
CHIME: A Cache-Efficient and High-Performance Hybrid Index on

Disaggregated Memory

Xuchuan Luo, Jiacheng Shen, Pengfei Zuo, Xin Wang, Micheal R.Lyu, Yangfan Zhou

School of Computer Science, Fudan University
National Key Laboratory of Parallel and Distributed Computing, China

Duke Kunshan University Huawei Cloud The Chinese University of Hong Kong
Shanghai Key Laboratory of Intelligent Information Processing, Shanghai, China

Presented by Sen Han

2

Background-DM

Disaggregated Memory(DM)

3

Background-HopScotch Hashing

HopScotch Hashing

4

Range Indexes on Disaggregated Memory

Existing range indexes on DM can be classified into two types:

[1] Xuchuan Luo et al. SMART: A high-performance adaptive radix tree for disaggregated memory. OSDI 2023.

[2] Qing Wang et al. Sherman: A write-optimized distributed B+ tree index on disaggregated memory. SIGMOD 2022.

[3] Pengfei Li et al. ROLEX: A scalable RDMA-oriented learned key-value store for disaggregated memory. FAST 2023.

5

A Trade-off for Range indexes on DM

There is a trade-off between read amplifications and cache consumption:

6

A Trade-off for Range indexes on DM

There is a trade-off between read amplifications and cache consumption:

Cache an address
for each KV item

Cache an address
for each leaf node

High cache
consumption

High read
amplifications

Read the entire leaf node

Low cache
consumption

Read the single KV item Low read
amplifications

7

A Trade-off for Range indexes on DM

There is a trade-off between read amplifications and cache consumption:

8

A Trade-off for Range indexes on DM

Root Cause: The alignment between keys and memory addresses:

9

Straightforward Idea

Use a KV-contiguous index (e.g., B+ tree) with hash-table-based leaf nodes

10

Widely Choose a Suitable Hashing Scheme

Read amplifications & Space efficiency

Hopscotch hashing best fits the requirements

Remote access
Few accesses:
• Simple associativity
• Hopscotch hashing[1]

• FaRM[2]

• RACE[3]

[1] Maurice Herlihy et al. Hopscotch hashing. DISC 2008.

[2] Aleksandar Dragojevic et al. FaRM: Fast Remote Memory. NSDI 2014.

[3] Pengfei Zuo et al. One-sided RDMA-conscious extendible hashing for disaggregated memory. ATC 2021.

11

Viable Idea

Use a hybrid index combining a B+ tree with hopscotch hashing

12

Challenge

Various granularities in reads/writes complicate optimistic synchronization

0

A1

1

B1

2

C1

3

D2

4

E4

5

F5

6 7

neighborhood

Insert a key X1

0

A1

1

B1

2

C1

3

X1

4

D2

5

F5

6

E4

7

…

…

hopping

hop range

Read a neighborhood
to search a key

Write an entire node
to split the node

Write a hop range
to insert a key

13

Challenge

Various granularities in reads/writes complicate optimistic synchronization
Read a neighborhood

to search a key

Write an entire node
to split the node

Write a hop range
to insert a key

Invisible to fine-grained
neighborhood reads

…

Data Block：

Version/checksum ……

Difficult to maintain for
various hop range writes

Check

Maintain

14

Challenge

Metadata for B+ trees and hopscotch hashing induces extra remote accesses

Metadata

Search a key

Insert a key

Fetch leaf metadata

Fetch a vacancy bitmap Fetch the hop range

Fetch the neighborhood

KV entries

15

Challenge

Hopscotch hash still incurs read amplifications compared with reading KV

Metadata

Search a key

Fetch the neighborhood

A1 B1 X1

Still need to fetch all items
within the neighborhood

C1

16

Challenge Summary

1. Complicated Optimistic Synchronization

2. Extra Metadata Accesses

3. Read Amplifications of Hopscotch Hashing

17

Three-level Optimistic Synchronization

Synchronization Overview

CNs

MNs

Readers Writers

KV entriesLeaf Node:

Neighborhood read Node Write Entry Write Hop range Write

Readers detect node/entry/hop range writes, respectively

Writers are synchronized by a lock

18

Three-level Optimistic Synchronization

Level 1 & Level 2: Detect the Node Write & Entry Write

Node:

Entry:
Cache Line

<Search a key>
Reading a neighborhood

<Split the Node>

Write the entire Node

<Update a key>

Write an entry

19

Three-level Optimistic Synchronization

Level 1 & Level 2: Detect the Node Write & Entry Write

NVobjNode:

4bit 4bit

NVc1 EVc1

4bit 4bit

4bit

EVobj

4bit

NVobj

NVc2 EVc2

4bit 4bit

NVc2 EVc2Entry:
Cache Line

Solution: Use two-level cache line versioning

<Search a key>
Reading a neighborhood

<Split the Node>

Write the entire Node

<Update a key>

Write an entry

20

Three-level Optimistic Synchronization

Level 1 & Level 2: Detect the Node Write & Entry Write

NVobjNode:

4bit 4bit

NVc1 EVc1

4bit 4bit

4bit

EVobj

4bit

NVobj

NVc2 EVc2

4bit 4bit

NVc2 EVc2Entry:
Cache Line

Solution: Use two-level cache line versioning

<Search a key>
Reading a neighborhood

<Split the Node>

Write the entire Node

<Update a key>

Write an entry

Readers:
• Check the node write via NVs
• Check the entry write via EVs

Writers:
• Increment NVs during a node write
• Increment EVs during an entry write

21

Three-level Optimistic Synchronization

Level 3: Detect the hop range write

0

A1

1

B1

2

C1

3

D2

4

E4

5

F5

6 7

A1 B1 C1 X1 D2 F5 E4

…

…

<Search a key>
Reading a neighborhood

<Insert a key>
Writing the hop range

Problem: Location changes of hooped items

22

Three-level Optimistic Synchronization

Level 3: Detect the hop range write

0

A1

1

B1

2

C1

3

D2

4

E4

5

F5

6 7

A1 B1 C1 X1 D2 F5 E4

…

…

<Search a key>
Reading a neighborhood

<Insert a key>
Writing the hop range

Solution: Reuse the hopscotch bitmaps

Problem: Location changes of hoped items

Readers:
• Re-construct the bitmap according to fetched keys
• Retry if the two bitmaps cannot match

Writers:
Hopscotch hashing has maintained a bitmap inside
each neighborhood to track the occupancy status

23

Access-Aggregated Metadata Management

Metadata for hopscotch hashing Problem: Vacancy bitmaps induce extra accesses

CNs

MNs

<Insert a key>

MetadataLeaf Node: KV entries Lock

1.Lock the Node2. Fetch a vacancy bitmap 3. Fetch the hop range

24

1bit

Access-Aggregated Metadata Management

Metadata for hopscotch hashing Problem: Vacancy bitmaps induce extra accesses

CNs

MNs

<Insert a key>

MetadataLeaf Node: KV entries Lock

1.Lock the Node + get the bitmap

2. Fetch the hop range

Solution: Piggyback the vacancy bitmap

lockVacancy

Achieve this via masked-CAS :
• Mask out the vacancy bitmap during the compare
• Remove the mask during the swap

25

Access-Aggregated Metadata Management

Metadata for the B+ tree Problem: Leaf metadata induce extra accesses

CNs

MNs

<Search a key>

MetadataLeaf Node: KV entries Lock

1. Fetch the neighborhood2. Fetch leaf metadata

26

Access-Aggregated Metadata Management

Metadata for the B+ tree Problem: Leaf metadata induce extra accesses

CNs

MNs

<Search a key>

Leaf Node: Lock

1. Fetch the neighborhood
+ metadata

Leaf metadata

Solution: Replicate the leaf metadata

KV entries

• Insert a leaf metadata replica at the
position of every neighborhood size

27

Hotness-Aware Speculative Read

Metadata for the B+ tree Problem: Still need to fetch all items within the neighborhood

<Search a key>

Entry Entry Entry Entry

Leaf metadata

Fetch the neighborhood

… …

28

Each buffer entry:

Hotness-Aware Speculative Read

Metadata for the B+ tree Problem: Still need to fetch all items within the neighborhood

<Search a key>

Entry Entry Entry Entry

Leaf metadata

… …

Hotspot Buffer

Leaf address Key index fingerprint counter

Speculatively read an entry

hotspot

Solution: Speculatively read the target entry

29

Optimization Summary

1. Complicated Optimistic Synchronization

2. Extra Metadata Accesses

3. Read Amplifications of Hopscotch Hashing

Solution 1: Three-Level Optimistic Synchronization

Solution 2: Access-Aggregated Metadata Management

Solution 3: Hotness-Aware Speculative Read

30

Evaluation

Workloads and Parameters
• YCSB workloads
• 8-byte keys and 8-byte values
• Limit the cache size to 100 MB per CN

Comparisons
• SMART[OSDI’ 23]

• The latest radix tree design on DM

• Sherman[SIGMOD’ 22]
• The classic B+ tree design on DM

• ROLEX[FAST’ 23]
• The latest learned index on DM

• SMART-Opt[Optimal case]
• SMART with sufficient caches

31

Performance Comparison

YCSB LOAD YCSB A YCSB B YCSB C YCSB D YCSB E

100% insert
50% read

50% update
95% read

5% update
100% read

95% read
5% insert

95% scan
5% insert

Throughput (Mops/s)

P9
9

La
te

n
cy

(x
10

us
)

