
1

dLoRA: Dynamically Orchestrating Requests
and Adapters for LoRA LLM Serving

Presented by Chizheng Fang

Author: Bingyang Wu1, Ruidong Zhu1, Zili Zhang1, Peng
Sun2, Xuanzhe Liu1 and Xin Jin 1

1 Peking University 2 Shanghai AI Lab

OSDI 2024

⚫ Background

⚫ Challenges

⚫ Design

⚫ Implementation & Evaluation

⚫ Summary

2

Outline

⚫ LoRA (Low-Rank Adaptation): A popular approach to fine-tune
LLMs
◆ h =𝑊𝑥 + 𝐵𝐴

◆ Compared to fully fine-tuning GPT-3 175B, LoRA can reduce the
number of trainable parameters by 10,000x and the GPU
consumption by 3x

3

Background

Hu, Edward J., Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. “LoRA: Low-Rank Adaptation of Large Language Models.” ICLR (2022)

adapter

⚫ LoRA introduces no inference overhead when serving a single
LoRA LLM

Background

Output

Pretrained
Weights

𝑊 ∈ 𝑅𝑑×𝑑
𝐴 = 𝑁(0, 𝜎2)

𝐵 = 0

r

Input

d

Output

Finetuned
Weights

𝑊 +𝐵𝐴 ∈ 𝑅𝑑×𝑑

Input

d

Fine-tuning Merged Inference

⚫ Cloud providers may host many adapters for a LLM

5

Background

Pretrained LLM

Customized LoRA Adapters

User 1: Summarization

User 2: Proofreading

User 3: Coding

Cloud GenAI Service

⚫ Cloud providers may host many adapters for a LLM

⚫ Different users may use different adapters for different
scenarios

6

Background

Pretrained LLM

Customized LoRA Adapters

User 1: Summarization

User 2: Proofreading

User 3: Coding

Requests

Response

Inference APIs

Requests

Response

Inference APIs

…

Cloud GenAI Service

⚫ Background

⚫ Challenges

⚫ Design

⚫ Implementation & Evaluation

⚫ Summary

7

Outline

⚫ Merged inference: Former LoRA serving system forces other
types of requests to wait until the completion of the current
batch.

8

Challenge(1): Intra-replica

Output

Finetuned
Weights

𝑊 +𝐵𝐴 ∈ 𝑅𝑑×𝑑

Input

d
Low GPU utilization

9

Challenge(2): Inter-replica
⚫ The burst of variable requests leads to severe load imbalance
under static LoRA placement

⚫ Input and output lengths of requests are highly variable

Severe load imbalance

⚫ Background

⚫ Challenges

⚫ Design

⚫ Implementation & Evaluation

⚫ Summary

10

Outline

11

dLoRA Overview
⚫ Insights: dynamically orchestrate requests and LoRA adapters

⚫ Methods:
◆ Intra-replica: dynamic batching + memory management

◆ Inter-replica: proactive dispatching + reactive migration

Intra-replica

Inter-replica

12

dLoRA Overview
⚫ Insights: dynamically orchestrate requests and LoRA adapters

⚫ Methods :
◆ Intra-replica: dynamic batching + memory management

Intra-replica

13

dLoRA Overview
⚫ Insights: dynamically orchestrate requests and LoRA adapters

⚫ Methods:
◆ Intra-replica: dynamic batching + memory management

◆ Inter-replica: proactive dispatching + reactive migration

Inter-replica

14

Dynamic Batching

Output1

Pretrained
Weights

𝑊 ∈ 𝑅𝑑×𝑑

Input1

d

𝐵0 ∈ 𝑅𝑟×𝑑

𝐴0 ∈ 𝑅𝑟×𝑑 𝐴1 ∈ 𝑅𝑟×𝑑

𝐵1 ∈ 𝑅𝑟×𝑑

d

Output0

Input0

15

Dynamic Batching

Merged Inference Unmerged Inference

⚫ Unmerged Inference: share the same computation among
different requests

16

Dynamic Batching

Merged Inference Unmerged Inference

𝑊′ = 𝑊 + 𝐵𝐴
𝑦 = 𝑊′𝑥

𝑦0 = 𝑊𝑥0 + 𝐵0𝐴0𝑥0
𝑦1 = 𝑊𝑥1 + 𝐵1𝐴1𝑥1

Batched as 𝑊 × [𝑥0, 𝑥1]

Computed in parallel

⚫ Unmerged Inference: share the same computation among
different requests

17

Dynamic Batching
⚫ Merged Inference: 𝑦 = 𝑊′𝑥

⚫ Unmerged Inference: 𝑦0 = 𝑊𝑥0 + 𝐵0𝐴0𝑥0
◆ introduces two additional matrix multiplications and one additional

matrix addition in each layer.

◆ computation 𝐵𝐴𝑥 is 38.9% of computation 𝑊𝑥.

