SOSP 2024

CHIME: A Cache-Efficient and High-Performance Hybrid Index on
Disaggregated Memory

Xuchuan Luo, Jiacheng Shen, Pengfei Zuo, Xin Wang, Micheal R.Lyu, Yangfan Zhou

School of Computer Science, Fudan University
National Key Laboratory of Parallel and Distributed Computing, China
Duke Kunshan University Huawei Cloud The Chinese University of Hong Kong
Shanghai Key Laboratory of Intelligent Information Processing, Shanghai, China

Presented by Sen Han

Background-DM

Disaggregated Memory(DM)

Compute Pool

Compute Node,

Compute Node

4

|||||||||||||||

r Ak JF Bl v Bl
CPU CPUE 4 CPU

4 L aF L El
i il: :: 1'::::
r Rl T 1 r A
CPU CPU CPU
L 4 L 4 L 4

Small Cache

|||||||||||||||

T Rl O Ak JF Bl
CPU CPU | qCPU
L A 1S Eld L)
i i;: :: ;l: ::
r Rl r af Jr A
CPU CPU L {CPU
e 4 L aF 4o 4
00000

©) Benefits:

v" Resource utilization
v Elasticity

Fast Network (e.g., RDMA, CXL)

Weak CPU

{00000 {00000] f000003

{00000 {D0000] f000003

G
CPU
L

{O00003 {00000 {0000

{O00D03 {00000 {00000

Memory Node,

Memory Pool

Memory Node,,

USTC, CHINA

ADSLAB

Background-HopScotch Hashing A ADSTRS

HopScotch Hashing

neighborhoods (H=4)

]
¢ > I
r—> - 1 O 1 :
- 01 2 3 : 4 :5
]
I I_,AIL\Bil le D,| E,|** | | A,|B |C “_u
[| hopping 2
0000 1110 0010 -
* : ‘ ‘AI\BJ'E'CI'XIIDQ F5|E4I"'
i S ————
hopscotch bitmaps —

Inserting a new key X, 0P range

Range Indexes on Disaggregated Memory

/ USTC, CHINA

Z=ADSLAB

Existing range indexes on DM can be classified into two types:

-] Y
KV-discrete

KV-contiguous R

Store KV items discretely Store KV items contiguously

Radix Treel!] within large leaf nodes

Nodes B+ Tree!?l Learned / Nodes / Models \

7 T\ = /.

KV || KV KV || KV
_ y _

[1] Xuchuan Luo et al. SMART: A high-performance adaptive radix tree for disaggregated memory. OSDI 2023.
[2] Qing Wang et al. Sherman: A write-optimized distributed B+ tree index on disaggregated memory. SIGMOD 2022.
[3] Pengfei Liet al. ROLEX: A scalable RDMA-oriented learned key-value store for disaggregated memory. FAST 2023.

A Trade-off for Range indexes on DM

A USTC, CHINA

= ADSLAB

There is a trade-off between read amplifications and cache consumption:

KV-discrete high KV-contiguous
c
A:% =) Caches

{CF CNs £ | Radix Tree {CF CNs / \
£ Ly

o MNs 2 0%, #* MNs
& %
O

Nodes % B+ Tree Learned / Nodes / Models \

1]
&)

Index / \

KV KV KV low Read Amplification high KV |- KV KV -1 kv

A Trade-off for Range indexes on DM

USTC, CHINA

= ADSLAB

There is a trade-off between read amplifications and cache consumption:

Cache an address
for each KV item

High cache

consumption

KV-discrete
{IIT_:ECNS Af‘%
o MINs
Nodes
KV KV o @

Read the single KV item {

Low read
amplifications

|

Cache an address

for each leaf node iﬁi CNs / Caches \

Low cache

consumption

KV-contiguous

** VINs

/ Nodes / Models \
-

|

|
I
KV || KV LKV = KV |
|

R S P AT SRR
High read & Read the entire leaf node

amplifications

J

A Trade-off for Range indexes on DM = ADECAS

There is a trade-off between read amplifications and cache consumption:

(o0]
o

) 0 @ 100

= 103 —B- SMART a —E— SMART "‘g —&— SMART

= —¥— Sherman g 601 —#— Sherman = g 754 - Sherman

S 102 . —6— ROLEX = —e— ROL = —6— ROLEX

Q + 40 = - D
S = 5 50

7 5 Bandwidth-Bound | <

c 10! 4 o201 __@A 5 - T D 251 __ 7. o = ache-Bound

S S ——%—F—9 3 B
U - | .

