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❑Brief introduction of HNSW

❑Analysis of HNSW

❑Hubness highway hypothesis in high dimensional space

Outline
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NSW

❑Brief introduction of NSW (Navigable Small World)

❖Building parameter: M

➢Newly inserted node will be connected to M nearest nodes in graph

Example: M = 2



4

❑Brief introduction of NSW (Navigable Small World)

❖Building parameter: M

➢Newly inserted node will be connected to M nearest nodes in graph

NSW

Example: M = 2



5

❑Brief introduction of NSW (Navigable Small World)

❖Building parameter: M

➢Newly inserted node will be connected to M nearest nodes in graph

NSW

Example: M = 2



6

❑Brief introduction of NSW (Navigable Small World)

❖Building parameter: M

➢Newly inserted node will be connected to M nearest nodes in graph

NSW

Example: M = 2



7

❑Brief introduction of NSW (Navigable Small World)

❖Building parameter: M

➢Newly inserted node will be connected to M nearest nodes in graph

NSW

Example: M = 2



8

❑Brief introduction of NSW (Navigable Small World)

❖Building parameter: M

➢Newly inserted node will be connected to M nearest nodes in graph

NSW

Example: M = 2
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NSW

❑Brief introduction of NSW (Navigable Small World)

❖There exists “highway” in NSW

➢Highway: The edges that can reach the nearest neighbor fast

Example: M = 2
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NSW

❑Brief introduction of NSW (Navigable Small World)

❖Although there exists “highway” in NSW, it’s unable to identify it

Example: M = 2
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HNSW

❑Brief introduction of HNSW (Hierarchical Navigable Small World)

❖Each layer uses probability function to decide if a new node can be inserted 
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HNSW

❑Brief introduction of HNSW (Hierarchical Navigable Small World)

❖Build “highway” in hierarchical layers
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HNSW

❑Brief introduction of HNSW (Hierarchical Navigable Small World)

❖Reach the “highway” in the hierarchical layer in search
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HNSW

❑Brief introduction of HNSW (Hierarchical Navigable Small World)

❖With the hierarchical layer, HNSW performs well and is widely used in ANN search
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Background

❑Dimensions of vectors become increasingly higher

1st Era: 
Count-based 

embeddings

2nd Era:
Static dense  

embeddings

3rd Era: 
Contextualized 

embeddings

4th Era:
Universal text 

embeddings

Model: BoW, 

LSA

Dim: Depend on 

words

Model: GloVe, 

Word2Vec

Dim: 100 - 300

Model: BERT, 

ELMo

Dim: 768 - 1024

Model: BGE, 

LLM2Vec

Dim: 1000+

Model: BoW, 

LSA

Dim: Depend on 

words

Model: GloVe, 

Word2Vec

Dim: 0 - 300

Model: BERT, 

ELMo

Dim: 768 - 1024

Model: BGE, 

LLM2Vec

Dim: 1000+

Recent advances in universal text embeddings: A comprehensive Review of Top-performing Methods on the MTEB Benchmark
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Background

❑Dimensions of vectors become increasingly higher

“HNSW is the only vector index supported by PASE, 

Milvus, and Elasticsearch in common.” [VBASE OSDI’23]

Model: BoW, 

LSA

Dim: Depend on 

words

Model: GloVe, 

Word2Vec

Dim: 100 - 300

Model: BERT, 

ELMo

Dim: 768 - 1024

Model: BGE, 

LLM2Vec

Dim: 1000+

Model: BoW, 

LSA

Dim: Depend on 

words

Model: GloVe, 

Word2Vec

Dim: 0 - 300

Model: BERT, 

ELMo

Dim: 768 - 1024

Model: BGE, 

LLM2Vec

Dim: 1000+

HNSW

VBASE: Unifying Online Vector Similarity Search and Relational Queries via Relaxed Monotonicity
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Background

❑Dimensions of vectors become increasingly higher

Is HNSW still effective?

