
University of Science and Technology of China
Mohamed bin Zayed University of Artificial Intelligence

fMoE: Fine-Grained Expert Offloading
for Large Mixture-of-Experts Serving

Presented by Jia He, Jiaqi Ruan

2025/3/25 1

2025/3/25 2

Contents

1

2

3

4

Background

Related Work

Motivation

fMoE

5 Evaluation

2025/3/25 3

Background

The growth rate of large model parameters far exceeds the current growth rate of GPU memory.

Background

2025/3/25 4

According to the routing

Activate partial parameters.

possibility
top-k expert based possibility

2025/3/25 5

Background

For Token

Only a small fraction of parameters are required for

inference on a single token.

For Sequence

A large number of tokens are routed to specific

devices, increasing their memory pressure.

Background

2025/3/25 6

For DeepSeekV3

Token [1,7168] Expert Parameter [2048,7168] & [4096,7168]

The memory usage of Expert Parameters is equivalent to 6k tokens.（Without considering the buffer）

Device Memory

Extra Hot Expert Token OOM!

Host Memory

Good

Cold Expert Parameter

Hot Expert Parameter

Hot Expert Token Offload Cold Expert

2025/3/25 7

Contents

1

2

3

4

Background

Related Work

Motivation

fMoE

5 Evaluation

Related Work

2025/3/25 8

System Type Granularity MoE Offload Strategy

FlexGen [1] Dense - -

DeepSpeed Inference MoE Naive LRU Cache + Dependency Prefetch.

Mixtral-Offloading MoE Activation LRU Cache + Speculative Prediction.

BrainStorm [2] MoE Dataset LRU Cache + Model Count Prediction.

ProMoE [3] MoE Activation Training a predictor to prefetch experts based on predictions.

MoE-Infinity [4] MoE Iteration Request-level for Cache Iteration-level for prefetch(LFU).

[1] FlexGen: high-throughput generative inference of large language models with a single GPU. ICML23

[2] Brinstorm:Optimizing dynamic neural networks with brainstorm. OSDI 23

[3] MoE-Infinity: Offloading-Efficient MoE Model Serving. arxiv2024

[4] ProMoE: Fast MoE-based LLM Serving using Proactive Caching. arxiv2024

Related Work

2025/3/25 9

DeepSpeed Inference [Naive]

⚫ Cache LRU used Expert

⚫ Prefetch Expert activated at last iteration[dependency]

BrainStorm

Related Work

2025/3/25 10

Stride Prefetching with Neuron Predictor Chunked and Reorder prefetch shedule to overlap prefetch

ProMoE

Related Work (MoE Infinity)

2025/3/25 11

...

...

...

...

...

Expert

layer

Iteration level EMC

...

...
Request level EMC

Expert

layer... ...

1、Maintain multi-level data structure EMC

2、Cache router results

3、Prefetch and Cache Expert Based EMC

2025/3/25 12

Related Work (MoE Infinity)

Prefetch

① Find prior matched EAMs From EAM Collection

② Compute activation probability for each expert

③ Adjusts the value in each cell through the formula (1 − (i − l)/L) [1]

[1] where i is the future layer ID, l is the current layer ID and L is the layer number.

0.45>0.4 so E[3,2] prefeteched first than E[4,2]

2025/3/25 13

Related Work (MoE Infinity)

Catching schedule

Reserve a portion of the slots for prefetching.

Replace the lowest priority slots by the request-level EAM

Prefetching Schedule

1 2

0 3

0 3

request level EAM

Cache the highest priority expert initially by the request-level EAM

Risk!

Global Hot ≠ Local Hot

2025/3/25 14

Contents

1

2

3

4

Background

Related Work

Motivation

fMoE

5 Evaluation

2025/3/25 15

Problems in Current Expert Offloading

❑ Existing expert offloading solutions prefetch experts using inefficient guide data

❖ Naive/Model level offloading solutions rely on coarse-grained expert patterns(e.g.,

dataset level), but “global hot” doesn’t equal to “local hot”!

(iteration level)

(dataset level)

2025/3/25 16

Problems in Current Expert Offloading

❑ Existing expert offloading solutions prefetch experts using inefficient guide data

❖ Naive/Model level offloading solutions rely on coarse-grained expert patterns(e.g.,

dataset level), but “global hot” doesn’t equal to “local hot”!