(D T T T T 1 - 0 T T T T T ~ O T T T T T

= 1 32 64 96 128 & 0 80 160 240 320 400 480 + 0 80 160 240 320 400 480
3 Amplification Factor Number of Clients Number of Clients

A Trade-off for Range indexes on DM

USTC, CHINA

Aé ADSLAB

Root Cause: The alignment between keys and memory addresses:

min <= Key, < max (i=1,2,...,64)

\

KV-discrete
Key,
Key,
Keyg,

I not aligned

Addr, is arbitrary

N

),

high

on

Cache Consum

low

r -
KV-contiguous
Radix Tree Leaf node:
fz-eo,& Key, | Key, | = | Key,,
Off
B+ Tree LearnEd min <= Keyi < max (I=1’2 64)

Index

I aligned

Addr, <= Addr, < Addr, + leaf_size

Read Amplification

Straightforward Idea

/ USTC, CHINA

Z=ADSLAB

Use a KV-contiguous index (e.g., B+ tree) with hash-table-based leaf nodes

~\ high
g Hybrid Index

* KV-contiguous

* Precise alignment

B+ tree
internal nodes

[e\

Hash table

Hash table
_)

he Consumption

low

S

'd

Radix Tree

0o

Requirements:

N

]

Read Amplification

&
.
Off
[]
B+ Tree Learne

Index

Few remote accesses
Low read amplifications
High space efficiency)

high

Widely Choose a Suitable Hashing SchemeﬂﬁAD USTC, CHINA

SLAB

Remote access Read amplifications & Space efficiency
Few accesses: S 100
* Simple associativity 9: —————
* Hopscotch hashing!*/ o 807
* FaRMP Lrl_% . —A— Hopscotch
* RACE® ke —+— FaRM

§ 40 - Associativity

2 —o— RACE

G 20 . . .

= 4 8 12 16 20

Amplification Factor

[Hopscotch hashing best fits the requirements]

[1] Maurice Herlihy et al. Hopscotch hashing. DISC 2008.
[2] Aleksandar Dragojevic et al. FaRM: Fast Remote Memory. NSDI 2014.
[3] Pengfei Zuo et al. One-sided RDMA-conscious extendible hashing for disaggregated memory, ATC 2021. 10

Viable Idea = ADSLAB

Use a hybrid index combining a B+ tree with hopscotch hashing

[] \ high
Hybrid Index N
e KV- t E" .
CoNHS Ot & | RadixTree ©) Benefit:
* Precise alignment E 2 f‘fe% —
* High load factor g 500‘(’ 0 v’ Cache-efficient
© \aov v Bandwidth-efficient
B+ tree 51 B+ Tree Learned v’ Space-efficient
. Index
internal nodes >
/ \ low Read Amplification high
Hopscotch. Hopscotch.

_/

11

Challenge

/ USTC, CHINA

Z=ADSLAB

Various granularities in reads/writes complicate optimistic synchronization
_ Read a neighborhood _
Clients S S s S to search akey) ﬂ@lgh bOFhOOd g

A 0 I~2 3 4 5i6 7
caches 1 [a,]B,l¢c,|D,|E,|F

/
/

] ..
L CNs . S /\" hopping
& VINs / /' Insert a key X,

i 0 1 2 3 4 5 6 7
B+ tree 4t
Il II A e o o
internal nodes R 1 Bi1Ca1 X 1Do | Fs|Ey ’

/ "':""\' """ L hop 'range

Hopscotch. :
---------- v Write an entire node Write a hop range]
to split the node to insert a key

Challenge 4 é AnDT e

Various granularities in reads/writes complicate optimistic synchronization
_ Read a neighborhood
Chentss S S to search a key
~ [
Caches Check
Data Block: \