Model: BoW, 

LSA

Dim: Depend on 

words

Model: GloVe, 

Word2Vec

Dim: 100 - 300

Model: BERT, 

ELMo

Dim: 768 - 1024

Model: BGE, 

LLM2Vec

Dim: 1000+

Model: BoW, 

LSA

Dim: Depend on 

words

Model: GloVe, 

Word2Vec

Dim: 0 - 300

Model: BERT, 

ELMo

Dim: 768 - 1024

Model: BGE, 

LLM2Vec

Dim: 1000+

HNSW
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Benchmarking Experiments

❑Goal

❖Evaluate performance of HNSW in high dimensional space

❑Code

❖HNSW: hnswlib [IEEE TPAMI’16]

❖NSW: flatnav

➢Built from hnswlib

➢Separate the confounding impact of performance engineering

Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs
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Benchmarking Experiments

❑Goal

❖Evaluate performance of HNSW in high dimensional space

❑Dataset

Dataset Dimensionality # Points # Queries

Synthetic Uniform 4, 8, and 16

Yandex DEEP 96 100M 10K

Microsoft SpaceV 100 100M 29.3K

BigANN 128 100M 10K

NYTimes 256 290K 10K

GIST 960 1M 1K
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Benchmarking Experiments

❑Result

❖Memory (GB) consumption

NSW can reduce about 40% memory compared to HNSW

Dataset # Data Dimensionality Hnswlib Memory Flatnav Memory

BigANN 100M 128 183 113

Microsoft SpaceV 100M 100 104 85.5

Yandex DEEP 100M 96 100 60.7
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Benchmarking Experiments

❑Result

❖Synthetic Uniform

In low dimensional space, HNSW performs better than NSW
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Benchmarking Experiments

❑Result

❖High dimensional dataset

Dim: 96 Dim: 256 Dim: 960 

+

In high dimensional space, HNSW provides no tangible benefit
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Benchmarking Experiments

❑Result

❖High dimensional dataset

Dim: 96 Dim: 256 Dim: 960 
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In high dimensional space, HNSW provides no tangible benefit
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Why hierarchy fails

❑Hub Highway Hypothesis in high dimensional space

❖There exists well-connected and heavily traversed nodes
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Why hierarchy fails

❑Hub Highway Hypothesis in high dimensional space

❖There exists well-connected and heavily traversed nodes

Hierarchical structure repeatedly identifies highways
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Hub Highway Hypothesis

❑Methodology

❖Some nodes are visited by queries much more frequently than others

❖The hub nodes tend to be connected to each other

❖Queries visit many hub nodes early in the search process

❖If these three claims can be satisfied, it indicates that the hypothesis is correct.

Claim 1

Claim 2

Claim 3
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Empirical Evidence

❑Experiment1: Prove claim1

❖Some nodes are visited by queries much more frequently than others

❑Setup

❖Dataset

❖Check if the distribution of node access count is skewed

Claim 1
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Empirical Evidence

❑Skewness of the Node Access Distribution

The distribution is indeed skewed to the right
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Empirical Evidence

❑Experiment2: Prove claim2

❖The hub nodes tend to be connected to each other

❑Experimental Design Approach

❖How to identify hub nodes

➢Use P95/P99 threshold of the node access distribution based on Experiment1

❖How to prove the claim2

➢Estimate the likelihood (L1) of hub nodes among the neighbors of hub nodes

➢Estimate the likelihood (L2) of hub nodes among the neighbors of non-hub nodes

➢Propose null hypothesis : there is no difference between L1 and L2

➢Use Mann-Whitney U-test and two-sample t-test to reject null hypothesis

Claim 2
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Empirical Evidence

❑Connectivity between hub nodes

In most cases, non-hypothesis can be rejected

Dataset Dim P95 Can non-hypothesis be rejected? P99 Can non-hypothesis be rejected?

