
1

Infinite-LLM: Efficient LLM Service for Long

Context with DistAttention and Distributed

KVCache
Bin Lin†, Tao Peng†, Hanyu Zhao†,Wencong Xiao†,Minmin Sun†, Zhipeng Zhang†, Lanbo Li†, Xiafei Qiu†, Shen

Li†,Yong Li†,Wei Lin†, Chen Zhang‡, Zhigang Ji‡,Anmin Liu♢, Tao Xie♢

† Alibaba Group

‡ Shanghai Jiao Tong University

♢ Peking University

主讲：肖同欢 任鑫

2

Trend of model token growth

GPT-3 13B, 2K LLaMA-7B, 4K LLaMA-13B, 8K

Claude 2,10K
GPT-4 Turbo, 128K

Claude 3, 200K

RingAttention, 1000K

Infinite-LLM, 196K

0

500

1000

1500

2000

2500

3000

3500

GPT-3 13B LLaMA-7B LLaMA-13B Claude 2 GPT-4 Turbo Claude 3 RingAttention Infinite-LLM

M
em

o
e
ry

C
o
st

Model

Trend of model token growth

3

❑ Use BF16, Layer=50, Heads=64, Dimension=128

Trend of model token growth

GPT-3 13B, 2K LLaMA-7B, 4K LLaMA-13B, 8K

Claude 2,10K
GPT-4 Turbo, 128K

Claude 3, 200K

RingAttention, 1000K

Infinite-LLM, 196K

0

500

1000

1500

2000

2500

3000

3500

GPT-3 13B LLaMA-7B LLaMA-13B Claude 2 GPT-4 Turbo Claude 3 RingAttention Infinite-LLM

M
em

o
e
ry

C
o
st

Model

Trend of model token growth

4

❑ Maximum VRAM of a single GPU card is 141 GB

Trend of GPU memory growth

16 16

32
40

80 80

141

0

20

40

60

80

100

120

140

160

Tesla P100 Tesla V100 Tesla V100 32GB A100 40GB A100 80GB H100 80GB H200 141GB

M
em

o
e

ry

GPU

Trend of GPU memory growth

5

❑ Optimizations of Attention

❑ Parallelism Method

How to cut LLM cloud service costs?

6

❑ MHA vs GQA vs MQA vs MLA

Optimizations of Attention

KV-cache per Token
h2 hn d l 2 hgn d l 2 hd l

9

2
hd l

Performance Strong Moderate Weak Stronger

hd :vector dimension of each head :layersl gn :number of groupsnh:heads number of each head

7

❑ Flash Attention: Block-by-Block Sequential Computation

❖ Calculation in HBM:

Flash Attention & Paged Attention

Q

K

P O

V

1

32

, softmax() ,N N N N N d  =  =  = S QK P S O PV

8

❑ Paged Attention: Paged Dynamic Loading

Flash Attention & Paged Attention

Token 0 Token 1 Token 2 …… Token N-3 Token N-2 Token N-1

Entire Long Sequence

Page 0

Token 0~T-1

Page 1

Token T~2T-1

Page 2

Token 2T~3T-1
……

Page N

Token N-T~N-1

Paged Attention Cache

Attention Calculation

Load Page When Using

Attention Result

9

❑ Optimizations of Attention

❑ Parallelism Method

❖ Data Parallelism

➢ Data Parallelism

➢ Distributed Data Parallelism

❖ Model Parallelism

How to cut LLM cloud service costs?

10

❑ Data Parallelism

Parallelism Method

X0 X1 X2

W

FWD/BWD

G

GPU0
W

FWD/BWD

G

GPU1
W

FWD/BWD

G

GPU2

X

11

❑ Distributed Data Parallelism

Parallelism Method

X

X0 X1 X2

W

FWD/BWD

G

GPU0
W

FWD/BWD

G

GPU1
W

FWD/BWD

G

GPU2

All Reduce

12

❑ Optimizations of Attention

❑ Parallelism Method

❖ Data Parallelism

❖ Model Parallelism
➢ Pipeline Parallelism

➢ Tensor Parallelism

How to cut LLM cloud service costs?

