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1.1. Fire-Flyer File System

The 3FS is a distributed file system designed for AI workloads.

Targeted Workloads:
• Data Preparation
• Dataloaders
• Checkpointing
• KV Cache
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1.1. Fire-Flyer File System

The final aggregate read throughput reached approximately 6.6 TiB/s with
180 storage nodes.
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1.1. Fire-Flyer File System

Node Configuration:
• 200Gbps InfiniBand NICs × 2
• 14TiB SSDs PCIe 4.0x4 × 16

The 3FS achieves 75% of the ideal read throughput with 180 storage nodes.

The final aggregate read throughput reached approximately 6.6 TiB/s.
Each SSD delivers an average bandwidth of 2.347 GiB/s.

Bandwidth Reference
• RDMA bandwidth for each SSD: 3.125GiB/s
• NVMe read throughput: 6.33GiB/s (SEQ), 3.78GiB/s(RND)
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1.2. Diverse Workloads

The 3FS is a distributed file system designed for AI workloads.

Workloads R/W Descriptions
Data Preparation Mixed R/W 3.66 TiB/min sort throughput with 25 nodes
Dataloaders Read approximately 6.6 TiB/s with 180 nodes
Checkpointing Write estimated 1.63 TiB/s with 180 nodes¹
KV Cache Mixed R/W up to 40 GiB/s read throughput

The 3FS is high-performance and scalable.
• Use disaggregated chunk servers for data.
• Use distributed key-value store for metadata.

¹estimated based on read throughput
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1.3. System Architecture

The components are all connected via RDMA.

Components
• Client
• Metadata Service
• Storage Service
• Cluster Manager

Key Points: disaggregated chunk servers
1. Client can get chunk/replica location using metadata.
2. Client can read data from any chunk storage.
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2.1. Overview

The data chunk service needs to provide load balance and data consistency.

Load Balance:
• Chunking and striping
• Balanced chain table

Data Consistency:
• Use CRAQ (chain replication) to replicate chunks
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2.2. Data Write Pipeline

Data write can be divided into three steps.

Step 1: chunking

Files are divided into equally sized chunks.
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2.2. Data Write Pipeline

Data write can be divided into three steps.

Step 1: chunking

Files are divided into equally sized chunks.

Step 2: striping

Chunks stripe across multiple chains.
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2.2. Data Write Pipeline

Data write can be divided into three steps.

Step 1: chunking

Files are divided into equally sized chunks.

Step 2: striping

Chunks stripe across multiple chains.

Step 3: replicating

Chunks are replicated using CRAQ (3 replicas).
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2.3. Data Replication

Comparison between two replication methods:

Leader-Based:
The leader will forward chunks to followers.
• ❌ Read needs the leader for replica info.
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2.3. Data Replication

Comparison between two replication methods:

Leader-Based:
The leader will forward chunks to followers.
• ❌ Read needs the leader for replica info.

CRAQ: Chain Replication with Apportioned Queries.
Chunks are replicated over a chain of storage targets.
• ✅ Chunks can be read from any storage target.

CRAQ can save one request to the leader!
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2.3. Data Replication

The CRAQ is read-friendly.

Failed Write Read

Leader-based leader ❌ ❌

Leader-based other ✅ ✅

CRAQ head ❌ ✅

CRAQ other ❌ ✅
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2.4. Load Balance during Recovery

The chain consists of multiple storage targets.

Chain Table Example
• 6 SSDs (A, B, C, D, E, F),
• 5 targets in each SSD (1, 2, 3, 4, 5),
• 10 chains,
• 3 replicas.
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2.4. Load Balance during Recovery

The chain consists of multiple storage targets.

Chain Table Example
• 6 SSDs (A, B, C, D, E, F),
• 5 targets in each SSD (1, 2, 3, 4, 5),
• 10 chains (different colors),
• 3 replicas.

Each SSD will handle 1/6 requests evenly.
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2.4. Load Balance during Recovery

For CRAQ, chunks remain readable if a target is down.

How about when SSD A is broken ?

Read requests to SSD A will be redirected evenly to
SSD B and C.

The load of SSD B and C will be increased by 50%.
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2.4. Load Balance during Recovery

The 3FS uses a special chain table to achieve balanced traffic during recovery.

Balanced Chain Table

* The target order within SSD is adjusted for a clearer chain view.

Each SSD will handle requests evenly before failure.
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2.4. Load Balance during Recovery

The 3FS uses a special chain table to achieve balanced traffic during recovery.

Balanced Chain Table

* The target order within SSD is adjusted for a clearer chain view.

The chains that include SSD A are all marked in blue.

The load on remaining SSDs will remain balanced,
increasing by only 20%.
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2.5. CRAQ based Chunk Storage

The 3FS use the CRAQ as replication method of chunk storage which is more
friendly on read workloads.

Pros.
• The chunks are readable when any node is down.
• The CRAQ can avoid the bottleneck of leader’s network.
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2.5. CRAQ based Chunk Storage

The 3FS use the CRAQ as replication method of chunk storage which is more
friendly on read workloads.

Pros.
• The chunks are readable when any node is down.
• The CRAQ can avoid the bottleneck of leader’s network.

Cons.
• Chunk servers use local file system to manage SSDs.
• The write throughput may be much lower than other design.
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3.1. Metadata Layout

The metadata is stored in FoundationDB.

Tree layout
The path '/a/b/foo.txt' will be resolved as follows:
1. find '/a' by key = 'DENT'+0+'a'.
2. find '/a/b' by key = 'DENT'+1+'b'.
3. find '/a/b/foo.txt' by key = 'DENT'+2+'foo.txt'.
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3.1. Metadata Layout

The metadata is stored in FoundationDB.

Inode Attributes: permissions, file size, dir layout, …
The inode attributes can be found using ID.
• find metadata of foo.txt by key = 'INOD'+4

The metadata design of 3FS is simple and practical based on FoundationDB.
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3.2. Metadata Design

The metadata design of 3FS is simple and practical based on FoundationDB.

Pros.
• Using inode id as the key can be well adapted with FUSE.
• The little-endian byte order of inode ids provides better load balance.
• The FoundationDB can support SSI, so it’s easy to implement the rename.
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3.2. Metadata Design

The metadata design of 3FS is simple and practical based on FoundationDB.

Pros.
• Using inode id as the key can be well adapted with FUSE.
• The little-endian byte order of inode ids provides better load balance.
• The FoundationDB can support SSI, so it’s easy to implement the rename.

Cons.
• The inodes within a directory can not be listed by range query because the

directory entry only contains the inode id.
• Some operations (e.g., create/unlink) may use cross-shard transactions and

introduce high overheads.
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4. Conclusion
The 3FS is a distributed file system designed for AI workloads.

Workloads R/W Descriptions
Data Preparation Mixed R/W 3.66 TiB/min sort throughput with 25 nodes
Dataloaders Read approximately 6.6 TiB/s with 180 nodes
Checkpointing Write estimated 4.9 TiB/s with 180 nodes¹
KV Cache Mixed R/W up to 40 GiB/s read throughput

The 3FS is high-performance and scalable.
• Use decentralized chunk servers for data.
• Use distributed key-value store for metadata.

¹estimated based on read throughput
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