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Background

The growth rate of large model parameters far exceeds the current growth rate of GPU memory.
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According to the routing

Activate partial parameters.

possibility
top-k expert based possibility
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Background

For Token

Only a small fraction of parameters are required for 

inference on a single token.

For Sequence

A large number of tokens are routed to specific 

devices, increasing their memory pressure.
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For DeepSeekV3 

Token [1,7168]     Expert Parameter [2048,7168] & [4096,7168] 

The memory usage of Expert Parameters is equivalent to 6k tokens.（Without considering the buffer）

Device Memory

Extra Hot Expert Token OOM!

Host Memory

Good

Cold Expert Parameter

Hot Expert Parameter

Hot Expert Token Offload Cold Expert 
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2025/3/25 8

System Type Granularity MoE Offload Strategy

FlexGen [1] Dense - -

DeepSpeed Inference MoE Naive LRU Cache + Dependency Prefetch.

Mixtral-Offloading MoE Activation LRU Cache + Speculative Prediction.

BrainStorm [2] MoE Dataset LRU Cache + Model Count Prediction.

ProMoE [3] MoE Activation Training a predictor to prefetch experts based on predictions.

MoE-Infinity [4] MoE Iteration Request-level for Cache Iteration-level for prefetch(LFU).

[1] FlexGen: high-throughput generative inference of large language models with a single GPU. ICML23

[2] Brinstorm:Optimizing dynamic neural networks with brainstorm. OSDI 23

[3] MoE-Infinity: Offloading-Efficient MoE Model Serving. arxiv2024

[4] ProMoE: Fast MoE-based LLM Serving using Proactive Caching. arxiv2024
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DeepSpeed Inference [Naive]

⚫ Cache LRU used Expert

⚫ Prefetch Expert activated at last iteration[dependency]

BrainStorm



Related Work

2025/3/25 10

Stride Prefetching with Neuron Predictor Chunked and Reorder prefetch shedule to overlap prefetch

ProMoE



Related Work (MoE Infinity)
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...

...

...

...

...

Expert

layer

Iteration level EMC

...

...
Request level EMC

Expert

layer... ...

1、Maintain multi-level data structure EMC

2、Cache router results

3、Prefetch and Cache Expert Based EMC
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Related Work (MoE Infinity)

Prefetch

① Find prior matched EAMs From EAM Collection

② Compute activation probability for each expert

③ Adjusts the value in each cell through the formula (1 − (i − l)/L) [1]

[1] where i is the future layer ID, l is the current layer ID and L is the layer number.

0.45>0.4 so E[3,2] prefeteched first than E[4,2]
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Related Work (MoE Infinity)

Catching schedule

Reserve a portion of the slots for prefetching.

Replace the lowest priority slots by the request-level EAM

Prefetching Schedule

1 2

0 3

0 3

request level EAM

Cache the highest priority expert initially by the request-level EAM

Risk!

Global Hot ≠ Local Hot
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Problems in Current Expert Offloading

❑ Existing expert offloading solutions prefetch experts using inefficient guide data

❖ Naive/Model level offloading solutions rely on coarse-grained expert patterns(e.g., 

dataset level), but “global hot” doesn’t equal to “local hot”!

(iteration level)

(dataset level)



2025/3/25 16

Problems in Current Expert Offloading

❑ Existing expert offloading solutions prefetch experts using inefficient guide data

❖ Naive/Model level offloading solutions rely on coarse-grained expert patterns(e.g., 

dataset level), but “global hot” doesn’t equal to “local hot”!