13

❑ Pipeline Parallelism

❖ Pipeline Parallelism in 4 GPUS, use model with 4T layers

Parallelism Method

GPU0 layer(0~T-1)

GPU1 layer(T~2T-1)

GPU2 layer(2T~3T-1)

GPU3 layer(3T~4T-1)

FWD

FWD

FWD

FWD BWD

BWD

BWD

BWD

Time

14

❑ Pipeline Parallelism

❖ Gpipe: use smaller, equally-sized microbatches to improve efficiency

Parallelism Method

GPU0 layer(0~T-1)

GPU1 layer(T~2T-1)

GPU2 layer(2T~3T-1)

GPU3 layer(3T~4T-1)

F1 F2 F3 F4

F1 F2 F3 F4

F1 F2 F3 F4

F1 F2 F3 F4 B4 B3 B2 B1

B4 B3 B2 B1

B4 B3 B2 B1

B4 B3 B2 B1

microbatch

Time

15

❑ Pipeline Parallelism

❖ Gpipe: use smaller, equally-sized microbatches to improve efficiency

❖ Bubble: idle time slots caused by dependencies

❖ PipeDream: BWD begins when a microbatch completes its FWD

Parallelism Method

GPU0 layer(0~T-1)

GPU1 layer(T~2T-1)

GPU2 layer(2T~3T-1)

GPU3 layer(3T~4T-1)

F1 F2 F3 F4

F1 F2 F3 F4

F1 F2 F3 F4

F1 F2 F3 F4 B4 B3 B2 B1

B4 B3 B2 B1

B4 B3 B2 B1

B4 B3 B2 B1

microbatch

Bubble

16

❑ Tensor Parallelism

❖ Parameters (tensors) within a layer are split across different devices

Parallelism Method

X

X X

GPU0 GPU1
layer0

layer1

layer2

layer2T-1

…
…

layer0

layer1

layer2

…
…

layer2T-1

17

❑ Tensor Parallelism

❖ Row Parallelism :

Parallelism Method

[X1,X2]

X1 X2

GPU0 GPU1
layer0

layerT-1

…

layerT

layer2T-1

…

Y1 Y2

Y

A1 A2

1

2[1, 2] 1 1 2 2 1 2A

AXA X X X A X A Y Y Y = = + = + = 

X=[X1,X2]
1

2

A

AA  =  

Y1

Y2

Y

GPU0

GPU1

Example of T=2

18

❑ Tensor Parallelism

❖ Column Parallelism:

Parallelism Method

X

X X

GPU0 GPU1
layer0

layer1

layer2

layer2T-1

…

layer0

layer1

layer2

…
…

layer2T-1

[][1, 2] [1, 2] [1, 2]XA X A A XA XA Y Y Y= = = =

Y1 Y2Y

X
1

2

A

AA  =  

Y2 YGPU0 GPU1

Example of T=2

A2

A1

Y1 ,

19

❑ More GPUs support long-text but perform
poorly

❑ Dynamic KV Cache Complicates Resource
Management

Challenges of deploying LLM services

20

❖ Traditional parallel methods do not differentiate between attention and non-
attention layers, causing performance degradation due to over-segmentation.

More GPUs support long-text but perform poorly

DP

21

❖ Traditional parallel methods do not differentiate between attention and non-
attention layers, causing performance degradation due to over-segmentation.

More GPUs support long-text but perform poorly

DP

22

❖ Traditional parallel methods do not differentiate between attention and non-
attention layers, causing performance degradation due to over-segmentation.

More GPUs support long-text but perform poorly

DP

23

❑ More GPUs support long-text but perform
poorly

❑ Dynamic KV Cache Complicates Resource
Management

Challenges of deploying LLM services

24

❖ Final context length of inference tasks is unknown and highly variable

Dynamic KV Cache Complicates Resource Management

25

❖ Final context length of inference tasks is unknown and highly variable

➢ Large memory causes waste, while small memory leads to a reduced batch
size

Dynamic KV Cache Complicates Resource Management

26

❖ Final context length of inference tasks is unknown and highly variable

➢ Large memory causes waste, while small memory leads to a reduced batch
size

Dynamic KV Cache Complicates Resource Management

GPU

… Best batch_size

Waste

Short Context(Small KV cache)

…

FFN KV cache

FFN KV cache

27

❖ Final context length of inference tasks is unknown and highly variable

➢ Small memory leads to a reduced batch size, lowering GPU computational
utilization

Dynamic KV Cache Complicates Resource Management

28

❖ Final context length of inference tasks is unknown and highly variable

➢ Small memory leads to a reduced batch size, lowering GPU computational
utilization

Dynamic KV Cache Complicates Resource Management

GPU

KV cache

batch size =4

Short Context(Small KV cache)

FFN

FFN

KV cache

FFN KV cache

FFN KV cache

GPU

KV cache

batch size =2

Large Context(Big KV cache)

FFN

KV cache

FFN KV cache

KV cache

KV cache

KV cache

29

❖ Dynamically allocating appropriate video memory for each task becomes
crucial ！

