
OZZ: Identifying Kernel Out-of-Order Concurrency 
Bugs with In-Vivo Memory Access Reordering

Authors: Dae R. Jeong,  Yewon Cho, Byoungyoung Lee, 

Insik Shin, Youngjin Kwon

Presented by Jiyang Wang

2025–5-13



2

Background: Out-of-order execution

❑Why exist Out-of-order execution?

❖ Reduce pipeline stalls

❖ Improve cache utilization



3

Background: Out-of-order execution

❑Why exist Out-of-order execution?

❖ Reduce pipeline stalls

❖ Improve cache utilization

❑Different with thread interleaving

Thread interleaving Out-of-order execution

Caused by OS/scheduler Caused by processor

Thread 1 Thread 2

Thread 1 Thread 2



4

Background: Out-of-order execution

❑How to prevent Out-of-order execution?

Memory barrier!



5

Background: Out-of-order execution

❑How to prevent Out-of-order execution?

➢ It defines reordering cases that would not occur

❖Data dependency load-store

Obey Linux Kernel Memory Model!

int r1; 

r1 = X;

Y = r1 + 5;



6

Background: Out-of-order execution

❑How to prevent Out-of-order execution?

➢ It defines reordering cases that would not occur

❖Data dependency load-store

❖Control dependency load-store

Obey Linux Kernel Memory Model!

if (X == 0) {

Y = 2;

}

Affect the result of if condition

A store operation inside the if statement 



7

Background: Out-of-order execution

❑How to prevent Out-of-order execution?

➢ It defines reordering cases that would not occur

❖Data dependency load-store

❖Control dependency load-store

❖Address dependency load-load / load-store

Obey Linux Kernel Memory Model!

X : load the value i should use READ_ONCE() or atomic_read()

Y : load or store the value arr[i]



8

Background: Out-of-order execution

❑Harm of Out-of-order execution



9

Background: Out-of-order execution

❑Harm of Out-of-order execution

①

②

③

④

pipe_read() access uninitialized function !



10

Background: Out-of-order execution

❑Harm of Out-of-order execution

①

②

③

④

pipe_read() access uninitialized function !



11

Background: Out-of-order execution

❑Hard to identify Out-of-order execution

❖Manual investigation kernel code is difficult

❖Different processors reorder differently (ARM more aggressive than x86_64)

❖Existing testing tools (e.g. concurrency fuzzers) is impractical

➢They assume memory accesses happened in order

➢Control thread interleaving may impose an ordered execution

❖In-vitro testing is insufficient

➢ Lost runtime contexts when analyzing behavior

❖Most of data race detector short in comprehending the Out-of-order execution 

➢What memory accesses should not be reordered 

➢What will be the result of reordering



12

❑Processor do Out-of-order execution

❖ store-store, store-load,  load-load

❖ load-store

➢Theoretically can cause,  but provides little improve in practice

Key idea of in-vivo OEMU



13

❑Processor do Out-of-order execution

❖Delay committing the store operation

❖Run a load operation too early

Key idea of in-vivo OEMU



14

❑Processor do Out-of-order execution

❖Delay committing the store operation

❖Run a load operation too early

Key idea of in-vivo OEMU

• Exactly emulating processor’s behavior?

Require simulate the full architecture, too expensive ! 



15

❑Processor do Out-of-order execution

❖Delay committing the store operation

❖Run a load operation too early

Key idea of in-vivo OEMU

• Exactly emulating processor’s behavior?

Require simulate the full architecture, too expensive ! 

• Controlling Out-of-order execution explicitly and deterministically ?

Execution order of instruction is decided in the processors !



16

❑Processor do Out-of-order execution

❖Delay committing the store operation

❖Run a load operation too early

Key idea of in-vivo OEMU

• Exactly emulating processor’s behavior

Require simulate the full architecture, too expensive ! 

• Controlling Out-of-order execution explicitly and deterministically 

Execution order of instruction is decided in the processors !

