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Model Instance Model Instance Model Instance

• A request dispatcher + multiple instances of an inference engine

Inference Engine Inference Engine Inference Engine

LLM-tailored, optimizing single-instance performance

Inherited from traditional DNN era, NOT LLM-aware

Dispatcher

LLM Serving Today: A Cluster Perspective



• Universal models, diverse applications

• Requests are heterogeneous

• Sequence (input/output) lengths

Summarize:

Write:

Polish:

LLM Characteristic (1): Workload Heterogeneity



• Universal models, diverse applications

• Requests are heterogeneous

• Sequence (input/output) lengths

• Latency SLOs: interactive vs. offline, ChatGPT plus vs. normal

LLM Characteristic (1): Workload Heterogeneity



GPU

Running req block Free block Preempted/queuing req

GPU

Request queue

• Autoregressive execution

• Output lengths not known a priori

• Dynamic GPU memory demands of KV caches

• State of the art: paged memory allocation + preemptive scheduling [1]

Iteration N Iteration N+1

Alloc 

Alloc

Request queue 

Preempt

Preempted

[1] Kwon et al. Efficient Memory Management for Large Language Model Serving with PagedAttention (SOSP '23)

LLM Characteristic (2): Execution Unpredictability



• Preemptions -> poor tail latencies • Performance interference in a batch

• Load balancing via one-shot dispatching could be suboptimal 

due to unpredictable execution

Requirement (1): Continuous load balancing

Challenge (1): Performance Isolation



• Load balancing -> fragmentation across instances

• A classic spreading vs. packing tradeoff

Queuing

Spreading Packing

Challenge (2): Memory Fragmentation



• Load balancing -> fragmentation across instances

• A classic spreading vs. packing tradeoff

• Fragmentation -> worse queuing delays (first-token latencies)

• A large space on one instance needed for the prompt
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Challenge (2): Memory Fragmentation



• Load balancing -> fragmentation across instances

• A classic spreading vs. packing tradeoff

• Fragmentation -> worse queuing delays (first-token latencies)

• A large space on one instance needed for the prompt
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Challenge (2): Memory Fragmentation
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• Existing systems treat all requests equally

• Urgent requests could be easily interfered by normal ones

• Queuing delays

• Performance interference

Requirement (3): Request priorities

Challenge (3): Differentiated SLOs



A behavior that is:

Different from traditional DNNs
• Homogeneous requests

• Deterministic, stateless execution

but…

Not new in modern operating / distributed systems
• Processes with dynamic working sets, unknown durations, 

different priorities, …

• Context switching, process migration, …

LLMs are Multi-Tenant and Dynamic



• Continuous rescheduling across instances

• Combined with dispatching and auto-scaling

• Powerful in various scheduling scenarios

(a) Load balancing (b) De-frag (d) Auto-scaling(c) Prioritization

Normal instance 

Running request

Terminating instance 

Rescheduling destination

Queuing request 

High-priority request

Llumnix: Serving LLMs, the“OS”Way



Aim: make rescheduling the norm in LLM serving

Efficiency

Scalability

Scheduling Benefits

Live migration mechanism

Distributed scheduling architecture

Unified, multi-objective scheduling policy

Design Goals
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Rescheduling Downtime
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Downtime and overhead (compute waste)

growing with sequence lengths

Suspend-and-copy 
Downtime for data transfer 

growing with sequence lengths

Llumnix’s live migration 
Near-zero downtime and 

overhead by design

How to Reschedule KV Caches?



• KV caches are append-only

• Copy incremental blocks iteratively

• Downtimes are near-zero and constant

Stage-0

Compute

Mem

Time

…

…

Stage-1

…

Migration initiated

Compute

Mem …

Stage-N

Migration completes

Source Instance

Destination Instance

Legend 

Decoding

KV Cache 

Mem copy

Downtime

Live Migration of LLM Requests



• LLM generation is unpredictable

• Source and destination may run out of memory

• Request can complete in the middle of migration

• Handshake during migration

Live Migration of LLM Requests



Our aim: make rescheduling the norm in LLM serving

Efficiency

Scalability

Scheduling Benefits

Live migration mechanism

Distributed scheduling architecture

Unified, multi-objective scheduling policy

Design Goals



Model Instance

Report loadDispatch

Local Scheduler Migration 
Coordinator

GPU

llumlet

Executor

Executor

Instance 

llumlet

Instance

Migration control

Instance

Global Scheduler

New requests Instance loads
Other control

Scale 

Trigger migration

• Global scheduler for cross-instance 

scheduling

• Distributed llumlets for local scheduling

• A narrow interface: instance load

Distributed Scheduling Architecture



• Virtual usage: unifying multiple objectives

• Policy: load balancing based on virtual usages

Physical usage Virtual usage

(a) Load balancing (b) De-frag (d) Auto-scaling(c) Prioritization

Scheduling Policy



Scheduling Policy

• Virtual usage: unifying multiple objectives

• Normal Case: virtual usage = physical memory usage

• Queuing requests: virtual usage = real demand

• Priority request: virtual usage = real demand + headroom

• Terminate instance: send a fake request with a virtual usage of ∞



Evaluation: Migration Efficiency

• Up to 111x less downtime

• Up to 1% performance difference



• Implemented as a scheduling layer atop vLLM

• Testbed: 16 A10 GPUs (24GB)

• 4 4-GPU VMs, PCIe 4.0 in each node, 64Gb/s Ethernet across nodes

• Models: LLaMA-7B and LLaMA-30B

• Traces: ShareGPT, BurstGPT, generated power-law distributions

Evaluation: End-to-end Serving Performance



Evaluation: End-to-end Serving Performance



• Benefits of migration: compared to dispatch-time load
balancing (INFaaS)

• Up to 2.2x/5.5x for first-token (mean/P99) via de-fragmentation

• Up to 1.3x for per-token generation P99 via reducing preemptions

• More gains with more diverse sequence lengths

Evaluation: End-to-end Serving Performance



Evaluation: Memory Fragmentation



Evaluation: Prioritization



• Dynamic workloads need dynamic scheduling

• LLMs are no exception

• Llumnix draws lessons from conventional systems wisdom

• Classic scheduling goals in the new context of LLM serving

• Implementation of rescheduling with request live migration

• Continuous, dynamic rescheduling exploiting the migration

Conclusion



Q&A
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