Require a combine approach

18

Dynamic Batching
⚫ Executed at iteration granularity

◆ Iteration: output a token

⚫ Assume current state is unmerged

⚫ Calculate their ratio of the throughput of merged and unmerged
◆ If ratio > 𝛼𝑠𝑤𝑖𝑡𝑐ℎ, switch to merged

◆ Otherwise, remain unmerged

18Merged Inference Unmerged Inference

19

Dynamic Batching
⚫ Executed at iteration granularity

◆ Iteration: output a token

⚫ Assume current state is merged

⚫ Calculate their ratio of the throughput of merged and unmerged
◆ If ratio < 𝛽𝑠𝑤𝑖𝑡𝑐ℎ, switch to unmerged

◆ Otherwise, remain merged

19Merged Inference Unmerged Inference

20

Dynamic Batching
⚫ Executed at iteration granularity

◆ Iteration: output a token

⚫ Assume current state is merged

⚫ Calculate their ratio of the throughput of merged and unmerged
◆ If ratio < 𝛽𝑠𝑤𝑖𝑡𝑐ℎ, switch to unmerged

◆ Otherwise, remain merged

20Merged Inference Unmerged Inference

𝛼𝑠𝑤𝑖𝑡𝑐ℎ and 𝛽𝑠𝑤𝑖𝑡𝑐ℎ are key parameters

21

Dynamic Batching
⚫ How to choose 𝛼𝑠𝑤𝑖𝑡𝑐ℎ and 𝛽𝑠𝑤𝑖𝑡𝑐ℎ
⚫ Insights:
◆ Switching overhead can be amortized across multiple future iterations.

◆ Despite the unavailability of future knowledge, leveraging historical
retrospection is possible.

22

Dynamic Batching
⚫ Iteration granularity breakpoints, such as replica switching,
changes in 𝑅𝑚𝑒𝑟𝑔𝑒, or after processing a set number of iterations.

⚫ Based on the data collected from the preceding period.

𝑁𝐼 : number of the iterations in the previous period
𝐵𝑖 : 𝑅𝑚𝑒𝑟𝑔𝑒𝑑[: 𝑚𝑎𝑥𝑏𝑠] in 𝑖𝑡ℎ iteration
𝐵𝑖
′: 𝐵𝑓𝑐𝑓𝑠 in 𝑖𝑡ℎ iteration

𝑡𝑀: switching overhead

23

Dynamic Batching
⚫ Starvation prevention:
◆ Allocating a credit to each LoRA adapter, transferred to any preempted

adapter.

◆ When the credits of certain adapters exceed a threshold, prioritizing
processing requests with these adapters.

⚫ Memory management
◆ Employing a swapping mechanism that swaps LoRA adapters and KV

cache between GPU and host memory

◆ Could be overlapped with execution using prefetching techniques.

24

Challenge(2): Inter-replica
⚫ The burst of variable requests leads to severe load imbalance
under static LoRA placement

⚫ Input and output lengths of requests are highly variable

Severe load imbalance

25

Dynamic Load Balancing
⚫ Proactive Mechanism
◆ In the long term, the pattern exhibits predictability and periodicity

◆ In the short term, the pattern is marked by unpredictability and
burstiness.

26

Proactive Mechanism
⚫ Long term strategy
◆ Preload adapters with lowest burst tolerance to maximize the minimum

burst tolerance.

𝑏𝑡 𝑖 =
max 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑎𝑑

27

Proactive Mechanism
⚫ Short term strategy
◆ Estimate pending time for each replica, including adapter load time(if not

loaded) and queueing time.

◆ Dispatch the request to the replica with the lowest estimate.

28

Reactive Migration
⚫ Due to the variable input and output lengths of LLM requests,
load imbalance still exists

29

Reactive Migration
⚫ Use ILP to decide how to migrate

⚫ Only triggers when the available GPU memory beyond memory
threshold or queuing delay beyond computation threshold.

⚫ Only considers migration between top K overloaded replicas and
top K underloaded replicas.

⚫ Background

⚫ Challenges

⚫ Design

⚫ Implementation & Evaluation

⚫ Summary

30

Outline

31

Evaluation
⚫ Implementation
◆ Base on based on vLLM

⚫ Experimental Setup
◆ Testbed: 4 nodes * 8 NVIDIA A800-80GB GPUs

◆ Models: LLaMA-2 (7B, 13B, 70B) + 128 LoRA adapters

◆ Dataset: ShareGPT

◆ Trace: Microsoft Azure function trace 2019 (MAF1) and 2021 (MAF2)

⚫ Baselines:
◆ vLLM

◆ HuggingFace PEFT

32

End-to-end performance

dLoRA improves the throughput by up to 57.9× compared to vLLM and up to 26.0×
compared to PEFT under the SLO requirement.

33

Effectiveness of dynamic batching

dLoRA improves the latency by up to 3.9× compared to Merged-only and up to 2.4×
compared to Unmerged-only.

34

Effectiveness of dynamic load balancing

dLoRA reduces queueing delay by up to 3.6× compared to RR and 1.4× compared to
Proactive Dispatch under the SLO requirement.
dLoRA reduces average latency by up to 23.5× compared to RR and 2.39× compared to
Proactive Dispatch under the SLO requirement.

⚫ Background

⚫ Challenges

⚫ Design

⚫ Implementation & Evaluation

⚫ Summary

35

Outline

36

Summary

⚫ dLoRA: an efficient serving system for multi-LoRA LLMs
◆ Intra-replica: dynamically merges and unmerges adapters
◆ Inter-replica: dynamically migrates both requests and adapters

Thanks!