Invisible to fine-grained
neighborhood reads

/| .
ki Version/checksum |
/I II /W\
/
KA Maintain
. leflcult to maintain for
: R various hop range writes
A
/ llll____\ ————— II II
. - Write an entire node Write a hop range
|

Hopscotch. Hopscotch.
, : . ¥ to split the node to insert a key

/ USTC, CHINA

Challenge H=ADSLAB

Metadata for B+ trees and hopscotch hashing induces extra remote accesses

Cﬁentss S g / Search a key
m

Fetch leaf metadata Fetch the neighborhood

-

,/' Metadata KV entries
/ | J
VAR)
! III \ /
/
/ ' Fetch a vacancy bitmap Fetch the hop range

17 1/
i 7 1/
II II
/ 1Y :————\ _____ II II \
7 Insertakey

Hopscotch. 1| Hopscotch.

/ USTC, CHINA

Challenge H=ADSLAB

Hopscotch hash still incurs read amplifications compared with reading KV

Clients S S S Search a key
m Fetch the neighborhood

: / :
{LE CNs)
P VINs l‘v ,'I Metadata Al 31 Cl Xl
/I /I Still need to fetch all items
i within the neighborhood

[e

Hopscotch. 1| Hopscotch.

Challenge Summary

/ USTC, CHINA

Z=ADSLAB

Cﬁentss S S [1. Complicated Optimistic Synchronization]
m
L CNs [2 Extra Metadata Accesses]
o MNs

B+ tree 3 Read Amplifications of Hopscotch HashingJ
mternal nodes

Ho pscotch Hopscotch

Three-level Optimistic Synchronization

A USTC, CHINA

= ADSLAB

Synchronization Overview

Readers Writers

Neighborhood read Node Write Entry Write Hop range Write

[Readers detect node/entry/hop range writes, respectively |

[Writers are synchronized by a lock

Leaf Node: KV entries

Three-level Optimistic Synchronization = ADELAR

Level 1 & Level 2: Detect the Node Write & Entry Write

<Search a key> |

Reading a neighborhood
]
¢ l ¢
Node:
3 — n >
Cache Line S -
" Entry:
I >
Write the entire Node Write an entry
<Split the Node> | <Update a key> |

18

Three-level Optimistic Synchronization

4

Level 1 & Level 2: Detect the Node Write & Entry Write

mmmm) Solution: Use two-level cache line versioning

<Search a key> |

USTC, CHINA

ADSLAB

Reading a neighborhood
1
4bit 4bit 4bit 4bit . 4bit v 4bit :
Node: NV, NV, | EV, NV_, | EV,
3 — , TN >
Cache Line 4bit__ 4bit . ~
| Entry:| NV, | EV,, NV, | EV,
>
]
Write the entire Node Write an entry
<Split the Node> | <Update a key> |

19

Three-level Optimistic Synchronization

A USTC, CHINA

ADSLAB

* Check the node write via NVs
* Check the entry write via EVs
<Search a key>]

mmm) Solution: Use two-level cache line versioning

Reading a neighborhood
1
4bit 4bit 4bit 4bit : 4bit 4 4hit
Node: Nvobj NV, EV, NV_, | EV,
- - | | -
: 4bit = 4bit :
Cache Line -
| Entry:| NV, | EV,, NV, | EV,
Write the entire Node Writers: _]
* Increment NVs during a node write
<Split the Node> <Update a key> | ¢ Increment EVs during an entry write

Three-level Optimistic Synchronization /= ADSLAR

Level 3: Detect the hop range write Problem: Location changes of hooped items

<Search a key> —

Reading a neighborhood
4

4 4
0 1:2 3 4 5:i6 7
Al Bl Cl DZ E4 F5

b
ACARPEA CA A

A
Writing the hop range
<Insert a key>]

21

Three-level Optimistic Synchronization /= ADSLAR

Level 3: Detect the hop range write Problem: Location changes of hoped items
mmm) Solution: Reuse the hopscotch bitmaps

