# Llumnix: Dynamic Scheduling for Large Language Model Serving

Author: Biao Sun\*, Ziming Huang\*, Hanyu Zhao\*, Wencong Xiao, Xinyi Zhang, Yong Li, Wei Lin

Alibaba Group

OSDI 2024

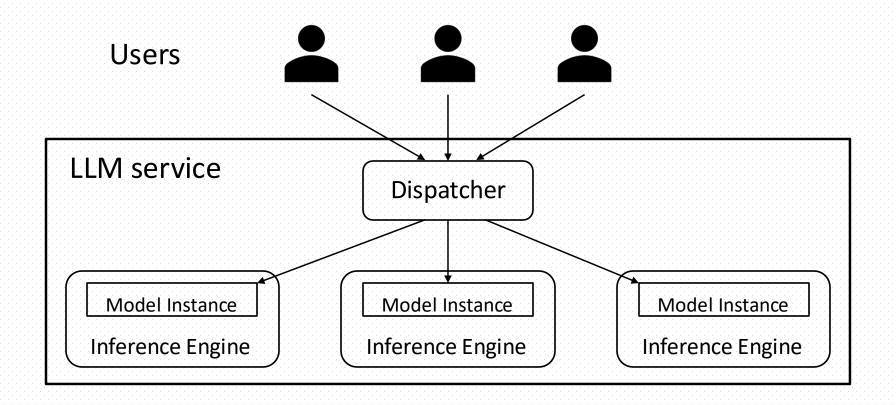
Presented by Kunzhao Xu



#### **LLM Serving Today: A Cluster Perspective**



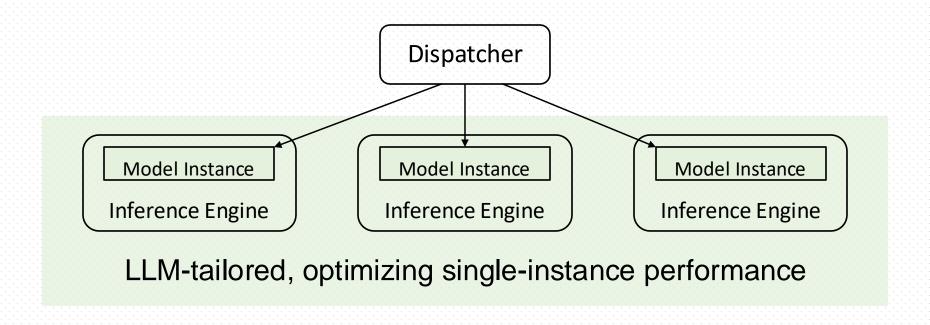
A request dispatcher + multiple instances of an inference engine



#### **LLM Serving Today: A Cluster Perspective**



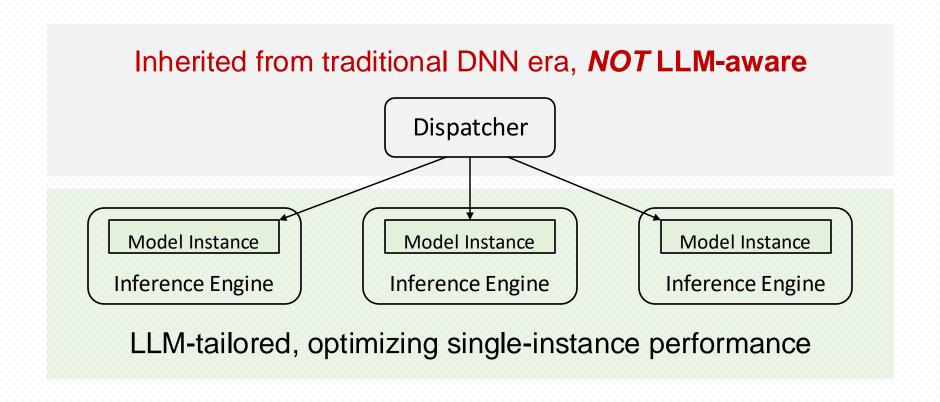
A request dispatcher + multiple instances of an inference engine