❖ Iteration level offloading solutions like MoE-Infinity only record expert hit counts, 

diminish the contained possibility information assigned to each expert by gate

0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0 0 0 1 0 0 1 0

Router Possibility Hit Count
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Problems in Current Expert Offloading

❑ Existing expert offloading solutions prefetch experts using inefficient guide data

❑ Ignorance of input prompts’ heterogeneity

❖ To overlap model inference with expert transmission(CPU → GPU), existing offloading 
methods will prefetch 𝒍 + 𝒅 layer’s expert parameter at layer 𝒍, 𝑑 is the prefetch 
distance

…

Layer 𝑙 + 1Layer 𝑙 Layer 𝑙 + 𝑑

Prefetch
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Problems in Current Expert Offloading

❑ Existing expert offloading solutions prefetch experts using inefficient guide data

❑ Ignorance of input prompts’ heterogeneity

❖ To overlap model inference with expert transmission(CPU → GPU), existing offloading 
methods will prefetch 𝒍 + 𝒅 layer’s expert parameter at layer 𝒍, 𝑑 is the prefetch 
distance

❖ For layers ∈ [1, 𝑑] that don’t have predecessor, existing methods (e.g., MoE-Infinity) 
prefetches the most popular exports from history, ignoring the unique semantic 
information of input prompts
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fMoE Overview

❑ Track fine-grained iteration-level expert activation information (Moti.1) 

❖  Expert Map Store

❑ Use semantic/trajectory info of current batch to match best expert map (Moti.2)

❖  Semantic/Trajectory Expert Map Matcher

❑ Expert prefetching guided by matched expert map

❑ Cache management & Expert map deduplication
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Expert Map & Expert Map Store 

❑ Expert Map

❖ Data structure that tracks expert activation possibility (router result) in each model 
layer 𝑙 at iteration level 𝑖

❖ Recording every iteration’s expert activation possibility makes it fine-grained and      
lossless 

abb. full
i iteration
L layer num
J Expert num in layer
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Expert Map & Expert Map Store 

❑ Expert Map

❖ Data structure that tracks expert activation possibility (router result) in each model 
layer 𝑙 at iteration level 𝑖

❖ Recording every iteration’s expert activation possibility makes it fine-grained and      
lossless

❑ Expert Map Store

❖ Dynamically keeps the most useful and unique expert maps for real-time queries 

during inference by deduplication (later) 
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Expert Map Matcher

❑ When a request prompt arrives, Expert map matcher searches the expert map   
store for appropriate expert maps to guide expert prefetching before inference

❑ Expert map matcher works in two scenarios divided by prefetch distance 𝑑
❖  for layer 𝑑 + 1, 𝐿 , how to efficiently choose the expert map?

▪ Solution: Trajectory Similarity
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Expert Map Matcher

❑ When a request prompt arrives, Expert map matcher searches the expert map   
store for appropriate expert maps to guide expert prefetching before inference

❑ Expert map matcher works in two scenarios divided by prefetch distance 𝑑
❖  for layer 𝑑 + 1, 𝐿 , how to efficiently choose the expert map?

▪ Solution: Trajectory Similarity

❖ for layer 1, 𝑑 , how to choose the expert map without sufficient distance?

▪ Solution: Semantic Embedding Similarity
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Matcher — Trajectory Similarity

❑ Trajectory Similarity

❖ Record (𝑙 − 1) layers expert activation probabilities (router result) as trajectories to 
search expert map for 𝑙 + 𝑑 layer

❖ Given trajectories 𝑚𝑎𝑝𝑛𝑒𝑤 ∈ ℝ𝐵 × 𝑙−1 𝐽 and historical expert maps 𝑚𝑎𝑝𝑜𝑙𝑑 ∈ ℝ𝐶 × 𝑙−1 𝐽 , 
compute pairwise cosine similarity:

abb. full
B batch size
C map store capacity
x one prompt
y one history iter
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Matcher — Trajectory Similarity

❑ Trajectory Similarity

❖ Record (𝑙 − 1) layers expert activation probabilities (router result) as trajectories to 
search expert map for 𝑙 + 𝑑 layer

❖ Given trajectories 𝑚𝑎𝑝𝑛𝑒𝑤 ∈ ℝ𝐵 × 𝑙−1 𝐽 and historical expert maps 𝑚𝑎𝑝𝑜𝑙𝑑 ∈ ℝ𝐶 × 𝑙−1 𝐽 , 
compute pairwise cosine similarity:

