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Trend of model token growth
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❑ Use BF16, Layer=50, Heads=64, Dimension=128

Trend of model token growth
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❑ Maximum VRAM of a single GPU card is 141 GB

Trend of GPU memory growth
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❑ Optimizations of Attention

❑ Parallelism Method

How to cut LLM cloud service costs?
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❑ MHA vs GQA vs MQA vs MLA

Optimizations of Attention

KV-cache per Token
h2 hn d l 2 hgn d l 2 hd l

9

2
hd l

Performance Strong Moderate Weak Stronger

hd :vector dimension of each head :layersl gn :number of groupsnh:heads number of each head
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❑ Flash Attention: Block-by-Block Sequential Computation

❖ Calculation in HBM:

Flash Attention & Paged Attention

Q

K

P O

V

1

32

, softmax( ) ,N N N N N d  =  =  = S QK P S O PV



8

❑ Paged Attention: Paged Dynamic Loading

Flash Attention & Paged Attention

Token 0 Token 1 Token 2 …… Token  N-3 Token N-2 Token N-1

Entire Long Sequence

Page 0

Token 0~T-1

Page 1

Token T~2T-1

Page 2

Token 2T~3T-1
……

Page N

Token N-T~N-1

Paged Attention Cache

Attention Calculation

Load Page When Using

Attention Result
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❑ Optimizations of Attention

❑ Parallelism Method

❖ Data Parallelism

➢ Data Parallelism

➢ Distributed Data Parallelism

❖ Model Parallelism

How to cut LLM cloud service costs?
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❑ Data Parallelism

Parallelism Method
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❑ Distributed Data Parallelism

Parallelism Method
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❑ Optimizations of Attention

❑ Parallelism Method

❖ Data Parallelism

❖ Model Parallelism
➢ Pipeline Parallelism

➢ Tensor Parallelism

How to cut LLM cloud service costs?
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❑ Pipeline Parallelism

❖ Pipeline Parallelism in 4 GPUS, use model with 4T layers

Parallelism Method

GPU0 layer(0~T-1)

GPU1 layer(T~2T-1)

GPU2 layer(2T~3T-1)

GPU3 layer(3T~4T-1)

FWD

FWD

FWD

FWD BWD

BWD

BWD

BWD

Time
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❑ Pipeline Parallelism

❖ Gpipe: use smaller, equally-sized microbatches to improve efficiency

Parallelism Method

GPU0 layer(0~T-1)

GPU1 layer(T~2T-1)

GPU2 layer(2T~3T-1)

GPU3 layer(3T~4T-1)
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❑ Pipeline Parallelism

❖ Gpipe: use smaller, equally-sized microbatches to improve efficiency

❖ Bubble: idle time slots caused by dependencies

❖ PipeDream: BWD begins when a microbatch completes its FWD

Parallelism Method

GPU0 layer(0~T-1)

GPU1 layer(T~2T-1)

GPU2 layer(2T~3T-1)

GPU3 layer(3T~4T-1)

F1 F2 F3 F4

F1 F2 F3 F4

F1 F2 F3 F4

F1 F2 F3 F4 B4 B3 B2 B1

B4 B3 B2 B1

B4 B3 B2 B1

B4 B3 B2 B1

microbatch

Bubble
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❑ Tensor Parallelism

❖ Parameters (tensors) within a layer are split across different devices

Parallelism Method

X
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❑ Tensor Parallelism

❖ Row Parallelism :

Parallelism Method

[X1,X2]
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❑ Tensor Parallelism

❖ Column Parallelism:

Parallelism Method
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❑ More GPUs support long-text but perform 
poorly

❑ Dynamic KV Cache Complicates Resource 
Management

Challenges of deploying LLM services
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❖ Traditional parallel methods do not differentiate between attention and non-
attention layers, causing performance degradation due to over-segmentation.