#### **LLM Serving Today: A Cluster Perspective**



A request dispatcher + multiple instances of an inference engine



# LLM Characteristic (1): Workload Heterogeneity ADSLAB

- Universal models, diverse applications
- Requests are heterogeneous
  - Sequence (input/output) lengths

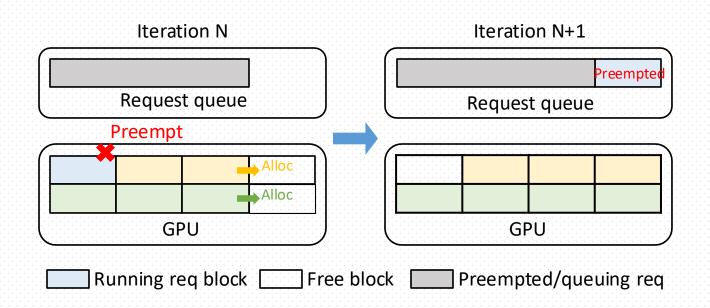
| Summarize: |        |            |  |
|------------|--------|------------|--|
|            |        |            |  |
|            | Write: |            |  |
|            |        |            |  |
| Polish:    |        | → <b>⑤</b> |  |

# LLM Characteristic (1): Workload Heterogeneity ADSLAB

- Universal models, diverse applications
- Requests are heterogeneous
  - Sequence (input/output) lengths
  - Latency SLOs: interactive vs. offline, ChatGPT plus vs. normal

# LLM Characteristic (2): Execution Unpredictability USTC, CHINA

- Autoregressive execution
  - Output lengths not known a priori
  - Dynamic GPU memory demands of KV caches
- State of the art: paged memory allocation + preemptive scheduling [1]



#### **Challenge (1): Performance Isolation**



- Preemptions -> poor tail latencies
- Performance interference in a batch

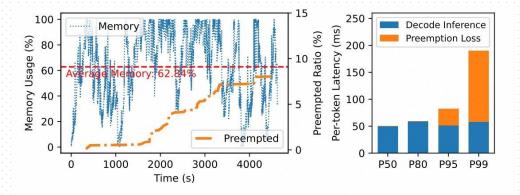


Figure 3: Request preemptions in LLaMA-7B serving.

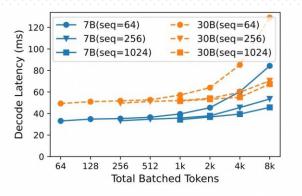


Figure 4: Latencies of one decode step of LLaMA-7B and LLaMA-30B with different sequence lengths and batch sizes.

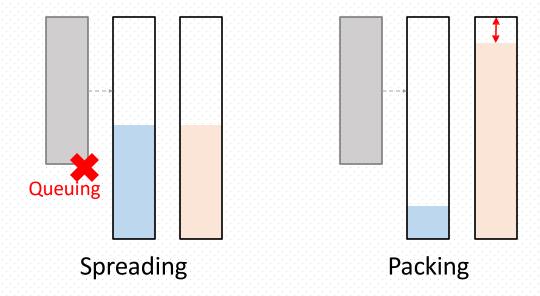
 Load balancing via one-shot dispatching could be suboptimal due to unpredictable execution

Requirement (1): Continuous load balancing

## **Challenge (2): Memory Fragmentation**



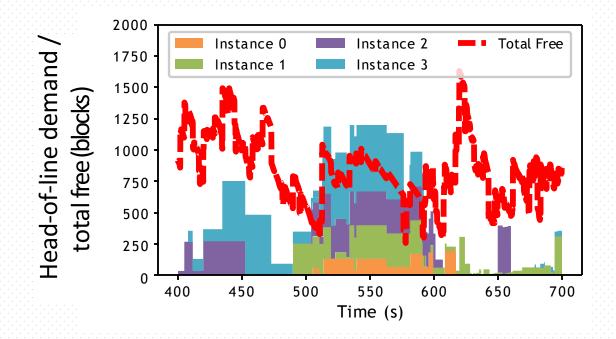
- Load balancing -> fragmentation across instances
  - A classic spreading vs. packing tradeoff