❑ Matching Method

❖ Select historical iteration 𝑦 with the highest similarity, use 𝑃𝑙+𝑑
𝑦

∈ 𝑚𝑎𝑝𝑦
𝑜𝑙𝑑 to guide the 

expert prefetching for target layer 𝑙 + 𝑑 

abb. full
B batch size
C map store capacity
x one prompt
y one history iter



2025/3/25 27

Matcher — Semantic Embedding Similarity

❑ Semantic Embedding Similarity

❖ Record input layer’s embedding as semantic input embedding to search expert map 
for [𝟏, 𝒅] layers both in collecting expert(historical) maps and inference(new)

❖ Given embedding 𝑠𝑒𝑚𝑛𝑒𝑤 ∈ ℝ𝐵×ℎ and historical embedding collection 𝑠𝑒𝑚𝑜𝑙𝑑 ∈ ℝ𝐶 × ℎ , 
compute pairwise cosine similarity:

abb. full
B batch size
C map store capacity
x one prompt
y one history iter
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Matcher — Semantic Embedding Similarity

❑ Semantic Embedding Similarity

❖ Record input layer’s embedding as semantic input embedding to search expert map 
for [𝟏, 𝒅] layers both in collecting expert(historical) maps and inference(new)

❖ Given embedding 𝑠𝑒𝑚𝑛𝑒𝑤 ∈ ℝ𝐵×ℎ and historical embedding collection 𝑠𝑒𝑚𝑜𝑙𝑑 ∈ ℝ𝐶 × ℎ , 
compute pairwise cosine similarity:

❑ Matching Method

❖ Select historical iteration 𝑦 with the highest similarity, use {𝑃1
𝑦

, … , 𝑃𝑑
(𝑦)

}  ∈ 𝑚𝑎𝑝𝑦
𝑜𝑙𝑑 to 

guide the expert prefetching for target layer [1, 𝑑]

abb. full
B batch size
C map store capacity
x one prompt
y one history iter
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Expert Prefetching

❑ Expert Map Guided Prefetching

❖ Select experts that have the highest probability score from the expert map of one 
layer

❖ If the similarity score from map matcher is high, prefetch less experts(but no less than 
TopK), if similarity score is low, prefetch more experts. Practical number is controlled by 
a threshold 𝛿𝑙.
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Cache Management

❑ Cache Management — Latency 

❖ For prefetching experts to cache, prioritize experts that have higher probability and are 
closer to the current layer :
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Cache Management

❑ Cache Management — Latency 

❖ For prefetching experts to cache, prioritize experts that have higher probability and are 
closer to the current layer :

❖ For evicting when cache is full, prioritize experts that have lower probability and are less 

frequently hit:
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Expert Map Deduplication

❑ Expert Map Deduplication — Memory

❖ Compute the pairwise redundancy score 𝑅𝐷𝑌𝑥,𝑦 to determine which old iterations to 
drop, update the old one with the expert map from new iteration
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Expert Map Deduplication

❑ Expert Map Deduplication — Memory

❖ Compute the pairwise redundancy score 𝑅𝐷𝑌𝑥,𝑦 to determine which old iterations to 
drop, update the old one with the expert map from new iteration

❖ 50K expert maps take 200MB CPU memory which is considerably memory efficient
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Evaluation
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Hardware

⚫ 6 × NVIDIA RTX 3090 (24GB memory) 

⚫ Interconnect: NVlink(NVBridge) Host: PCIe 4.0 (32GB/s)

⚫ 32 AMD Ryzen Threadripper PRO 3955 with WX480 GB CPU memory

Model

⚫ Mixtral-8×7B

⚫ Qwen1.5-MoE (8 × 2.7 B)

⚫ Phi-3.5-MoE (16×3.8 B)
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Evaluation

Online Serving

Offline Serving  
[7:3]

TTFT  TPOT  Expert Hit Rate 
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Evaluation

Ablation Study Sensitive Analysis

Mean traj. \ Sem. scores 
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Evaluation

Different Model with different Expert number 
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