , Merged batches $B_1, B_2, ..., B_I$, Switching overhead t_M , Current switching threshold α_{switch}
- 2: Output: New switching threshold α_{switch}
- 3: **function** ADAPTIVETUNING(N_I , $\{B_i\}$, t_M , α_{switch})

4:
$$T_{merge} = \frac{\sum_{i=1}^{N_I} |B_i|}{\sum_{i=1}^{N_I} IterationTime(B_i) + t_M}$$

5:
$$T_{unmerge} = \frac{\sum_{i=1}^{N_I} |B'_i|}{\sum_{i=1}^{N_I} IterationTime(B'_i)}$$

- 6: **if** $T_{merge} > T_{unmerge}$ **then**
- 7: $\alpha_{switch} = \alpha_{switch} \gamma_{dec}$
- 8: else
- 9: $\alpha_{switch} = \alpha_{switch} \times \gamma_{mul}$
- 10: **return** α_{switch}

Starvation prevention:

- ◆ Allocating a credit to each LoRA adapter, transferred to any preempted adapter.
- ♦ When the credits of certain adapters exceed a threshold, prioritizing processing requests with these adapters.

Memory management

- Employing a swapping mechanism that swaps LoRA adapters and KV cache between GPU and host memory
- ◆ Could be overlapped with execution using prefetching techniques.

Challenge(2): Inter-replica

- The burst of variable requests leads to severe load imbalance under static LoRA placement
- Input and output lengths of requests are highly variable

Severe load imbalance

Dynamic Load Balancing

Proactive Mechanism

- ◆ In the long term, the pattern exhibits predictability and periodicity
- ◆ In the short term, the pattern is marked by unpredictability and burstiness.

Proactive Mechanism

- Long term strategy
 - ◆ Preload adapters with lowest burst tolerance to maximize the minimum burst tolerance.

$$bt(i) = \frac{\max number \ of \ requests}{average \ load}$$

Proactive Mechanism

Short term strategy

- ◆ Estimate pending time for each replica, including adapter load time(if not loaded) and queueing time.
- ◆ Dispatch the request to the replica with the lowest estimate.

Reactive Migration

 Due to the variable input and output lengths of LLM requests, load imbalance still exists

Reactive Migration

Use ILP to decide how to migrate

 Only triggers when the available GPU memory beyond memory threshold or queuing delay beyond computation threshold.

Only considers migration between top K overloaded replicas and

top K underloaded replicas.

Outline

- Background
- Challenges
- Design
- Implementation & Evaluation
- Summary

Evaluation

- Implementation
 - Base on based on vLLM
- Experimental Setup
 - ◆ Testbed: 4 nodes * 8 NVIDIA A800-80GB GPUs
 - ◆ Models: LLaMA-2 (7B, 13B, 70B) + 128 LoRA adapters
 - ◆ Dataset: ShareGPT
 - ◆ Trace: Microsoft Azure function trace 2019 (MAF1) and 2021 (MAF2)
- Baselines:
 - ◆ vLLM
 - ◆ HuggingFace PEFT

End-to-end performance

dLoRA improves the throughput by up to 57.9× compared to **vLLM** and up to 26.0× compared to **PEFT** under the SLO requirement.

Effectiveness of dynamic batching

dLoRA improves the latency by up to $3.9 \times$ compared to **Merged-only** and up to $2.4 \times$ compared to **Unmerged-only**.

Effectiveness of dynamic load balancing

- (a) Reduction in Queuing Delay. (b) Stability under Different Ratios.
- **dLoRA** reduces queueing delay by up to $3.6 \times$ compared to **RR** and $1.4 \times$ compared to **Proactive Dispatch** under the SLO requirement.

dLoRA reduces average latency by up to 23.5× compared to **RR** and 2.39× compared to **Proactive Dispatch** under the SLO requirement.

Outline

- Background
- Challenges
- Design
- Implementation & Evaluation
- Summary

Summary

- dLoRA: an efficient serving system for multi-LoRA LLMs
 - ◆ Intra-replica: dynamically merges and unmerges adapters
 - ◆ Inter-replica: dynamically migrates both requests and adapters

Thanks!