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Background-DM

Disaggregated Memory(DM)
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Background-HopScotch Hashing A ADSTRS

HopScotch Hashing

neighborhoods (H=4)

]
¢ > I
r—> - 1 O 1 :
- 01 2 3 : 4 :5
]
I I_,AIL\Bil le D,| E,|** | | A,|B |C “_u
[ | hopping 2
0000 1110 0010 -
* : ‘ ‘AI\BJ'E'CI'XIIDQ F5|E4I"'
i S ————
hopscotch bitmaps —

Inserting a new key X, 0P range



Range Indexes on Disaggregated Memory
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Existing range indexes on DM can be classified into two types:
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[1] Xuchuan Luo et al. SMART: A high-performance adaptive radix tree for disaggregated memory. OSDI 2023.
[2] Qing Wang et al. Sherman: A write-optimized distributed B+ tree index on disaggregated memory. SIGMOD 2022.
[3] Pengfei Liet al. ROLEX: A scalable RDMA-oriented learned key-value store for disaggregated memory. FAST 2023.



A Trade-off for Range indexes on DM
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There is a trade-off between read amplifications and cache consumption:
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A Trade-off for Range indexes on DM
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There is a trade-off between read amplifications and cache consumption:
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A Trade-off for Range indexes on DM = ADECAS

There is a trade-off between read amplifications and cache consumption:
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A Trade-off for Range indexes on DM
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Root Cause: The alignment between keys and memory addresses:

min <= Key, < max (i=1,2,...,64)
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Straightforward Idea
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Use a KV-contiguous index (e.g., B+ tree) with hash-table-based leaf nodes
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Widely Choose a Suitable Hashing SchemeﬂﬁAD USTC, CHINA
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[ Hopscotch hashing best fits the requirements ]

[1] Maurice Herlihy et al. Hopscotch hashing. DISC 2008.
[2] Aleksandar Dragojevic et al. FaRM: Fast Remote Memory. NSDI 2014.
[3] Pengfei Zuo et al. One-sided RDMA-conscious extendible hashing for disaggregated memory, ATC 2021. 10



Viable Idea = ADSLAB

Use a hybrid index combining a B+ tree with hopscotch hashing
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Challenge
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Various granularities in reads/writes complicate optimistic synchronization
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Challenge 4 é AnDT e

Various granularities in reads/writes complicate optimistic synchronization
_ Read a neighborhood
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Metadata for B+ trees and hopscotch hashing induces extra remote accesses
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Hopscotch hash still incurs read amplifications compared with reading KV
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Challenge Summary
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Three-level Optimistic Synchronization
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Synchronization Overview

Readers Writers

Neighborhood read Node Write Entry Write Hop range Write
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[ Writers are synchronized by a lock
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Three-level Optimistic Synchronization = ADELAR

Level 1 & Level 2: Detect the Node Write & Entry Write
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Three-level Optimistic Synchronization
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Level 1 & Level 2: Detect the Node Write & Entry Write

mmmm) Solution: Use two-level cache line versioning
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Three-level Optimistic Synchronization
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* Check the node write via NVs
* Check the entry write via EVs
<Search a key> ]

mmm) Solution: Use two-level cache line versioning
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Three-level Optimistic Synchronization /= ADSLAR

Level 3: Detect the hop range write  Problem: Location changes of hooped items
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Three-level Optimistic Synchronization /= ADSLAR

Level 3: Detect the hop range write  Problem: Location changes of hoped items
mmm) Solution: Reuse the hopscotch bitmaps
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Access-Aggregated Metadata Managemen

Metadata for hopscotch hashing

<Insert a key>
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Problem: Vacancy bitmaps induce extra accesses

2. Fetch a vacancy bitmap 3. Fetch the hop range
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Metadata for hopscotch hashing Problem: Vacancy bitmaps induce extra accesses
mmm) Solution: Piggyback the vacancy bitmap
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Access-Aggregated Metadata Managemen;ﬂ ADSTAR
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Metadata for the B+ tree Problem: Leaf metadata induce extra accesses
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Access-Aggregated Metadata Managemen}: y ADSLAB
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Metadata for the B+ tree Problem: Leaf metadata induce extra accesses
mmm) Solution: Replicate the leaf metadata
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Hotness-Aware Speculative Read A ADSTAR

Metadata for the B+ tree Problem: Still need to fetch all items within the neighborhood
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Hotness-Aware Speculative Read 4 é ADSTAS

Metadata for the B+ tree Problem: Still need to fetch all items within the neighborhood
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Evaluation

Workloads and Parameters

* YCSB workloads
» 8-byte keys and 8-byte values
e Limit the cache size to 100 MB per CN

Comparisons

« SMART[OSD!I’ 23]

* The latest radix tree design on DM
 Sherman[SIGMOD’ 22]

* The classic B+ tree design on DM
 ROLEX[FAST’ 23]

* The latest learned index on DM
 SMART-Opt[Optimal case]

e  SMART with sufficient caches
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Performance Comparison o
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50% read 95% read 95% read 95% scan
o/ 0)
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e CHIME achieves:

 Upto4.3x higher throughput than Sherman and ROLEX

* Upto5.1x higher throughput than SMART
* Aclose performance to the optimal case, with up to 8.7x lower cache consumption

(57.6 MB vs. 503.6 MB)

31



USTC, CHINA

ADSLAB

Factor Analysis 4
/=
YCSB LOAD YCSBA YCSBB YCSBC YCSBD
50% read 95% read 95% read
o/ 1 o)
0% nsert 50% update 5% update 100% read 5% insert
Sherman
3 60
Q —O— P50 Latency  ~A- P99 Latency - 10°
S 3
S 409 , A <
5 A S
Q AT
< 204 © A O S
S ° : >
o N % i .

YCSB LOAD YCSB A YCSB B

e Start with Sherman and apply each proposed technique one by one

YCSB C YCSB D



Throughput (Mops/s)
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YCSB LOAD YCSB A YCSB B YCSB C YCSB D

Factor Analysis 4
/=
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 The hopscotch leaf node enables fetching the neighborhood rather than the

entire leaf node
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Factor Analysis o~ e N
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YCSB LOAD YCSBA YCSBB YCSB C YCSBD

50% read 95% read 95% read
o/ 0)
0% nsert 50% update 5% update 100% read 5% insert
Sherman
0 +Hopscotch leaf node
(1 +Vacancy bitmap piggybacking
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* The vacancy bitmap piggybacking enables fetching the hop range rather than
the entire leaf node, without inducing extra remote accesses
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Factor Analysis 4 é ADSTAY

YCSB LOAD YCSBA YCSB B YCSBC YCSBD
50% read 95% read 95% read
o/ 1 o)
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3 Sherman 3 +Leaf metadata replication

00 +Hopscotch leaf node
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* The leaf metadata replication avoids the extra remote accesses of fetching
in-header leaf metadata
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 The speculative read enables greedily fetching the target entry rather than the
entire neighborhood
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Conclusion 4 é ABMETTS

* This paper identifies the trade-off between read amplifications and cache
consumption for range indexes on DM

 We propose CHIME, a hybrid index combining the B+ tree with hopscotch

hashing to break the trade-off:
* Three-level optimistic synchronization

* Access-aggregated metadata management
* Hotness-aware speculative read

e CHIME outperforms the state-of-the-art range indexes on DM by up to
5.1x in throughput with the same cache size and achieves similar
performance with up to 8.7x lower cache consumption
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