• CHIME achieves:
• Up to 4.3x higher throughput than Sherman and ROLEX
• Up to 5.1x higher throughput than SMART
• A close performance to the optimal case, with up to 8.7x lower cache consumption

(57.6 MB vs. 503.6 MB)

32

Factor Analysis

• Start with Sherman and apply each proposed technique one by one

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

100% insert
50% read

50% update
95% read

5% update
100% read

95% read
5% insert

Th
ro

u
g

h
p

u
t

(M
o

p
s/

s)

La
te

n
cy

(u
s)

33

Factor Analysis
Th

ro
u

g
h

p
u

t
(M

o
p

s/
s)

La
te

n
cy

(u
s)

• The hopscotch leaf node enables fetching the neighborhood rather than the
entire leaf node

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

100% insert
50% read

50% update
95% read

5% update
100% read

95% read
5% insert

2.3x

34

Factor Analysis
Th

ro
u

g
h

p
u

t
(M

o
p

s/
s)

La
te

n
cy

(u
s)

1.6x

• The vacancy bitmap piggybacking enables fetching the hop range rather than

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

100% insert
50% read

50% update
95% read

5% update
100% read

95% read
5% insert

the entire leaf node, without inducing extra remote accesses

35

Factor Analysis
Th

ro
u

g
h

p
u

t
(M

o
p

s/
s)

La
te

n
cy

(u
s)

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

100% insert
50% read

50% update
95% read

5% update
100% read

95% read
5% insert

• The leaf metadata replication avoids the extra remote accesses of fetching

1.6x

in-header leaf metadata

36

Factor Analysis
Th

ro
u

g
h

p
u

t
(M

o
p

s/
s)

La
te

n
cy

(u
s)

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

100% insert
50% read

50% update
95% read

5% update
100% read

95% read
5% insert

Number of Clients

• The speculative read enables greedily fetching the target entry rather than the

Th
ro

u
g

h
p

u
t

(M
o

p
s/

s)

1.2x

entire neighborhood

37

Conclusion

• This paper identifies the trade-off between read amplifications and cache
consumption for range indexes on DM

• We propose CHIME, a hybrid index combining the B+ tree with hopscotch
hashing to break the trade-off:
• Three-level optimistic synchronization
• Access-aggregated metadata management
• Hotness-aware speculative read

• CHIME outperforms the state-of-the-art range indexes on DM by up to
5.1x in throughput with the same cache size and achieves similar
performance with up to 8.7x lower cache consumption

CHIME: A Cache-Efficient and High-Performance Hybrid Index on

Disaggregated Memory

Xuchuan Luo, Jiacheng Shen, Pengfei Zuo, Xin Wang, Micheal R.Lyu, Yangfan Zhou

School of Computer Science, Fudan University
National Key Laboratory of Parallel and Distributed Computing, China

Duke Kunshan University Huawei Cloud The Chinese University of Hong Kong
Shanghai Key Laboratory of Intelligent Information Processing, Shanghai, China

Thanks you for your attention

	默认节
	Slide 1: CHIME: A Cache-Efficient and High-Performance Hybrid Index on Disaggregated Memory
	Slide 2: Background-DM
	Slide 3: Background-HopScotch Hashing
	Slide 4: Range Indexes on Disaggregated Memory
	Slide 5: A Trade-off for Range indexes on DM
	Slide 6: A Trade-off for Range indexes on DM
	Slide 7: A Trade-off for Range indexes on DM
	Slide 8: A Trade-off for Range indexes on DM
	Slide 9: Straightforward Idea
	Slide 10: Widely Choose a Suitable Hashing Scheme
	Slide 11: Viable Idea
	Slide 12: Challenge
	Slide 13: Challenge
	Slide 14: Challenge
	Slide 15: Challenge
	Slide 16: Challenge Summary
	Slide 17: Three-level Optimistic Synchronization
	Slide 18: Three-level Optimistic Synchronization
	Slide 19: Three-level Optimistic Synchronization
	Slide 20: Three-level Optimistic Synchronization
	Slide 21: Three-level Optimistic Synchronization
	Slide 22: Three-level Optimistic Synchronization
	Slide 23: Access-Aggregated Metadata Management
	Slide 24: Access-Aggregated Metadata Management
	Slide 25: Access-Aggregated Metadata Management
	Slide 26: Access-Aggregated Metadata Management
	Slide 27: Hotness-Aware Speculative Read
	Slide 28: Hotness-Aware Speculative Read
	Slide 29: Optimization Summary
	Slide 30: Evaluation
	Slide 31: Performance Comparison
	Slide 32: Factor Analysis
	Slide 33: Factor Analysis
	Slide 34: Factor Analysis
	Slide 35: Factor Analysis
	Slide 36: Factor Analysis
	Slide 37: Conclusion
	Slide 38: CHIME: A Cache-Efficient and High-Performance Hybrid Index on Disaggregated Memory