➢ Large memory causes waste, while small memory leads to a reduced batch
size

Dynamic KV Cache Complicates Resource Management

30

❑ DistAttention

❑ Cluster-scale Throughput Optimization

Design

31

❑ DistAttention
❖ Normal Attention computation

Design

instance0 instance1

GB level KVCache transfer

Attention computation

Query

Local

KVCache

Remote

KVCache

32

❑ DistAttention
❖ Distributed Attention computation

Design

instance0 instance1

KB level MicroAttention transfer

Attention Aggregate

Query

Local

Computation

Local

Computation

33

❑ Debtors and Creditors

❑ Greedy Algorithm based on Performance model

Cluster-scale Throughput Optimization

34

❑ Debtors and Creditors

❖ Local First

❖ Limited Offload

Cluster-scale Throughput Optimization

35

❑ Debtors and Creditors

❖ Local First

❖ Limited Offload

Cluster-scale Throughput Optimization

The scale of offloaded KVCache not exceed
the local’s, for overlapping the local computation
with data transfers and remote computation

36

❑ Greedy Algorithm based on Performance model

❖ Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

37

❑ Greedy Algorithm based on Performance model

❖ Performance model

Cluster-scale Throughput Optimization

One Transformer layer’s Throughput

𝛽 is batch size

S is length of Sequence

38

❑ Greedy Algorithm based on Performance model

❖ Performance model

Cluster-scale Throughput Optimization

Non Attention Layer is dictated by batch size

Attention Layer is dictated by the requests’ length 𝑆.

39

❑ Greedy Algorithm based on Performance model

❖ Performance model

Cluster-scale Throughput Optimization

W 𝛽 ∶ Workload of non-Attention layer
𝑆𝑟: rth Sequence of batch
𝑓 𝛽 , 𝑔 𝑆 ∶ The GPU’s real performance

40

❑ Greedy Algorithm based on Performance model

❖ Performance model

Cluster-scale Throughput Optimization

Affect of KVCache’s computation performance

41

❑ Greedy Algorithm based on Performance model

❖ Performance model

Cluster-scale Throughput Optimization

Affect of KVCache’s computation performance

A LLM instance’s Throughput with n layer, batch 𝛽

A cluster deployed with 𝑀 instances’TPS

42

❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

➢ maximize the cluster throughput with DistAttention approximately

➢ pairing overloaded debtor instances with the free creditor

Cluster-scale Throughput Optimization

43

❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

Creditors: Instance of memory usage lower than 𝑈𝑡ℎ𝑟𝑒𝑠

Debtor0 Debtor1 Debtor2

Creditor0 Creditor1 Creditor2

Debtors: Instance of batch size lower than 𝛽𝑡ℎ𝑟𝑒𝑠

44

❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

Sort by available memory in decreasing order

Debtor0 Debtor1 Debtor2

Creditor0Creditor1Creditor2

Sort by batch size in ascending order

45

❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

Debtor0

request0

request1

request2

Creditor0Creditor1Creditor2

Each debtor handles multiple requests

46

❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

Debtor0

Select debtor’s longest request

Creditor0Creditor1Creditor2

request0

request1

request2

47

❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

Debtor0

Creditor0Creditor1Creditor2

request0

KVCache

48

❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

Debtor0

Creditor0Creditor1Creditor2

request0

KVCache

Calculate the benefit of

offloading this block using

performance model.

49

❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

Debtor0

Creditor0Creditor1Creditor2

request0

KVCache

Calculate the benefit of

offloading this block using

performance model.

If benefit is positive, offloading to current creditor

50

❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

Debtor0

Creditor0Creditor1Creditor2

request0

KVCache

Calculate the benefit of

offloading this block using

performance model.

until the benefit score becomes non-positive (≤0),

then terminates borrowing and switches to next

debtor.

51

❑ gManager & rManager

Implement

52

❑ gManager & rManager

Implement

Hold local KV Cache distribution

53

❑ gManager & rManager

Implement

Hold global KV Cache distribution

Deploy greedy Algorithm, make

decision of offload KVCache

54

❑ workflow

gManager & rManager

gManager

rManager #0 rManager #1 rManager #2 rManager #3

55

❑ workflow

gManager & rManager

gManager

rManager #0 rManager #1 rManager #2 rManager #3

heartbeats

①

56

❑ workflow

gManager & rManager

gManager

rManager #0 rManager #1 rManager #2 rManager #3

heartbeats

Req ID Length Instance0 Instance1

Block num Is local Block num Is local

0 100k 1562 False 4688 False

… … … … … …

①

②

57

❑ workflow

gManager & rManager

gManager

rManager #0 rManager #1 rManager #2 rManager #3

heartbeats

Req ID Length Instance0 Instance1

Block num Is local Block num Is local

0 100k 1562 False 4688 False

… … … … … …

①

②③

58

❑ workflow

gManager & rManager

gManager

rManager #0 rManager #1 rManager #2 rManager #3

heartbeats

Req ID Length Instance0 Instance1

Block num Is local Block num Is local

0 100k 1562 False 4688 False

… … … … … …

①

②③

④

59

❑ Experimental Setup

❖ 4 nodes and 32 GPUs. (each node 8 A100, 80G)

❖ GPUs are connected via NVLink (600GB/s) within each node

❖ Ethernet (125MB/s) across nodes

❖ Model: LLaMA2(7B, 13B, 70B)

Evaluation

60

❑ Traces

❖ 9 traces with different context length ranges and length distributions

❖ Trace 0

➢ open-source dataset ShareGPT4

➢ contains GPT-4 conversation records.