We can change the order of memory access in the instructions



17

❑Processor do Out-of-order execution

❖Delay committing the store operation delayed store operation

❖Run a load operation too early versioned load operation

Key idea of in-vivo OEMU

We can change the order of memory access in the instructions

Systems calls to instruct OEMU to control Out-of-order execution



18

❑In-vivo emulation 

Key idea of in-vivo OEMU

Reorder while kernel is running. Thus, can use all bug-detecting oracles 

During

compilation
Callback functions

load_value.4

OEMU

memory

➢ Functions are executed sequentially

➢ Functions commute with OEMU to

reorder memory access

Variable on the stack

load_value.3

store_value.2

store_value.1



19

OEMU: Delayed store operation

Userspace

Delay_store_at(𝐼1) 

Syscall A()

𝐼1 :  X = 1

𝐼2 :   Y = 2

𝐼3 :   r = X

𝐼mb :  smp_wmb()

①

②

③

④

⑤

⑥

OEMU

< 𝐼1, &X, 1, 𝑡1>

< 𝐼2, &Y, 2, 𝑡2>

memory

old_x

old_y

&X

&Y

Virtual store buffer
stack

old_r &r
Syscall A

• Virtual store buffer is a per-thread, temporary storage

• Flush when full, encounter memory barrier, interrupt on kernel …

2

1

1



20

OEMU:  Versioned load operation

Userspace thread A

Read_old_value_at(𝐼1) 

Read_old_value_at(𝐼3) 

Syscall A()

𝐼mb1 :  smp_rmb()

𝐼1 :  r1 = X

𝐼mb2 :  smp_rmb()

𝐼2 :  r2 = Y

𝐼3 :  r3 = Z

①

②

③

④

⑤

⑥

OEMU
< 𝐼𝑝, &X, 1, 𝑡𝑝>

memory

3

4

&Y

&Z

Virtual store buffer

stack

old_r1 &r1

Syscall A

2

1

1

𝐼1 :  Y = 1

𝐼2 :  Z = 2

Syscall B

Userspace thread B

Syscall B()

&r2

&r3

old_r2

old_r3

⑦

⑧

< &Y, 3 ⟹ 1 , 𝑡7> < &Z, 4 ⟹ 2 , 𝑡8>

Versioning window

(𝑡6, 𝑡𝑐𝑢𝑟]Thread A

Store history (global)

(𝑡4, 𝑡𝑐𝑢𝑟]

1

4

⑨

⑩



21

Ozz: Key idea 

W(a)

W(b)

W(c)

W/R(d)

R(d)

R(c)

R(b)

R(a)

CPU 1 CPU 2

Assume a hypothetical memory barrier is missing

❖store-store, store-load

: real memory barrier : hypothetical memory barrier 



22

Ozz: Key idea 

W(a)

W(b)

W(c)

W/R(d)

CPU 1 CPU 2

Assume a hypothetical memory barrier is missing

N

N

N

Committed?

Y

① reordering

❖store-store, store-load

: real memory barrier : hypothetical memory barrier 

R(d)

R(c)

R(b)

R(a)



23

Ozz: Key idea 

W(a)

W(b)

W(c)

W/R(d)

CPU 1 CPU 2

Assume a hypothetical memory barrier is missing

N

N

N

Committed?

Y

① reordering ② interleaving

❖store-store, store-load

: real memory barrier : hypothetical memory barrier 

R(d)

R(c)

R(b)

R(a)



24

Ozz: Key idea 

W(a)

W(b)

W(c)

W/R(d)

CPU 1 CPU 2

Assume a hypothetical memory barrier is missing

N

N

N

Committed?

Y

① reordering ② interleaving

New value？

Y

N

N

N

③ Testing

❖store-store, store-load

: real memory barrier : hypothetical memory barrier 

R(d)

R(c)

R(b)

R(a)



25

Ozz: Key idea 

W(a)

W(b)

W(c)

W/R(d)

CPU 1 CPU 2

Assume a hypothetical memory barrier is missing

Y

Y

Y

Committed?

Y

① reordering ② interleaving

New value？

Y

N

N

N

③ Testing

❖store-store, store-load

: real memory barrier : hypothetical memory barrier 

R(d)

R(c)

R(b)

R(a)



26

Ozz: Key idea 

W(a)

W(b)

W(c)

W/R(d)

R(d)

R(c)

R(b)

R(a)

CPU 1 CPU 2

Assume a hypothetical memory barrier is missing

① reordering

② interleaving

③ Testing

❖store-store, store-load ❖load-load

R(d)

R(c)

R(b)

R(a)

W(a)

W(b)

W(c)

W(d)

: real memory barrier : hypothetical memory barrier 



27

Ozz: Key idea 

W(a)

W(b)

W(c)

W/R(d)

R(d)

R(c)

R(b)

R(a)

CPU 1 CPU 2

Assume a hypothetical memory barrier is missing

① reordering

② interleaving

③ Testing

❖store-store, store-load ❖load-load

R(d)

R(c)

R(b)

R(a)

W(a)

W(b)

W(c)

W(d)

① interleaving

: real memory barrier : hypothetical memory barrier 



28

Ozz: Key idea 

W(a)

