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Background-DM

Disaggregated Memory(DM)
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Background-HopScotch Hashing

HopScotch Hashing



4

Range Indexes on Disaggregated Memory

Existing range indexes on DM can be classified into two types:

[1] Xuchuan Luo et al. SMART: A high-performance adaptive radix tree for disaggregated memory. OSDI 2023.

[2] Qing Wang et al. Sherman: A write-optimized distributed B+ tree index on disaggregated memory. SIGMOD 2022.

[3] Pengfei Li et al. ROLEX: A scalable RDMA-oriented learned key-value store for disaggregated memory. FAST 2023.
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A Trade-off for Range indexes on DM

There is a trade-off between read amplifications and cache consumption:
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A Trade-off for Range indexes on DM

There is a trade-off between read amplifications and cache consumption:

Cache an address 
for each KV item

Cache an address 
for each leaf node

High cache 
consumption

High read 
amplifications

Read the entire leaf node

Low cache 
consumption

Read the single KV item Low read 
amplifications
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A Trade-off for Range indexes on DM

There is a trade-off between read amplifications and cache consumption:
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A Trade-off for Range indexes on DM

Root Cause: The alignment between keys and memory addresses:
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Straightforward Idea

Use a KV-contiguous index (e.g., B+ tree) with hash-table-based leaf nodes
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Widely Choose a Suitable Hashing Scheme

Read amplifications & Space efficiency

Hopscotch hashing best fits the requirements

Remote access
Few accesses: 
• Simple associativity 
• Hopscotch hashing[1]

• FaRM[2]

• RACE[3]

[1] Maurice Herlihy et al. Hopscotch hashing. DISC 2008.

[2] Aleksandar Dragojevic et al. FaRM: Fast Remote Memory. NSDI 2014.

[3] Pengfei Zuo et al. One-sided RDMA-conscious extendible hashing for disaggregated memory. ATC 2021.
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Viable Idea

Use a hybrid index combining a B+ tree with hopscotch hashing
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Challenge

Various granularities in reads/writes complicate optimistic synchronization
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Challenge

Various granularities in reads/writes complicate optimistic synchronization
Read a neighborhood 

to search a key

Write an entire node 
to split the node

Write a hop range 
to insert a key

Invisible to fine-grained 
neighborhood reads

…

Data Block：

Version/checksum ……

Difficult to maintain for 
various hop range writes

Check

Maintain
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Challenge

Metadata for B+ trees and hopscotch hashing induces extra remote accesses

Metadata

Search a key

Insert a key

Fetch leaf metadata

Fetch a vacancy bitmap Fetch the hop range

Fetch the neighborhood

KV entries
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Challenge

Hopscotch hash still incurs read amplifications compared with reading KV

Metadata

Search a key

Fetch the neighborhood

A1 B1 X1

Still need to fetch all items 
within the neighborhood

C1
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Challenge Summary

1. Complicated Optimistic Synchronization

2. Extra Metadata Accesses

3. Read Amplifications of Hopscotch Hashing
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Three-level Optimistic Synchronization

Synchronization Overview

CNs

MNs

Readers Writers

KV entriesLeaf Node:

Neighborhood read Node Write Entry Write Hop range Write

Readers detect node/entry/hop range writes, respectively

Writers are synchronized by a lock



18

Three-level Optimistic Synchronization

Level 1 & Level 2: Detect the Node Write & Entry Write  

Node:

Entry:
Cache Line

<Search a key>
Reading a neighborhood

<Split the Node>

Write the entire Node

<Update a key>

Write an entry
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Three-level Optimistic Synchronization

Level 1 & Level 2: Detect the Node Write & Entry Write  

NVobjNode:

4bit 4bit

NVc1 EVc1

4bit 4bit

4bit

EVobj

4bit

NVobj

NVc2 EVc2

4bit 4bit

NVc2 EVc2Entry:
Cache Line

Solution: Use two-level cache line versioning

<Search a key>
Reading a neighborhood

<Split the Node>

Write the entire Node

<Update a key>

Write an entry
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Three-level Optimistic Synchronization

Level 1 & Level 2: Detect the Node Write & Entry Write  

NVobjNode:

4bit 4bit

NVc1 EVc1

4bit 4bit

4bit

EVobj

4bit

NVobj

NVc2 EVc2

4bit 4bit

NVc2 EVc2Entry:
Cache Line

Solution: Use two-level cache line versioning

<Search a key>
Reading a neighborhood

<Split the Node>

Write the entire Node

<Update a key>

Write an entry

Readers:
• Check the node write via NVs
• Check the entry write via EVs

Writers:
• Increment NVs during a node write
• Increment EVs during an entry write
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Three-level Optimistic Synchronization

Level 3: Detect the hop range write

0

A1

1

B1

2

C1

3

D2

4

E4

5

F5

6 7

A1 B1 C1 X1 D2 F5 E4

…

…

<Search a key>
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Problem: Location changes of hooped items
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Three-level Optimistic Synchronization

Level 3: Detect the hop range write
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<Search a key>
Reading a neighborhood