❖ Trace 1-2

➢ subsets of ShareGPT4

➢ assess performance on different length distribution

❖ Trace 3-8

➢ opensource dataset L-Eval and these online service

➢ assess performance on longer contexts

Evaluation

61

❑ Comparison

❖ focuses on comparing Infinite-LLM with static model parallelism
and resource planning (vLLM signal worker & multi workers).

❖ infinite-LLM & vLLM multi wokers support multiple instances

Evaluation

62

❑ Comparison(context length)

Evaluation

63

❑ Comparison(context length)

Evaluation

Support long context requirement

Compared with vLLM-M

64

❑ Comparison(context length)

Evaluation

Under short sequences, the throughput

is comparable to vLLM-M.

65

❑ Comparison(context length)

Evaluation

For short sequences
Infinite-LLM achieves 1.4x to 5.3x
throughput improvement.

For long sequences
both frameworks support similar
maximum context lengths, but
Infinite-LLM reduces OOM risks.

66

❑ Comparison(end-to-end performance)

Evaluation

67

❑ Comparison(end-to-end performance)

Evaluation

68

❑ Comparison(end-to-end performance)

Evaluation

69

❑ Background

❖ Different Context length

❖ waste of memory and computation resources

❑ Infinite-LLM

❖ DistAttention

❖ Greedy Algorithm

❑ thinking

Summary

	a
	Slide 1
	Slide 2: Trend of model token growth
	Slide 3: Trend of model token growth
	Slide 4: Trend of GPU memory growth
	Slide 5: How to cut LLM cloud service costs?
	Slide 6: Optimizations of Attention
	Slide 7: Flash Attention & Paged Attention
	Slide 8: Flash Attention & Paged Attention
	Slide 9: How to cut LLM cloud service costs?
	Slide 10: Parallelism Method
	Slide 11: Parallelism Method
	Slide 12: How to cut LLM cloud service costs?
	Slide 13: Parallelism Method
	Slide 14: Parallelism Method
	Slide 15: Parallelism Method
	Slide 16: Parallelism Method
	Slide 17: Parallelism Method
	Slide 18: Parallelism Method
	Slide 19: Challenges of deploying LLM services
	Slide 20: More GPUs support long-text but perform poorly
	Slide 21: More GPUs support long-text but perform poorly
	Slide 22: More GPUs support long-text but perform poorly
	Slide 23: Challenges of deploying LLM services
	Slide 24: Dynamic KV Cache Complicates Resource Management
	Slide 25: Dynamic KV Cache Complicates Resource Management
	Slide 26: Dynamic KV Cache Complicates Resource Management
	Slide 27: Dynamic KV Cache Complicates Resource Management
	Slide 28: Dynamic KV Cache Complicates Resource Management
	Slide 29: Dynamic KV Cache Complicates Resource Management
	Slide 30: Design
	Slide 31: Design
	Slide 32: Design
	Slide 33: Cluster-scale Throughput Optimization
	Slide 34: Cluster-scale Throughput Optimization
	Slide 35: Cluster-scale Throughput Optimization
	Slide 36: Cluster-scale Throughput Optimization
	Slide 37: Cluster-scale Throughput Optimization
	Slide 38: Cluster-scale Throughput Optimization
	Slide 39: Cluster-scale Throughput Optimization
	Slide 40: Cluster-scale Throughput Optimization
	Slide 41: Cluster-scale Throughput Optimization
	Slide 42: Cluster-scale Throughput Optimization
	Slide 43: Cluster-scale Throughput Optimization
	Slide 44: Cluster-scale Throughput Optimization
	Slide 45: Cluster-scale Throughput Optimization
	Slide 46: Cluster-scale Throughput Optimization
	Slide 47: Cluster-scale Throughput Optimization
	Slide 48: Cluster-scale Throughput Optimization
	Slide 49: Cluster-scale Throughput Optimization
	Slide 50: Cluster-scale Throughput Optimization
	Slide 51: Implement
	Slide 52: Implement
	Slide 53: Implement
	Slide 54: gManager & rManager
	Slide 55: gManager & rManager
	Slide 56: gManager & rManager
	Slide 57: gManager & rManager
	Slide 58: gManager & rManager
	Slide 59: Evaluation
	Slide 60: Evaluation
	Slide 61: Evaluation
	Slide 62: Evaluation
	Slide 63: Evaluation
	Slide 64: Evaluation
	Slide 65: Evaluation
	Slide 66: Evaluation
	Slide 67: Evaluation
	Slide 68: Evaluation
	Slide 69: Summary