## **Challenge (2): Memory Fragmentation**



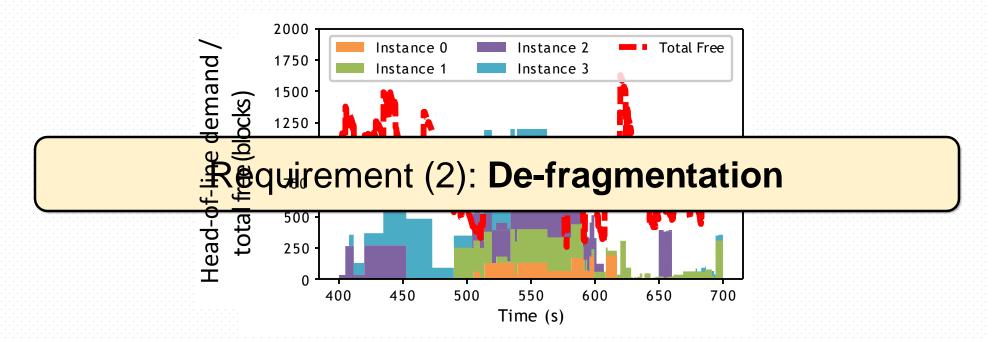
- Load balancing -> fragmentation across instances
  - A classic spreading vs. packing tradeoff
- Fragmentation -> worse queuing delays (first-token latencies)
  - A large space on one instance needed for the prompt



## **Challenge (2): Memory Fragmentation**



- Load balancing -> fragmentation across instances
  - A classic spreading vs. packing tradeoff
- Fragmentation -> worse queuing delays (first-token latencies)
  - A large space on one instance needed for the prompt



#### **Challenge (3): Differentiated SLOs**



- Existing systems treat all requests equally
- Urgent requests could be easily interfered by normal ones
  - Queuing delays
  - Performance interference

Requirement (3): Request priorities

#### **LLMs are Multi-Tenant and Dynamic**



#### A behavior that is:

#### Different from traditional DNNs

- Homogeneous requests
- Deterministic, stateless execution

#### but...

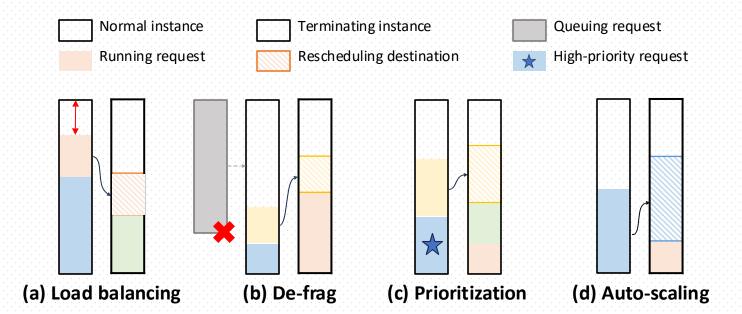
#### Not new in modern operating / distributed systems

- Processes with dynamic working sets, unknown durations, different priorities, ...
- Context switching, process migration, ...

## Llumnix: Serving LLMs, the "OS" Way



- Continuous rescheduling across instances
  - Combined with dispatching and auto-scaling
- Powerful in various scheduling scenarios



#### **Design Goals**



Aim: make rescheduling the norm in LLM serving Live migration mechanism Efficiency Scalability Distributed scheduling architecture **Scheduling Benefits** Unified, multi-objective scheduling policy