Yandex-DEEP 96 No Yes

Microsoft-SpaceV 100 No Yes

GloVe 100 Yes Yes

NYTimes 256 Yes Yes

GIST 960 Yes Yes
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Empirical Evidence

❑Experiment3: Prove claim3

❖Queries visit many hub nodes early in the search process

❑Experimental Design Approach

❖How to identify hub nodes

➢Use P95/P99 threshold of the node access distribution based on Experiment1

❖Examine the fraction of time spent on hub nodes in different phases of search

Claim 3
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Empirical Evidence

❑Hub-Highway Nodes Enable Fast Traversal
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Empirical Evidence

❑Hub-Highway Nodes Enable Fast Traversal

Queries tend to concentrate in the highway structures early in search
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❑Contribution

❖Make benchmark experiments to check the performance of HNSW 

❖Propose Hub Highway Hypothesis and prove it

❑Drawback

❖Lack further innovation point

❖Some experimental results do not exhibit a clear trend of change with 

increasing dimensionality

Summary
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Background

❑Brief introduction of HNSW (Hierarchical Navigable Small World)

❖Reach the “highway” in the hierarchical layer in search

➢With the hierarchical layer, HNSW performs well and is widely used in ANN search

HNSW performs well in ANN search
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Empirical Evidence

❑Connectivity between hub nodes

In most cases, non-hypothesis can be rejected

P95 threshold P99 threshold
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Introduction

❑Dimensions of vectors become increasingly higher

Model: BoW, 

LSA

Dim: Depend on 

words

Model: GloVe, 

Word2Vec

Dim: - 300

Model: BERT, 

ELMo

Dim: 768 - 1024

Model: BGE, 

LLM2Vec

Dim: 1000+

HNSW Alg.
Is HNSW still effective?



40

Introduction

❑Brief introduction of HNSW (Hierarchical Navigable Small World)

❖With the hierarchical layer, HNSW performs well

HNSW performs well in ANN search
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Hub Highway Hypothesis

❑Methodology

❖Some nodes are visited by queries much more frequently than others

❖The hub nodes tend to be connected to each other

❖Queries visit many hub nodes early in the search process
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Introduction

❑Dimensions of vectors become increasingly higher

Model: BoW, 

LSA

Dim: Depend on 

words

Model: GloVe, 

Word2Vec

Dim: - 300

Model: BERT, 

ELMo

Dim: 768 - 1024

Model: BGE, 

LLM2Vec

Dim: 1000+

HNSW Alg.
Is HNSW still effective?
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Benchmarking Experiments

❑Goal

❖Evaluate performance of HNSW in high dimensional space

❑Code

❖HNSW: hnswlib (open source code from HNSW paper)

❖NSW: flatnsw (built from hnswlib)

❑Dataset
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Empirical Evidence

❑Connectivity between hub nodes

In most cases, non-hypothesis can be rejected

Dataset Dim P95 Can non-hypothesis be rejected? P99 Can non-hypothesis be rejected?

IID Normal(Angular) 16 No Yes

IID Normal(L2) 16 Yes Yes

IID Normal(Angular) 32 - 256 Yes Yes

IID Normal(L2) 32 - 256 Yes Yes

IID Normal(Angular) 1024 No No

IID Normal(L2) 1024 Yes Yes

IID Normal(Angular) 1536 No Yes

IID Normal(L2) 1536 Yes Yes
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❑Intro

❖趋势：LLM等应用让用到的向量维度越来越高，但是大家用的方法还是
遵循着过去的惯性 – 在高维场景下一些低维的算法可能不适用

❖简单介绍HNSW算法与NSW算法之间的区别

❑解释原因 – Hub

❖实验证明Hub存在

❖实验证明Hub之间的联通性很高(不直观，可以略过)

❖实验证明搜索时先搜索到Hub向量

❑展示结果

❖NSW在高维情况下确实和HNSW相差不大

Overview
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总结与讨论