<Search a key> —

Reading a neighborhood
L, y ’
0 12 3 4 5i6 7 Readers: - e

* Re-construct the bitmap according to fetched keys

Al Bl Cl Dz E4 F5 | *+ Retry if the two bitmaps cannot match
Writers:

Al Bl Cl Xl@ F5 E4 """} Hopscotch hashing has maintained a bitmap inside

7 each neighborhood to track the occupancy status
Writing the hop range

<Insert a key>]

22

Access-Aggregated Metadata Managemen

Metadata for hopscotch hashing

<Insert a key>
!

b= AD

USTC, CHINA

SLAB

Problem: Vacancy bitmaps induce extra accesses

2. Fetch a vacancy bitmap 3. Fetch the hop range

[

b

1.Lock the Node

l

Leaf Node:

Metadata

KV entries

Lock

23

Access-Aggregated Metadata Managemen}:; USTC, CHINA
ol

ADSLAB
Metadata for hopscotch hashing Problem: Vacancy bitmaps induce extra accesses
mmm) Solution: Piggyback the vacancy bitmap
<Insert a key>
10k Cns AN %

Achieve this via masked-CAS :

 Mask out the vacancy bitmap during the compare 1.Lock the Node + get the bitmap

* Remove the mask during the swap ¥

Z. Fetch the hop range Vacancy | lock

\ \\\ 1blt/’

1 1 S /

Leaf Node: | Metadata KV entries Lock

24

Access-Aggregated Metadata Managemen;ﬂ ADSTAR

SLAB
Metadata for the B+ tree Problem: Leaf metadata induce extra accesses
<Search a key>
{0k s
o* MNs
2. Fetch leaf metadata 1. Fetch the neighborhood

A 4 1 1

Leaf Node: | Metadata KV entries Lock

25

Access-Aggregated Metadata Managemen}: y ADSLAB
o

Metadata for the B+ tree Problem: Leaf metadata induce extra accesses
mmm) Solution: Replicate the leaf metadata

<Search a key>

{0k s
o* MNs

* Insert a leaf metadata replica at the
position of every neighborhood size

1. Fetch the neighborhood

+ metadata

Leaf metadata Y4
| |

Leaf Node: KV en triel;s Lock
1 1)

26

Hotness-Aware Speculative Read A ADSTAR

Metadata for the B+ tree Problem: Still need to fetch all items within the neighborhood

Clients S S S
<Search a key>
Caches

Tk CNs
** MNs ‘ Fetch the neighborhood
B+ tree
internal nodes !
/ \ - : :
Hopscotch. Hopscotch.] Entry Entry Entry \ Entry
_________ N\

Leaf metadata

27

Hotness-Aware Speculative Read 4 é ADSTAS

Metadata for the B+ tree Problem: Still need to fetch all items within the neighborhood
Cli S S S mmm) Solution: Speculatively read the target entry
lents YY)

<Search a key>

m e e — i — i m——S—— S —— S ———— —

\
B Each buffer entry: I
|
]

Hotspot Buffer |
i:l;:l:E CNs ‘ ~~~~~~~~ 1| Leaf address | Key index | fingerprint | counter

internal nodes

VA N ==

Hopscotch. Hopscotch. ... | Entry,| Entry : Entry \ Entry
_________ 7| N

hotspot Leaf metadata

28

Optimization Summary - uSTC, CHINA

ADSLAB
Clients s S g [1. Complicated Optimistic Synchronization]
Solution 1: Three-Level Optimistic Synchronization
Caches
{5 CNs Hotspot Buffer [2. Extra Metadata Accesses]

Solution 2: Access-Aggregated Metadata Management

[3. Read Amplifications of Hopscotch HashingJ

Solution 3: Hotness-Aware Speculative Read

29

Evaluation

Workloads and Parameters

* YCSB workloads
» 8-byte keys and 8-byte values
e Limit the cache size to 100 MB per CN

Comparisons

« SMART[OSD!I’ 23]

* The latest radix tree design on DM
 Sherman[SIGMOD’ 22]

* The classic B+ tree design on DM
 ROLEX[FAST’ 23]