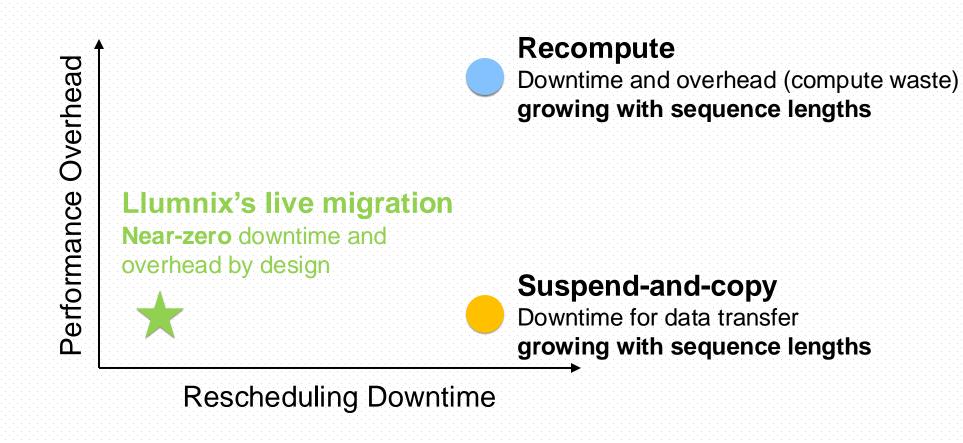
#### **Design Goals**



Aim: make rescheduling the *norm* in LLM serving Live migration mechanism Efficiency → Distributed scheduling architecture **Scheduling Benefits** Unified, multi-objective scheduling policy

#### **How to Reschedule KV Caches?**

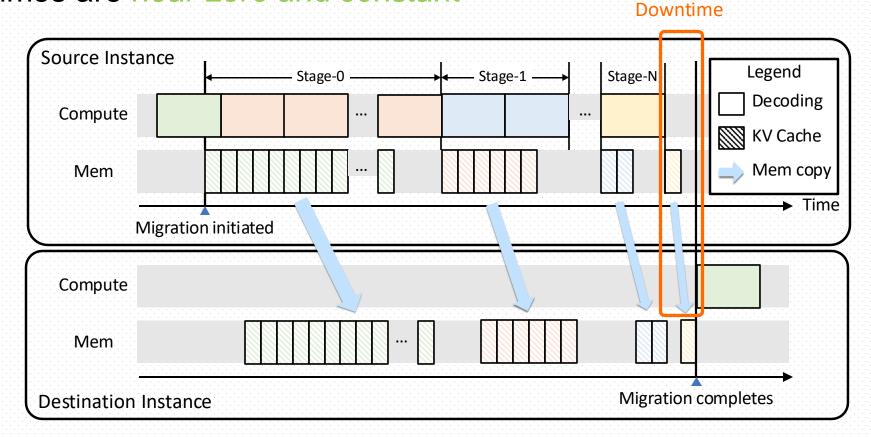




#### **Live Migration of LLM Requests**



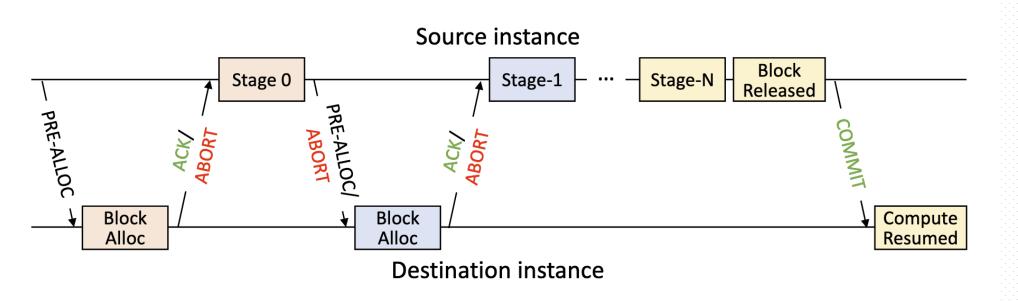
- KV caches are append-only
  - Copy incremental blocks iteratively
  - Downtimes are near-zero and constant