W(b)

W(c)

W/R(d)

R(d)

R(c)

R(b)

R(a)

CPU 1 CPU 2

Assume a hypothetical memory barrier is missing

① reordering

② interleaving

③ Testing

❖store-store, store-load ❖load-load

R(d)

R(c)

R(b)

R(a)

W(a)

W(b)

W(c)

W(d)

① interleaving

: real memory barrier : hypothetical memory barrier 

② history 

construction



29

Ozz: Key idea 

W(a)

W(b)

W(c)

W/R(d)

R(d)

R(c)

R(b)

R(a)

CPU 1 CPU 2

Assume a hypothetical memory barrier is missing

① reordering

② interleaving

③ Testing

❖store-store, store-load ❖load-load

R(d)

R(c)

R(b)

R(a)

W(a)

W(b)

W(c)

W(d)

① interleaving

: real memory barrier : hypothetical memory barrier 

② history 

construction



30

Ozz: Key idea 

W(a)

W(b)

W(c)

W/R(d)

R(d)

R(c)

R(b)

R(a)

CPU 1 CPU 2

Assume a hypothetical memory barrier is missing

: real memory barrier : hypothetical memory barrier 

① reordering

② interleaving

③ Testing

❖store-store, store-load ❖load-load

R(d)

R(c)

R(b)

R(a)

W(a)

W(b)

W(c)

W(d)

① interleaving

② history 

construction
③ reordering 

& testing



31

Ozz: Key idea 

W(a)

W(b)

W(c)

W/R(d)

R(d)

R(c)

R(b)

R(a)

CPU 1 CPU 2

Assume a hypothetical memory barrier is missing

: real memory barrier : hypothetical memory barrier 

① reordering

② interleaving

③ Testing

❖store-store, store-load ❖load-load

R(d)

R(c)

R(b)

R(a)

W(a)

W(b)

W(c)

W(d)

① interleaving

② history 

construction
③ reordering 

& testing

Read old value？

N

Y

Y

Y



32

Ozz: Workflow

① Profiles memory accesses and memory barriers

② Calculate where is the hypothetical memory barrier,  where doing the 

schedule, what memory access to reorder

③ Use result of ② to test and observer Out-of-order bugs



33

Ozz: Profiling

Syscalln

…

Syscall1

Single Thread Input

❖Ozz make STIs preserve necessary resource dependencies

❖Ozz inserts callback function during LLVM compiler pass



34

Ozz: Profiling

Syscalln

…

Syscall1

Execute &

Profile

❖Ozz make STIs preserve necessary resource dependencies

❖Ozz inserts callback function during LLVM compiler pass

❖Ozz do the execution and profiling and get the information

inst.addr, mem.addr, size, type, timestamp

Memory access

inst.addr, type, timestamp

Memory barrier

RecordSingle Thread Input



35

Ozz: Scheduling



36

Ozz: Scheduling

① Ozz finds out memory locations shared between two memory accesses



37

Ozz: Scheduling

① Ozz finds out memory locations shared between two memory accesses

② Ozz excludes memory accesses don’t visit shared_mem



38

Ozz: Scheduling

st_barrier1

memory1

memory2

memory3

ld_barrier1

memory4

memory5

st_barrier2

memory6

memory7

st_barrier3

Syscall 𝑆𝑖

𝑘 = 𝑖
𝑏𝑎𝑟𝑟𝑖𝑒𝑟_𝑡𝑦𝑝𝑒 = 𝑠𝑡

𝐺𝑡, 𝑔 = ∅, ∅Initial: 



39

Ozz: Scheduling

st_barrier1

memory1

memory2

memory3

ld_barrier1

memory4

memory5

st_barrier2

memory6

memory7

st_barrier3

Syscall 𝑆𝑖

𝑘 = 𝑖
𝑏𝑎𝑟𝑟𝑖𝑒𝑟_𝑡𝑦𝑝𝑒 = 𝑠𝑡

𝐺𝑡 = ∅
𝑔 = {𝑚1,𝑚2,𝑚3}

𝐺𝑡, 𝑔 = ∅, ∅Initial: 



40

Ozz: Scheduling

st_barrier1

memory1

memory2

memory3

ld_barrier1

memory4

memory5

st_barrier2

memory6

memory7

st_barrier3

Syscall 𝑆𝑖

𝑘 = 𝑖
𝑏𝑎𝑟𝑟𝑖𝑒𝑟_𝑡𝑦𝑝𝑒 = 𝑠𝑡

𝐺𝑡 = {𝑔1}
𝑔1 = 𝑚1,𝑚2,𝑚3,𝑚4,𝑚5

𝑔 = ∅

𝐺𝑡, 𝑔 = ∅, ∅Initial: 