* The latest learned index on DM
 SMART-Opt[Optimal case]

e SMART with sufficient caches

/

4

USTC, CHINA

ADSLAB

30

Performance Comparison o
P /=ADSLAB
YCSB LOAD YCSBA YCSBB YCSBC YCSBD YCSBE
50% read 95% read 95% read 95% scan
o/ 0)
0% Insert 50% update 5% update 100% read 5% insert 5% insert
q 397 99] 48 12 7 24 7 27 .|
S —— CHIME Sherman —e— ROLEX | —~- SMART-Opt _
X 261 ; 5 18
o | & -
; { 8 s]
3 | DR I ; // ! ’ G_e._ezﬁe‘gf]
o 0 . — Q) . . .
) 0 5 10 51 17 34 51 2 4 6
Throughput (Mops/s)

e CHIME achieves:

 Upto4.3x higher throughput than Sherman and ROLEX

* Upto5.1x higher throughput than SMART
* Aclose performance to the optimal case, with up to 8.7x lower cache consumption

(57.6 MB vs. 503.6 MB)

31

USTC, CHINA

ADSLAB

Factor Analysis 4
/=
YCSB LOAD YCSBA YCSBB YCSBC YCSBD
50% read 95% read 95% read
o/ 1 o)
0% nsert 50% update 5% update 100% read 5% insert
Sherman
3 60
Q —O— P50 Latency ~A- P99 Latency - 10°
S 3
S 409 , A <
5 A S
Q AT
< 204 © A O S
S ° : >
o N % i .

YCSB LOAD YCSB A YCSB B

e Start with Sherman and apply each proposed technique one by one

YCSB C YCSB D

Throughput (Mops/s)

USTC, CHINA

ADSLAB

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

Factor Analysis 4
/=
YCSB LOAD YCSBA YCSBB YCSB C YCSBD
50% read 95% read 95% read
o/ 1 o)
100% Insent 50% update 5% update 100% read 5% insert
Sherman
0 +Hopscotch leaf node
60
—O— P50 Latency -4 P99 Latency - 107
" S
401 A A\A N
2.3xTA\ , S
50) - 10° W
20 - qgl é\] qﬂ S|
N, ~J
Hl_" : I%H‘ | H e T H 101

 The hopscotch leaf node enables fetching the neighborhood rather than the

entire leaf node

33

Factor Analysis o~ e N
y /=ADSLAB
YCSB LOAD YCSBA YCSBB YCSB C YCSBD

50% read 95% read 95% read
o/ 0)
0% nsert 50% update 5% update 100% read 5% insert
Sherman
0 +Hopscotch leaf node
(1 +Vacancy bitmap piggybacking
3 60
Q —O— P50 Latency -4~ P99 Latency - 10°

§ 40 - DA A 3

= ABp A >

2 A 102 ©

Q oQ 3 =

e iR RN

s, Laff |

E O H I H) H 1 ’j 1 H 1 101

YCSB LOAD YCSB A YCSB B

YCSB C

YCSB D

* The vacancy bitmap piggybacking enables fetching the hop range rather than
the entire leaf node, without inducing extra remote accesses

34

Factor Analysis 4 é ADSTAY

YCSB LOAD YCSBA YCSB B YCSBC YCSBD
50% read 95% read 95% read
o/ 1 o)
100% Insent 50% update 5% update 100% read 5% insert
3 Sherman 3 +Leaf metadata replication

00 +Hopscotch leaf node
(1 +Vacancy bitmap piggybacking

S 60

E —O— P50 Latency -/x-- P99 Latency 1.6 T =103 —
S) AA .OX é
S 40 A A

- 5B Ay A B 9
S \ H 2

S ¥ PN S R R
S 201 “og QHIE% - \ sl 3
S i H N E

~)

< 0 HHIE i . H . 10?