#### **Live Migration of LLM Requests**



- LLM generation is unpredictable
  - Source and destination may run out of memory
  - Request can complete in the middle of migration
- Handshake during migration



#### **Design Goals**

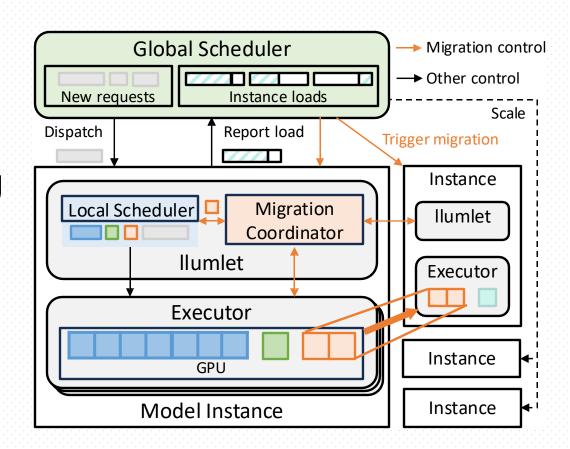


Our aim: make rescheduling the *norm* in LLM serving → Live migration mechanism Scalability Distributed scheduling architecture **Scheduling Benefits** Unified, multi-objective scheduling policy

#### **Distributed Scheduling Architecture**



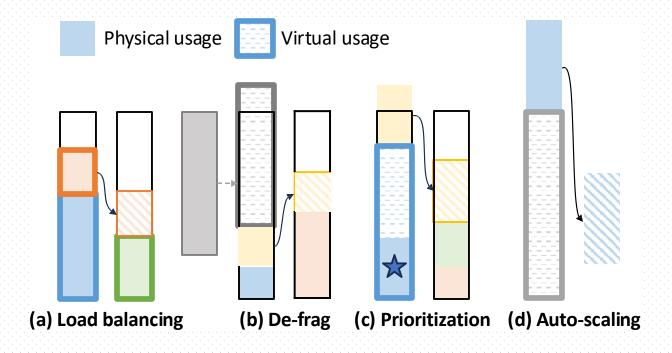
- Global scheduler for cross-instance scheduling
- Distributed **llumlets** for local scheduling
- A narrow interface: instance load



## **Scheduling Policy**



- Virtual usage: unifying multiple objectives
- Policy: load balancing based on virtual usages



#### **Scheduling Policy**

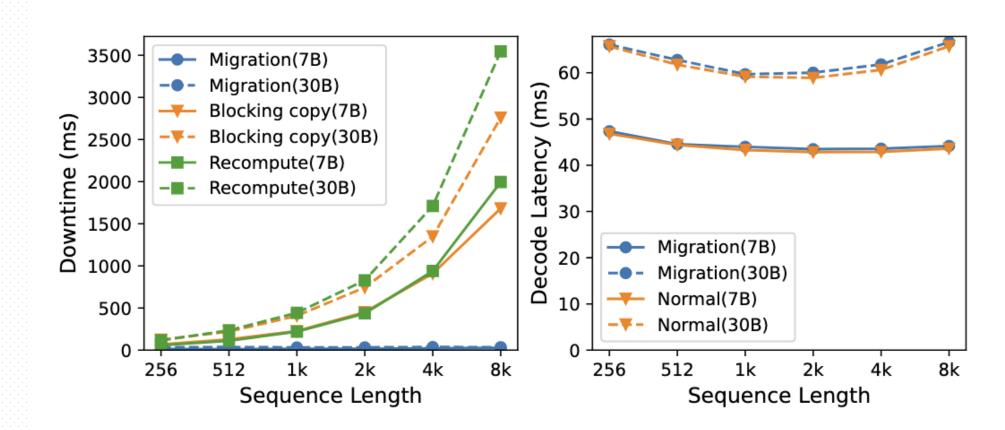


- Virtual usage: unifying multiple objectives
  - Normal Case: virtual usage = physical memory usage
  - Queuing requests: virtual usage = real demand
  - Priority request: virtual usage = real demand + headroom
  - Terminate instance: send a fake request with a virtual usage of ∞