𝐺𝑡 = ∅
𝑔 = {𝑚1,𝑚2,𝑚3}



41

Ozz: Scheduling

st_barrier1

memory1

memory2

memory3

ld_barrier1

memory4

memory5

st_barrier2

memory6

memory7

st_barrier3

Syscall 𝑆𝑖

𝑘 = 𝑖
𝑏𝑎𝑟𝑟𝑖𝑒𝑟_𝑡𝑦𝑝𝑒 = 𝑠𝑡

𝐺𝑡 = {𝑔1, 𝑔2}
𝑔1 = 𝑚1,𝑚2,𝑚3,𝑚4,𝑚5

𝑔2 = {𝑚6,𝑚7}
𝑔 = ∅

𝐺𝑡, 𝑔 = ∅, ∅Initial: 

𝐺𝑡 = ∅
𝑔 = {𝑚1,𝑚2,𝑚3}

𝐺𝑡 = {𝑔1}
𝑔1 = 𝑚1,𝑚2,𝑚3,𝑚4,𝑚5

𝑔 = ∅



42

Ozz: Scheduling

st_barrier1

memory1

memory2

memory3

ld_barrier1

memory4

memory5

st_barrier2

memory6

memory7

st_barrier3

Syscall 𝑆𝑖

𝑏𝑎𝑟𝑟𝑖𝑒𝑟_𝑡𝑦𝑝𝑒 = 𝑠𝑡
𝑔 = 𝑚1,𝑚2,𝑚3,𝑚4,𝑚5

First Test:
Hij = Hij ∪ {ℎ1}

ℎ1. 𝑠ℎ𝑒𝑑 = 𝑚5
ℎ1. 𝑟𝑒𝑜𝑟𝑑𝑒𝑟 = 𝑚1,𝑚2,𝑚3,𝑚4

𝑠𝑐ℎ𝑒𝑑 = 𝑚5



43

Ozz: Scheduling

st_barrier1

memory1

memory2

memory3

ld_barrier1

memory4

memory5

st_barrier2

memory6

memory7

st_barrier3

Syscall 𝑆𝑖

𝑏𝑎𝑟𝑟𝑖𝑒𝑟_𝑡𝑦𝑝𝑒 = 𝑠𝑡
𝑔 = 𝑚1,𝑚2,𝑚3,𝑚4,𝑚5

𝑠𝑐ℎ𝑒𝑑 = 𝑚5

Second Test:
Hij = Hij ∪ {ℎ1} ∪ {ℎ2}

ℎ2. 𝑠ℎ𝑒𝑑 = 𝑚5
ℎ2. 𝑟𝑒𝑜𝑟𝑑𝑒𝑟 = 𝑚1,𝑚2,𝑚3

First Test:
Hij = Hij ∪ {ℎ1}

ℎ1. 𝑠ℎ𝑒𝑑 = 𝑚5
ℎ1. 𝑟𝑒𝑜𝑟𝑑𝑒𝑟 = 𝑚1,𝑚2,𝑚3,𝑚4

…



44

Ozz: Scheduling

ld_barrier1

memory1

memory2

memory3

st_barrier1

memory4

memory5

ld_barrier2

memory6

memory7

st_barrier3

Syscall 𝑆𝑖

𝑏𝑎𝑟𝑟𝑖𝑒𝑟_𝑡𝑦𝑝𝑒 = 𝑙𝑑
𝑔 = 𝑚1,𝑚2,𝑚3,𝑚4,𝑚5

First Test:
Hij = Hij ∪ {ℎ1}

ℎ1. 𝑠ℎ𝑒𝑑 = 𝑚1
ℎ1. 𝑟𝑒𝑜𝑟𝑑𝑒𝑟 = 𝑚2,𝑚3,𝑚4,𝑚5

𝑠𝑐ℎ𝑒𝑑 = 𝑚1



45

Ozz: Scheduling

ld_barrier1

memory1

memory2

memory3

st_barrier1

memory4

memory5

ld_barrier2

memory6

memory7

st_barrier3

Syscall 𝑆𝑖

𝑏𝑎𝑟𝑟𝑖𝑒𝑟_𝑡𝑦𝑝𝑒 = 𝑙𝑑
𝑔 = 𝑚1,𝑚2,𝑚3,𝑚4,𝑚5

𝑠𝑐ℎ𝑒𝑑 = 𝑚1

Second Test:
Hij = Hij ∪ {ℎ1} ∪ {ℎ2}

ℎ2. 𝑠ℎ𝑒𝑑 = 𝑚1
ℎ2. 𝑟𝑒𝑜𝑟𝑑𝑒𝑟 = 𝑚3,𝑚4,𝑚5

…

First Test:
Hij = Hij ∪ {ℎ1}

ℎ1. 𝑠ℎ𝑒𝑑 = 𝑚1
ℎ1. 𝑟𝑒𝑜𝑟𝑑𝑒𝑟 = 𝑚2,𝑚3,𝑚4,𝑚5



46

Ozz: Scheduling

Greedy:  When deviate more,  bug arise with high possible.