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

* The leaf metadata replication avoids the extra remote accesses of fetching
in-header leaf metadata

35

Factor Analysis 4 USTC, CHINA
= ADSLAB
YCSB LOAD YCSBA YCSBB YCSB C YCSBD
50% read 95% read 95% read
100% insert 100% read :
° 50% update 5% update ° 5% insert

Sherman 3 +Leaf metadata replication

00 +Hopscotch leaf node O +Speculative read (CHIME) -

O +Vacancy bitmap piggybacking =T //‘@ 60 \
s 00— T B e oty i il
e SRR peee S 501 1.2
] —O— P50 Lafency -/x-- P99 Latency .-~ =103 = § } ZX
S 3 - : _

J JATAN 3 2 S 404 4
S 401 ah oA A @r ~_ a1l [= £] F - SMART-Opt
— DA JATAN A \\ O Q. 4
~ _ WA v M L1022 © < 301 —0— CHIME w/ SR
< 20 - O%m i LT S = - —— CHIME w/o SR
S K W ORI P, = S 20

| i . EE \\\~ g I T T T T T T T
g i HWE%H q . H 1L H . 13 £i=!c I DY B0 220 360 500 640
YCSBLOAD YCSBA YCSBB YCSBC YCSBD \\ Number of Clients /

 The speculative read enables greedily fetching the target entry rather than the
entire neighborhood

36

Conclusion 4 é ABMETTS

* This paper identifies the trade-off between read amplifications and cache
consumption for range indexes on DM

 We propose CHIME, a hybrid index combining the B+ tree with hopscotch

hashing to break the trade-off:
* Three-level optimistic synchronization

* Access-aggregated metadata management
* Hotness-aware speculative read

e CHIME outperforms the state-of-the-art range indexes on DM by up to
5.1x in throughput with the same cache size and achieves similar
performance with up to 8.7x lower cache consumption

37

SOSP 2024

CHIME: A Cache-Efficient and High-Performance Hybrid Index on
Disaggregated Memory

Xuchuan Luo, Jiacheng Shen, Pengfei Zuo, Xin Wang, Micheal R.Lyu, Yangfan Zhou

School of Computer Science, Fudan University
National Key Laboratory of Parallel and Distributed Computing, China
Duke Kunshan University Huawei Cloud The Chinese University of Hong Kong
Shanghai Key Laboratory of Intelligent Information Processing, Shanghai, China

Thanks you for your attention

	默认节
	Slide 1: CHIME: A Cache-Efficient and High-Performance Hybrid Index on Disaggregated Memory
	Slide 2: Background-DM
	Slide 3: Background-HopScotch Hashing
	Slide 4: Range Indexes on Disaggregated Memory
	Slide 5: A Trade-off for Range indexes on DM
	Slide 6: A Trade-off for Range indexes on DM
	Slide 7: A Trade-off for Range indexes on DM
	Slide 8: A Trade-off for Range indexes on DM
	Slide 9: Straightforward Idea
	Slide 10: Widely Choose a Suitable Hashing Scheme
	Slide 11: Viable Idea
	Slide 12: Challenge
	Slide 13: Challenge
	Slide 14: Challenge
	Slide 15: Challenge
	Slide 16: Challenge Summary
	Slide 17: Three-level Optimistic Synchronization
	Slide 18: Three-level Optimistic Synchronization
	Slide 19: Three-level Optimistic Synchronization
	Slide 20: Three-level Optimistic Synchronization
	Slide 21: Three-level Optimistic Synchronization
	Slide 22: Three-level Optimistic Synchronization
	Slide 23: Access-Aggregated Metadata Management
	Slide 24: Access-Aggregated Metadata Management
	Slide 25: Access-Aggregated Metadata Management
	Slide 26: Access-Aggregated Metadata Management
	Slide 27: Hotness-Aware Speculative Read
	Slide 28: Hotness-Aware Speculative Read
	Slide 29: Optimization Summary
	Slide 30: Evaluation
	Slide 31: Performance Comparison
	Slide 32: Factor Analysis
	Slide 33: Factor Analysis
	Slide 34: Factor Analysis
	Slide 35: Factor Analysis
	Slide 36: Factor Analysis
	Slide 37: Conclusion
	Slide 38: CHIME: A Cache-Efficient and High-Performance Hybrid Index on Disaggregated Memory