#### **Evaluation: Migration Efficiency**



- Up to 111x less downtime
- Up to 1% performance difference

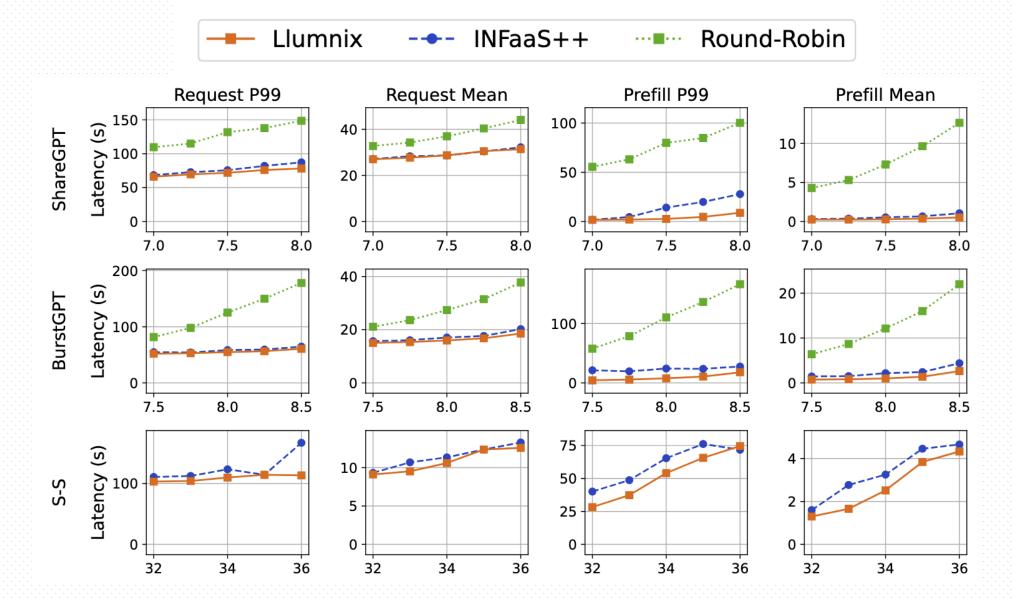


## Evaluation: End-to-end Serving Performance ADSLAB

- Implemented as a scheduling layer atop vLLM
- Testbed: 16 A10 GPUs (24GB)
  - 4 4-GPU VMs, PCIe 4.0 in each node, 64Gb/s Ethernet across nodes
- Models: LLaMA-7B and LLaMA-30B
- Traces: ShareGPT, BurstGPT, generated power-law distributions

|      | Distribution                  |           | Mean              | P50            | P80               | P95                 | P99                  |
|------|-------------------------------|-----------|-------------------|----------------|-------------------|---------------------|----------------------|
| Real | ShareGPT                      | In<br>Out | 306<br>500        | 74<br>487      | 348<br>781        | 1484<br>988         | 3388<br>1234         |
|      | BurstGPT                      | In<br>Out | 830<br>271        | 582<br>243     | 1427<br>434       | 2345<br>669         | 3549<br>964          |
| Gen  | Short (S) Medium (M) Long (L) |           | 128<br>256<br>512 | 38<br>32<br>55 | 113<br>173<br>582 | 413<br>1288<br>3113 | 1464<br>4208<br>5166 |