❖ Iteration level offloading solutions like MoE-Infinity only record expert hit counts,

diminish the contained possibility information assigned to each expert by gate

0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0 0 0 1 0 0 1 0

Router Possibility Hit Count

2025/3/25 17

Problems in Current Expert Offloading

❑ Existing expert offloading solutions prefetch experts using inefficient guide data

❑ Ignorance of input prompts’ heterogeneity

❖ To overlap model inference with expert transmission(CPU → GPU), existing offloading
methods will prefetch 𝒍 + 𝒅 layer’s expert parameter at layer 𝒍, 𝑑 is the prefetch
distance

…

Layer 𝑙 + 1Layer 𝑙 Layer 𝑙 + 𝑑

Prefetch

2025/3/25 18

Problems in Current Expert Offloading

❑ Existing expert offloading solutions prefetch experts using inefficient guide data

❑ Ignorance of input prompts’ heterogeneity

❖ To overlap model inference with expert transmission(CPU → GPU), existing offloading
methods will prefetch 𝒍 + 𝒅 layer’s expert parameter at layer 𝒍, 𝑑 is the prefetch
distance

❖ For layers ∈ [1, 𝑑] that don’t have predecessor, existing methods (e.g., MoE-Infinity)
prefetches the most popular exports from history, ignoring the unique semantic
information of input prompts

2025/3/25 19

Contents

1

2

3

4

Background

Related Work

Motivation

fMoE

5 Evaluation

2025/3/25 20

fMoE Overview

❑ Track fine-grained iteration-level expert activation information (Moti.1)

❖ Expert Map Store

❑ Use semantic/trajectory info of current batch to match best expert map (Moti.2)

❖ Semantic/Trajectory Expert Map Matcher

❑ Expert prefetching guided by matched expert map

❑ Cache management & Expert map deduplication

2025/3/25 21

Expert Map & Expert Map Store

❑ Expert Map

❖ Data structure that tracks expert activation possibility (router result) in each model
layer 𝑙 at iteration level 𝑖

❖ Recording every iteration’s expert activation possibility makes it fine-grained and
lossless

abb. full
i iteration
L layer num
J Expert num in layer

2025/3/25 22

Expert Map & Expert Map Store

❑ Expert Map

❖ Data structure that tracks expert activation possibility (router result) in each model
layer 𝑙 at iteration level 𝑖

❖ Recording every iteration’s expert activation possibility makes it fine-grained and
lossless

❑ Expert Map Store

❖ Dynamically keeps the most useful and unique expert maps for real-time queries

during inference by deduplication (later)

2025/3/25 23

Expert Map Matcher

❑ When a request prompt arrives, Expert map matcher searches the expert map
store for appropriate expert maps to guide expert prefetching before inference

❑ Expert map matcher works in two scenarios divided by prefetch distance 𝑑
❖ for layer 𝑑 + 1, 𝐿 , how to efficiently choose the expert map?

▪ Solution: Trajectory Similarity

2025/3/25 24

Expert Map Matcher

❑ When a request prompt arrives, Expert map matcher searches the expert map
store for appropriate expert maps to guide expert prefetching before inference

❑ Expert map matcher works in two scenarios divided by prefetch distance 𝑑
❖ for layer 𝑑 + 1, 𝐿 , how to efficiently choose the expert map?

▪ Solution: Trajectory Similarity

❖ for layer 1, 𝑑 , how to choose the expert map without sufficient distance?

▪ Solution: Semantic Embedding Similarity

2025/3/25 25

Matcher — Trajectory Similarity

❑ Trajectory Similarity

❖ Record (𝑙 − 1) layers expert activation probabilities (router result) as trajectories to
search expert map for 𝑙 + 𝑑 layer

❖ Given trajectories 𝑚𝑎𝑝𝑛𝑒𝑤 ∈ ℝ𝐵 × 𝑙−1 𝐽 and historical expert maps 𝑚𝑎𝑝𝑜𝑙𝑑 ∈ ℝ𝐶 × 𝑙−1 𝐽 ,
compute pairwise cosine similarity:

abb. full
B batch size
C map store capacity
x one prompt
y one history iter

2025/3/25 26

Matcher — Trajectory Similarity

❑ Trajectory Similarity

❖ Record (𝑙 − 1) layers expert activation probabilities (router result) as trajectories to
search expert map for 𝑙 + 𝑑 layer

❖ Given trajectories 𝑚𝑎𝑝𝑛𝑒𝑤 ∈ ℝ𝐵 × 𝑙−1 𝐽 and historical expert maps 𝑚𝑎𝑝𝑜𝑙𝑑 ∈ ℝ𝐶 × 𝑙−1 𝐽 ,
compute pairwise cosine similarity:

❑ Matching Method

❖ Select historical iteration 𝑦 with the highest similarity, use 𝑃𝑙+𝑑
𝑦

∈ 𝑚𝑎𝑝𝑦
𝑜𝑙𝑑 to guide the

expert prefetching for target layer 𝑙 + 𝑑

abb. full
B batch size
C map store capacity
x one prompt
y one history iter

2025/3/25 27

Matcher — Semantic Embedding Similarity

❑ Semantic Embedding Similarity

❖ Record input layer’s embedding as semantic input embedding to search expert map
for [𝟏, 𝒅] layers both in collecting expert(historical) maps and inference(new)

❖ Given embedding 𝑠𝑒𝑚𝑛𝑒𝑤 ∈ ℝ𝐵×ℎ and historical embedding collection 𝑠𝑒𝑚𝑜𝑙𝑑 ∈ ℝ𝐶 × ℎ ,
compute pairwise cosine similarity:

abb. full
B batch size
C map store capacity
x one prompt
y one history iter

2025/3/25 28

Matcher — Semantic Embedding Similarity

❑ Semantic Embedding Similarity

❖ Record input layer’s embedding as semantic input embedding to search expert map
for [𝟏, 𝒅] layers both in collecting expert(historical) maps and inference(new)