More GPUs support long-text but perform poorly

DP
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❑ More GPUs support long-text but perform 
poorly

❑ Dynamic KV Cache Complicates Resource 
Management

Challenges of deploying LLM services
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❖ Final context length of inference tasks is unknown and highly variable

Dynamic KV Cache Complicates Resource Management
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❖ Final context length of inference tasks is unknown and highly variable

➢ Large memory causes waste, while small memory leads to a reduced batch 
size

Dynamic KV Cache Complicates Resource Management
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❖ Final context length of inference tasks is unknown and highly variable

➢ Large memory causes waste, while small memory leads to a reduced batch 
size

Dynamic KV Cache Complicates Resource Management

GPU

… Best batch_size

Waste

Short Context(Small KV cache)

…

FFN KV cache

FFN KV cache
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❖ Final context length of inference tasks is unknown and highly variable

➢ Small memory leads to a reduced batch size, lowering GPU computational 
utilization

Dynamic KV Cache Complicates Resource Management
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❖ Final context length of inference tasks is unknown and highly variable

➢ Small memory leads to a reduced batch size, lowering GPU computational 
utilization

Dynamic KV Cache Complicates Resource Management

GPU

KV cache

batch size =4

Short Context(Small KV cache)

FFN

FFN

KV cache

FFN KV cache

FFN KV cache

GPU

KV cache

batch size =2

Large Context(Big KV cache)

FFN

KV cache

FFN KV cache

KV cache

KV cache

KV cache
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❖ Dynamically allocating appropriate video memory for each task becomes 
crucial ！

➢ Large memory causes waste, while small memory leads to a reduced batch 
size

Dynamic KV Cache Complicates Resource Management
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❑ DistAttention

❑ Cluster-scale Throughput Optimization

Design
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❑ DistAttention
❖ Normal Attention computation

Design

instance0 instance1

GB level KVCache transfer

Attention computation

Query

Local 

KVCache

Remote

KVCache
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❑ DistAttention
❖ Distributed Attention computation

Design

instance0 instance1

KB level  MicroAttention transfer

Attention Aggregate

Query

Local 

Computation

Local 

Computation
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❑ Debtors and Creditors

❑ Greedy Algorithm based on Performance model

Cluster-scale Throughput Optimization
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❑ Debtors and Creditors

❖ Local First

❖ Limited Offload

Cluster-scale Throughput Optimization
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❑ Debtors and Creditors

❖ Local First

❖ Limited Offload

Cluster-scale Throughput Optimization

The scale of offloaded KVCache not exceed 
the local’s, for overlapping the local computation
with data transfers and remote computation 
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❑ Greedy Algorithm based on Performance model

❖ Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization
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❑ Greedy Algorithm based on Performance model

❖ Performance model

Cluster-scale Throughput Optimization

One Transformer layer’s Throughput

𝛽 is batch size

S is length of Sequence  
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❑ Greedy Algorithm based on Performance model

❖ Performance model

Cluster-scale Throughput Optimization

Non Attention Layer is dictated by batch size

Attention Layer is dictated by the requests’ length 𝑆.
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❑ Greedy Algorithm based on Performance model

❖ Performance model

Cluster-scale Throughput Optimization

W 𝛽 ∶ Workload of non-Attention layer
𝑆𝑟: rth Sequence of batch
𝑓 𝛽 , 𝑔 𝑆 ∶ The GPU’s real performance
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❑ Greedy Algorithm based on Performance model

❖ Performance model

Cluster-scale Throughput Optimization

Affect of KVCache’s computation performance
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❑ Greedy Algorithm based on Performance model

❖ Performance model

Cluster-scale Throughput Optimization

Affect of KVCache’s computation performance

A LLM instance’s Throughput with n layer, batch 𝛽

A cluster deployed with 𝑀 instances’TPS
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❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

➢ maximize the cluster throughput with DistAttention approximately

➢ pairing overloaded debtor instances with the free creditor

Cluster-scale Throughput Optimization
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❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

Creditors: Instance of memory usage lower than 𝑈𝑡ℎ𝑟𝑒𝑠

Debtor0 Debtor1 Debtor2

Creditor0 Creditor1 Creditor2

Debtors: Instance of batch size lower than 𝛽𝑡ℎ𝑟𝑒𝑠
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❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

Sort by available memory in decreasing order 

Debtor0 Debtor1 Debtor2

Creditor0Creditor1Creditor2

Sort by batch size in ascending order
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❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

Debtor0

request0

request1

request2

Creditor0Creditor1Creditor2

Each debtor handles multiple requests
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❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

Debtor0

Select debtor’s longest request

Creditor0Creditor1Creditor2

request0

request1

request2
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❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

Debtor0

Creditor0Creditor1Creditor2

request0

KVCache
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❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

Debtor0

Creditor0Creditor1Creditor2

request0

KVCache

Calculate the benefit of 

offloading this block using 

performance model. 
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❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

Debtor0

Creditor0Creditor1Creditor2

request0

KVCache

Calculate the benefit of 

offloading this block using 

performance model. 