## **Evaluation: End-to-end Serving Performance**

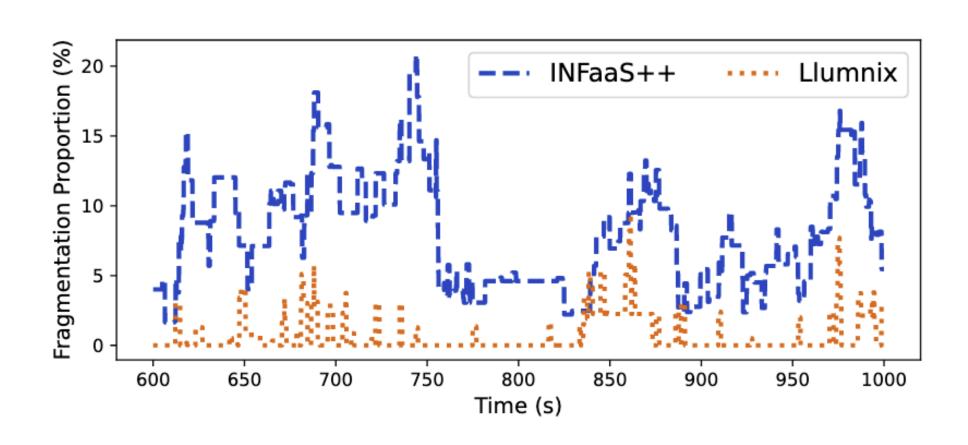


# Evaluation: End-to-end Serving Performance ADSLAB

- Benefits of migration: compared to dispatch-time load balancing (INFaaS)
  - Up to 2.2x/5.5x for first-token (mean/P99) via de-fragmentation
  - Up to 1.3x for per-token generation P99 via reducing preemptions
- More gains with more diverse sequence lengths

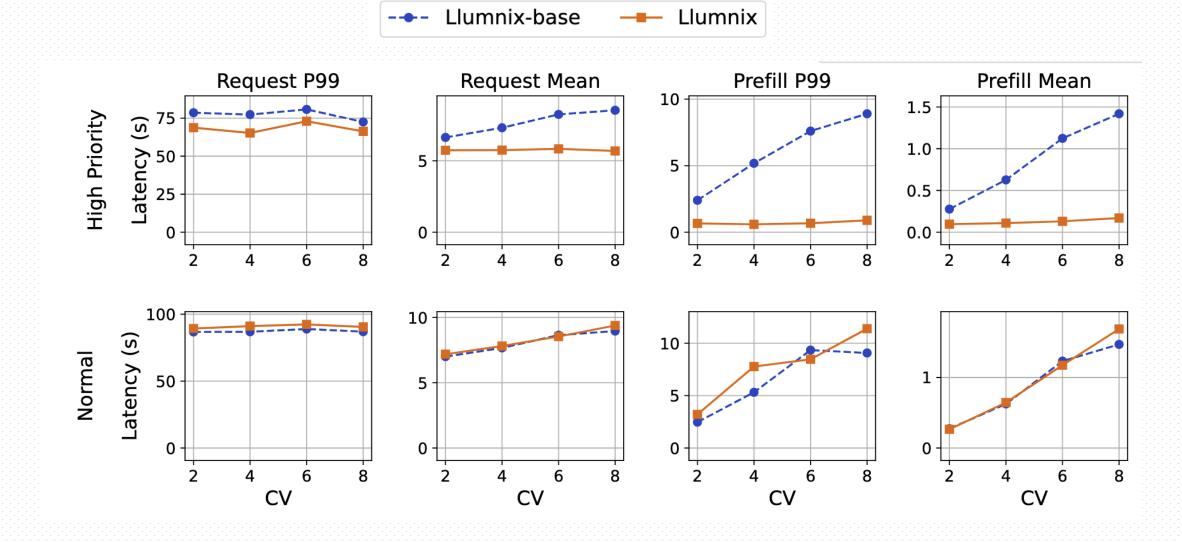
#### **Evaluation: Memory Fragmentation**





#### **Evaluation: Prioritization**





#### Conclusion



- Dynamic workloads need dynamic scheduling
  - LLMs are no exception
- Llumnix draws lessons from conventional systems wisdom
  - Classic scheduling goals in the new context of LLM serving
  - Implementation of rescheduling with request live migration
  - Continuous, dynamic rescheduling exploiting the migration

# Q&A