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⚫ LoRA (Low-Rank Adaptation): A popular approach to fine-tune 
LLMs
◆ h =𝑊𝑥 + 𝐵𝐴

◆ Compared to fully fine-tuning GPT-3 175B, LoRA can reduce the 
number of trainable parameters by 10,000x and the GPU 
consumption by 3x
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Background
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⚫ LoRA introduces no inference overhead when serving a single 
LoRA LLM
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⚫ Cloud providers may host many adapters for a LLM
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⚫ Cloud providers may host many adapters for a LLM

⚫ Different users may use different adapters for different 
scenarios
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⚫ Merged inference: Former LoRA serving system forces other 
types of requests to wait until the completion of the current 
batch.
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Challenge(1): Intra-replica
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Challenge(2): Inter-replica
⚫ The burst of variable requests leads to severe load imbalance 
under static LoRA placement 

⚫ Input and output lengths of requests are highly variable

Severe load imbalance
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dLoRA Overview
⚫ Insights: dynamically orchestrate requests and LoRA adapters

⚫ Methods:
◆ Intra-replica: dynamic batching + memory management 

◆ Inter-replica: proactive dispatching + reactive migration

Intra-replica

Inter-replica
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Dynamic Batching
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Dynamic Batching

Merged Inference Unmerged Inference

⚫ Unmerged Inference: share the same computation among 
different requests
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Dynamic Batching

Merged Inference Unmerged Inference

𝑊′ = 𝑊 + 𝐵𝐴
𝑦 = 𝑊′𝑥

𝑦0 = 𝑊𝑥0 + 𝐵0𝐴0𝑥0
𝑦1 = 𝑊𝑥1 + 𝐵1𝐴1𝑥1

Batched as 𝑊 × [𝑥0, 𝑥1]

Computed in parallel

⚫ Unmerged Inference: share the same computation among 
different requests
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Dynamic Batching
⚫ Merged Inference:      𝑦 = 𝑊′𝑥

⚫ Unmerged Inference:  𝑦0 = 𝑊𝑥0 + 𝐵0𝐴0𝑥0
◆ introduces two additional matrix multiplications and one additional 

matrix addition in each layer.

◆ computation 𝐵𝐴𝑥 is 38.9% of computation 𝑊𝑥.

Require a combine approach
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Dynamic Batching
⚫ Executed at iteration granularity

◆ Iteration: output a token

⚫ Assume current state is unmerged

⚫ Calculate their ratio of the throughput of merged and unmerged 
◆ If ratio > 𝛼𝑠𝑤𝑖𝑡𝑐ℎ, switch to merged

◆ Otherwise, remain unmerged

18Merged Inference Unmerged Inference
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Dynamic Batching
⚫ Executed at iteration granularity

◆ Iteration: output a token

⚫ Assume current state is merged

⚫ Calculate their ratio of the throughput of merged and unmerged 
◆ If ratio < 𝛽𝑠𝑤𝑖𝑡𝑐ℎ, switch to unmerged

◆ Otherwise, remain merged
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Dynamic Batching
⚫ Executed at iteration granularity
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𝛼𝑠𝑤𝑖𝑡𝑐ℎ and 𝛽𝑠𝑤𝑖𝑡𝑐ℎ are key parameters
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Dynamic Batching
⚫ How to choose 𝛼𝑠𝑤𝑖𝑡𝑐ℎ and 𝛽𝑠𝑤𝑖𝑡𝑐ℎ
⚫ Insights:
◆ Switching overhead can be amortized across multiple future iterations.

◆ Despite the unavailability of future knowledge, leveraging historical 
retrospection is possible.
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Dynamic Batching
⚫ Iteration granularity breakpoints, such as replica switching, 
changes in 𝑅𝑚𝑒𝑟𝑔𝑒, or after processing a set number of iterations.

⚫ Based on the data collected from the preceding period.

𝑁𝐼 : number of the iterations in the previous period
𝐵𝑖 : 𝑅𝑚𝑒𝑟𝑔𝑒𝑑[: 𝑚𝑎𝑥𝑏𝑠] in 𝑖𝑡ℎ iteration
𝐵𝑖
′: 𝐵𝑓𝑐𝑓𝑠 in 𝑖𝑡ℎ iteration

𝑡𝑀: switching overhead 
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Dynamic Batching
⚫ Starvation prevention:
◆ Allocating a credit to each LoRA adapter, transferred to any preempted 

adapter.

◆ When the credits of certain adapters exceed a threshold, prioritizing 
processing requests with these adapters.

⚫ Memory management
◆ Employing a swapping mechanism that swaps LoRA adapters and KV 

cache between GPU and host memory

◆ Could be overlapped with execution using prefetching techniques.
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Challenge(2): Inter-replica
⚫ The burst of variable requests leads to severe load imbalance 
under static LoRA placement 

⚫ Input and output lengths of requests are highly variable

Severe load imbalance
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Dynamic Load Balancing
⚫ Proactive Mechanism
◆ In the long term, the pattern exhibits predictability and periodicity

◆ In the short term, the pattern is marked by unpredictability and 
burstiness.
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Proactive Mechanism
⚫ Long term strategy
◆ Preload adapters with lowest burst tolerance to maximize the minimum 

burst tolerance.

𝑏𝑡 𝑖 =
max 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑎𝑑
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Proactive Mechanism
⚫ Short term strategy
◆ Estimate pending time for each replica, including adapter load time(if not 

loaded) and queueing time.

◆ Dispatch the request to the replica with the lowest estimate.
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Reactive Migration
⚫ Due to the variable input and output lengths of LLM requests, 
load imbalance still exists
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Reactive Migration
⚫ Use ILP to decide how to migrate

⚫ Only triggers when the available GPU memory beyond memory 
threshold or queuing delay beyond computation threshold.

⚫ Only considers migration between top K overloaded replicas and 
top K underloaded replicas.
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Evaluation
⚫ Implementation 
◆ Base on based on vLLM

⚫ Experimental Setup
◆ Testbed: 4 nodes * 8 NVIDIA A800-80GB GPUs

◆ Models: LLaMA-2 (7B, 13B, 70B) + 128 LoRA adapters

◆ Dataset: ShareGPT

◆ Trace: Microsoft Azure function trace 2019 (MAF1) and 2021 (MAF2)

⚫ Baselines: 
◆ vLLM 

◆ HuggingFace PEFT
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End-to-end performance 

dLoRA improves the throughput by up to 57.9× compared to vLLM and up to 26.0×
compared to PEFT under the SLO requirement.
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Effectiveness of dynamic batching

dLoRA improves the latency by up to 3.9× compared to Merged-only and up to 2.4×
compared to Unmerged-only.
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Effectiveness of dynamic load balancing

dLoRA reduces queueing delay by up to 3.6× compared to RR and 1.4× compared to
Proactive Dispatch under the SLO requirement.
dLoRA reduces average latency by up to 23.5× compared to RR and 2.39× compared to
Proactive Dispatch under the SLO requirement.
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Summary

⚫ dLoRA: an efficient serving system for multi-LoRA LLMs 
◆ Intra-replica: dynamically merges and unmerges adapters 
◆ Inter-replica: dynamically migrates both requests and adapters

Thanks!