<Insert a key>
Writing the hop range

Solution: Reuse the hopscotch bitmaps

Problem: Location changes of hoped items

Readers:
• Re-construct the bitmap according to fetched keys
• Retry if the two bitmaps cannot match

Writers:
Hopscotch hashing has maintained a bitmap inside 
each neighborhood to track the occupancy status
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Access-Aggregated Metadata Management

Metadata for hopscotch hashing Problem: Vacancy bitmaps induce extra accesses

CNs

MNs

<Insert a key>

MetadataLeaf Node: KV entries Lock

1.Lock the Node2. Fetch a vacancy bitmap 3. Fetch the hop range
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1bit

Access-Aggregated Metadata Management

Metadata for hopscotch hashing Problem: Vacancy bitmaps induce extra accesses

CNs

MNs

<Insert a key>

MetadataLeaf Node: KV entries Lock

1.Lock the Node + get the bitmap

2. Fetch the hop range

Solution: Piggyback the vacancy bitmap

lockVacancy

Achieve this via masked-CAS : 
• Mask out the vacancy bitmap during the compare 
• Remove the mask during the swap
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Access-Aggregated Metadata Management

Metadata for the B+ tree Problem: Leaf metadata induce extra accesses

CNs

MNs

<Search a key>

MetadataLeaf Node: KV entries Lock

1. Fetch the neighborhood2. Fetch leaf metadata
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Access-Aggregated Metadata Management

Metadata for the B+ tree Problem: Leaf metadata induce extra accesses

CNs

MNs

<Search a key>

Leaf Node: Lock

1. Fetch the neighborhood
+ metadata

Leaf metadata

Solution: Replicate the leaf metadata

KV entries

• Insert a leaf metadata replica at the 
position of every neighborhood size
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Hotness-Aware Speculative Read

Metadata for the B+ tree Problem: Still need to fetch all items within the neighborhood

<Search a key>

Entry Entry Entry Entry

Leaf metadata

Fetch the neighborhood

… …
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Each buffer entry:

Hotness-Aware Speculative Read

Metadata for the B+ tree Problem: Still need to fetch all items within the neighborhood

<Search a key>

Entry Entry Entry Entry

Leaf metadata

… …

Hotspot Buffer

Leaf address Key index fingerprint counter

Speculatively read an entry

hotspot

Solution: Speculatively read the target entry
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Optimization Summary

1. Complicated Optimistic Synchronization

2. Extra Metadata Accesses

3. Read Amplifications of Hopscotch Hashing

Solution 1: Three-Level Optimistic Synchronization

Solution 2: Access-Aggregated Metadata Management

Solution 3: Hotness-Aware Speculative Read
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Evaluation

Workloads and Parameters
• YCSB workloads
• 8-byte keys and 8-byte values
• Limit the cache size to 100 MB per CN

Comparisons
• SMART[OSDI’ 23]

• The latest radix tree design on DM

• Sherman[SIGMOD’ 22]
• The classic B+ tree design on DM

• ROLEX[FAST’ 23]
• The latest learned index on DM

• SMART-Opt[Optimal case]
• SMART with sufficient caches
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Performance Comparison
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100% insert
50% read

50% update
95% read

5% update
100% read

95% read
5% insert

95% scan
5% insert
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• CHIME achieves:
• Up to 4.3x higher throughput than Sherman and ROLEX
• Up to 5.1x higher throughput than SMART
• A close performance to the optimal case, with up to 8.7x lower cache consumption

(57.6 MB vs. 503.6 MB)
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Factor Analysis

• Start with Sherman and apply each proposed technique one by one
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Factor Analysis
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• The hopscotch leaf node enables fetching the neighborhood rather than the 
entire leaf node

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

100% insert
50% read

50% update
95% read

5% update
100% read

95% read
5% insert

2.3x
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Factor Analysis
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1.6x

• The vacancy bitmap piggybacking enables fetching the hop range rather than

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

100% insert
50% read

50% update
95% read

5% update
100% read

95% read
5% insert

the entire leaf node, without inducing extra remote accesses
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Factor Analysis
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YCSB LOAD YCSB A YCSB B YCSB C YCSB D

100% insert
50% read

50% update
95% read

5% update
100% read

95% read
5% insert

• The leaf metadata replication avoids the extra remote accesses of fetching

1.6x

in-header leaf metadata
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Factor Analysis
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YCSB LOAD YCSB A YCSB B YCSB C YCSB D

100% insert
50% read

50% update
95% read

5% update
100% read

95% read
5% insert

Number of Clients

• The speculative read enables greedily fetching the target entry rather than the
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1.2x

entire neighborhood
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Conclusion

• This paper identifies the trade-off between read amplifications and cache 
consumption for range indexes on DM

• We propose CHIME, a hybrid index combining the B+ tree with hopscotch 
hashing to break the trade-off:
• Three-level optimistic synchronization
• Access-aggregated metadata management
• Hotness-aware speculative read

• CHIME outperforms the state-of-the-art range indexes on DM by up to
5.1x in throughput with the same cache size and achieves similar 
performance with up to 8.7x lower cache consumption
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