If benefit is positive, offloading to current creditor 
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❑ Greedy Algorithm based on Performance model

❖ Greedy Algorithm

Cluster-scale Throughput Optimization

Debtor0

Creditor0Creditor1Creditor2

request0

KVCache

Calculate the benefit of 

offloading this block using 

performance model. 

until the benefit score becomes non-positive (≤0), 

then terminates borrowing  and switches to next 

debtor.
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❑ gManager & rManager

Implement
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❑ gManager & rManager

Implement

Hold local KV Cache distribution
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❑ gManager & rManager

Implement

Hold global KV Cache distribution

Deploy greedy Algorithm, make 

decision of offload KVCache
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❑ workflow

gManager & rManager

gManager

rManager #0 rManager #1 rManager #2 rManager #3
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❑ workflow

gManager & rManager

gManager

rManager #0 rManager #1 rManager #2 rManager #3

heartbeats

①
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❑ workflow

gManager & rManager

gManager

rManager #0 rManager #1 rManager #2 rManager #3

heartbeats

Req ID Length Instance0 Instance1

Block num Is local Block num Is local

0 100k 1562 False 4688 False

… … … … … …

①

②
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❑ workflow

gManager & rManager

gManager

rManager #0 rManager #1 rManager #2 rManager #3

heartbeats

Req ID Length Instance0 Instance1

Block num Is local Block num Is local

0 100k 1562 False 4688 False

… … … … … …

①
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❑ workflow

gManager & rManager

gManager

rManager #0 rManager #1 rManager #2 rManager #3

heartbeats

Req ID Length Instance0 Instance1

Block num Is local Block num Is local

0 100k 1562 False 4688 False

… … … … … …

①

②③

④
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❑ Experimental Setup

❖ 4 nodes and 32 GPUs. (each node 8 A100, 80G)

❖ GPUs are connected via NVLink (600GB/s) within each node

❖ Ethernet (125MB/s) across nodes

❖ Model: LLaMA2(7B, 13B, 70B)

Evaluation
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❑ Traces

❖ 9 traces with different context length ranges and length distributions

❖ Trace 0

➢ open-source dataset ShareGPT4

➢ contains GPT-4 conversation records.

❖ Trace 1-2

➢ subsets of ShareGPT4

➢ assess performance on different length distribution 

❖ Trace 3-8

➢ opensource dataset L-Eval and these online service

➢ assess performance on longer contexts

Evaluation
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❑ Comparison

❖ focuses on comparing Infinite-LLM with static model parallelism  
and resource planning (vLLM signal worker & multi workers).

❖ infinite-LLM & vLLM multi wokers support multiple instances

Evaluation
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❑ Comparison(context length)

Evaluation
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❑ Comparison(context length)

Evaluation

Support long context requirement

Compared with vLLM-M
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❑ Comparison(context length)

Evaluation

Under short sequences, the throughput

is comparable to vLLM-M.
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❑ Comparison(context length)

Evaluation

For short sequences
Infinite-LLM achieves 1.4x to 5.3x 
throughput improvement.

For long sequences
both frameworks support similar 
maximum context lengths, but 
Infinite-LLM reduces OOM risks.
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❑ Comparison(end-to-end performance)

Evaluation
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❑ Comparison(end-to-end performance)

Evaluation
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❑ Comparison(end-to-end performance)

Evaluation
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❑ Background

❖ Different Context length

❖ waste of memory and computation resources

❑ Infinite-LLM

❖ DistAttention

❖ Greedy Algorithm

❑ thinking

Summary
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