❖ Given embedding 𝑠𝑒𝑚𝑛𝑒𝑤 ∈ ℝ𝐵×ℎ and historical embedding collection 𝑠𝑒𝑚𝑜𝑙𝑑 ∈ ℝ𝐶 × ℎ ,
compute pairwise cosine similarity:

❑ Matching Method

❖ Select historical iteration 𝑦 with the highest similarity, use {𝑃1
𝑦

, … , 𝑃𝑑
(𝑦)

} ∈ 𝑚𝑎𝑝𝑦
𝑜𝑙𝑑 to

guide the expert prefetching for target layer [1, 𝑑]

abb. full
B batch size
C map store capacity
x one prompt
y one history iter

2025/3/25 29

Expert Prefetching

❑ Expert Map Guided Prefetching

❖ Select experts that have the highest probability score from the expert map of one
layer

❖ If the similarity score from map matcher is high, prefetch less experts(but no less than
TopK), if similarity score is low, prefetch more experts. Practical number is controlled by
a threshold 𝛿𝑙.

2025/3/25 30

Cache Management

❑ Cache Management — Latency

❖ For prefetching experts to cache, prioritize experts that have higher probability and are
closer to the current layer :

2025/3/25 31

Cache Management

❑ Cache Management — Latency

❖ For prefetching experts to cache, prioritize experts that have higher probability and are
closer to the current layer :

❖ For evicting when cache is full, prioritize experts that have lower probability and are less

frequently hit:

2025/3/25 32

Expert Map Deduplication

❑ Expert Map Deduplication — Memory

❖ Compute the pairwise redundancy score 𝑅𝐷𝑌𝑥,𝑦 to determine which old iterations to
drop, update the old one with the expert map from new iteration

2025/3/25 33

Expert Map Deduplication

❑ Expert Map Deduplication — Memory

❖ Compute the pairwise redundancy score 𝑅𝐷𝑌𝑥,𝑦 to determine which old iterations to
drop, update the old one with the expert map from new iteration

❖ 50K expert maps take 200MB CPU memory which is considerably memory efficient

2025/3/25 34

Contents

1

2

3

4

Background

Related Work

Motivation

fMoE

5 Evaluation

Evaluation

2025/3/25 35

Hardware

⚫ 6 × NVIDIA RTX 3090 (24GB memory)

⚫ Interconnect: NVlink(NVBridge) Host: PCIe 4.0 (32GB/s)

⚫ 32 AMD Ryzen Threadripper PRO 3955 with WX480 GB CPU memory

Model

⚫ Mixtral-8×7B

⚫ Qwen1.5-MoE (8 × 2.7 B)

⚫ Phi-3.5-MoE (16×3.8 B)

2025/3/25 36

Evaluation

Online Serving

Offline Serving
[7:3]

TTFT TPOT Expert Hit Rate

2025/3/25 37

Evaluation

Ablation Study Sensitive Analysis

Mean traj. \ Sem. scores

2025/3/25 38

Evaluation

Different Model with different Expert number

University of Science and Technology of China
Mohamed bin Zayed University of Artificial Intelligence

Thanks!

2025/3/25 39

	Slide 1: fMoE: Fine-Grained Expert Offloading for Large Mixture-of-Experts Serving
	Slide 2: Contents
	Slide 3: Background
	Slide 4: Background
	Slide 5: Background
	Slide 6: Background
	Slide 7: Contents
	Slide 8: Related Work
	Slide 9: Related Work
	Slide 10: Related Work
	Slide 11: Related Work (MoE Infinity)
	Slide 12: Related Work (MoE Infinity)
	Slide 13: Related Work (MoE Infinity)
	Slide 14: Contents
	Slide 15: Problems in Current Expert Offloading
	Slide 16: Problems in Current Expert Offloading
	Slide 17: Problems in Current Expert Offloading
	Slide 18: Problems in Current Expert Offloading
	Slide 19: Contents
	Slide 20: fMoE Overview
	Slide 21: Expert Map & Expert Map Store
	Slide 22: Expert Map & Expert Map Store
	Slide 23: Expert Map Matcher
	Slide 24: Expert Map Matcher
	Slide 25: Matcher — Trajectory Similarity
	Slide 26: Matcher — Trajectory Similarity
	Slide 27: Matcher — Semantic Embedding Similarity
	Slide 28: Matcher — Semantic Embedding Similarity
	Slide 29: Expert Prefetching
	Slide 30: Cache Management
	Slide 31: Cache Management
	Slide 32: Expert Map Deduplication
	Slide 33: Expert Map Deduplication
	Slide 34: Contents
	Slide 35: Evaluation
	Slide 36: Evaluation
	Slide 37: Evaluation
	Slide 38: Evaluation
	Slide 39: Thanks!