47

Ozz: Test

Syscalln

…

Syscall1

Syscalli Syscallj

h.sched & h.reorder

Construct

MTIs

❖Each STI is translated into multiple MTIs

➢MTI have the same set of syscalls with the STI

➢MTIs are annotated with a pair of syscalls to run concurrently and schedule hints

STI



48

Ozz: Test

Syscalln

…

Syscall1

Syscalli Syscallj

h.sched & h.reorder

Construct

STI MTIs

❖Each STI is translated into multiple MTIs

➢MTI have the same set of syscalls with the STI

➢MTIs are annotated with a pair of syscalls to run concurrently and schedule hints

❖Ozz run MTIs monitor bugs

➢Ozz leverage bug-detecting oracles during runtime

➢ Report tells the reordered accesses and hypothetical memory barrier

Custom Scheduler OEMU

Test
Report

bug-detecting



49

Setup

❑Hardware

❖Two-sockets 32 phsical-core Intel Xeon CPU E5-2683 v4 operating at 
2.1GHz

❖512GB of RAM

❑Host operating system

❖Ubuntu 20.04.4 kernel 5.4.143

❑OZZ 

❖based on SYZKALLER (SOTA fuzzer developed by Google)

❖32 VMs each is equipped with 4 vCPUS and 8G memory

❖Kernel :6.5-rc6 to 6.8 (SYZKALLER  use the same kernel)



50

Evaluation: Real-world OoO bug

 Ozz discovers 61 unique crashed, and 11 new OoO bugs

 SYZKALLER is impractical to identify

➢ x86-64 does not reorder s-s or l-l

➢ TCG does not reorder memory access



51

Evaluation: Real-world OoO bug

❑Improper adoption of memory barrier

①

②

③

④

ctx->sk_proto() uninitialized !



52

Evaluation: Real-world OoO bug

❑Improper adoption of memory barrier

Developers caught the data race (load/store tearing)

However, these function suppress a data race detector from reporting



53

Evaluation: Real-world OoO bug

❑Incorrect customized lock



54

Evaluation: Real-world OoO bug

❑Incorrect customized lock

if (acquire_in_xmit() == 0) {

clear_bit();

}

Critical section



55

Evaluation: Known OoO bug

Detect by a wrong value,

not crash 

 8 OoO bugs can be reproduced, running tens of test run on average

 #6 is caused by thread migration

➢ Ozz pins concurrent threads on specific CPUs



56

Evaluation: Performance overhead

Benchmark suit : LMBench (evaluating various OS operations)

 Developers can opt to selectively enable OEMU (lockless implementations)

 OMEU has 7.9x lower throughout compared to SYZKALLER (0.92 test/s  VS 7.33 test/s)

➢ OMEU can control Out-of-order execution

➢ Save the cost of buying new machines (ARM)



57

Evaluation: Compared with OFence

❑OFence

❖Predifine likely-buggy patterns (mamory barriers are not in pair)

❖Using static pattern matching analysis



58

Evaluation: Compared with OFence

❑OFence

❖Predifine likely-buggy patterns (mamory barriers are not in pair)

❖Using static pattern matching analysis

❑Result

❖Ozz (and SYZKALLER) is limited in generating inputs of bugs found by OFence

➢ A submodule requires specific hardware to run, inhibiting dynamic testing in such submodules

❖Only 3 out of 11 OoO bugs found by Ozz fit pattern of OFence



59

❑Pros:

❖The problem of Out-of-order execution is interesting

❖Change the order of memory access to emulate Out-of-order

❑Cons:

❖Assum work in two thread and only one thread do Out-of-order 

execution

❖Can’t deal with load-store reorder 

❖Can’t tell what type memory barrier is the best to insert

Conclusion



60

Q&A



61

Ozz: Scheduling

① Ozz finds out memory locations shared between two memory accesses

② Ozz excludes memory accesses don’t visit shared_mem


