
Fire-Flyer File System (3FS)
A high-performance distributed file system designed to address the

challenges of AI training and inference workloads
DeepSeek-AI

Presenter: Chongzhuo Yang, Jiahao Li

1. Overview 1
1.1. Fire-Flyer File System 2
1.2. Diverse Workloads 4
1.3. System Architecture 5
2. Chunk Storage 6
3. Metadata Service 14
4. Conclusion 17

1.1. Fire-Flyer File System

The 3FS is a distributed file system designed for AI workloads.

Targeted Workloads:
• Data Preparation
• Dataloaders
• Checkpointing
• KV Cache

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 2 / 18

1.1. Fire-Flyer File System

The final aggregate read throughput reached approximately 6.6 TiB/s with
180 storage nodes.

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 3 / 18

1.1. Fire-Flyer File System

Node Configuration:
• 200Gbps InfiniBand NICs × 2
• 14TiB SSDs PCIe 4.0x4 × 16

The 3FS achieves 75% of the ideal read throughput with 180 storage nodes.

The final aggregate read throughput reached approximately 6.6 TiB/s.
Each SSD delivers an average bandwidth of 2.347 GiB/s.

Bandwidth Reference
• RDMA bandwidth for each SSD: 3.125GiB/s
• NVMe read throughput: 6.33GiB/s (SEQ), 3.78GiB/s(RND)

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 3 / 18

1.2. Diverse Workloads

The 3FS is a distributed file system designed for AI workloads.

Workloads R/W Descriptions
Data Preparation Mixed R/W 3.66 TiB/min sort throughput with 25 nodes
Dataloaders Read approximately 6.6 TiB/s with 180 nodes
Checkpointing Write estimated 1.63 TiB/s with 180 nodes¹
KV Cache Mixed R/W up to 40 GiB/s read throughput

The 3FS is high-performance and scalable.
• Use disaggregated chunk servers for data.
• Use distributed key-value store for metadata.

¹estimated based on read throughput
DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 4 / 18

1.3. System Architecture

The components are all connected via RDMA.

Components
• Client
• Metadata Service
• Storage Service
• Cluster Manager

Key Points: disaggregated chunk servers
1. Client can get chunk/replica location using metadata.
2. Client can read data from any chunk storage.

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 5 / 18

1. Overview 1
2. Chunk Storage 6
2.1. Overview 7
2.2. Data Write Pipeline 8
2.3. Data Replication 9
2.4. Load Balance during Recovery 11
2.5. CRAQ based Chunk Storage 13
3. Metadata Service 14
4. Conclusion 17

2.1. Overview

The data chunk service needs to provide load balance and data consistency.

Load Balance:
• Chunking and striping
• Balanced chain table

Data Consistency:
• Use CRAQ (chain replication) to replicate chunks

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 7 / 18

2.2. Data Write Pipeline

Data write can be divided into three steps.

Step 1: chunking

Files are divided into equally sized chunks.

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 8 / 18

2.2. Data Write Pipeline

Data write can be divided into three steps.

Step 1: chunking

Files are divided into equally sized chunks.

Step 2: striping

Chunks stripe across multiple chains.

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 8 / 18

2.2. Data Write Pipeline

Data write can be divided into three steps.

Step 1: chunking

Files are divided into equally sized chunks.

Step 2: striping

Chunks stripe across multiple chains.

Step 3: replicating

Chunks are replicated using CRAQ (3 replicas).

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 8 / 18

2.3. Data Replication

Comparison between two replication methods:

Leader-Based:
The leader will forward chunks to followers.
• ❌ Read needs the leader for replica info.

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 9 / 18

2.3. Data Replication

Comparison between two replication methods:

Leader-Based:
The leader will forward chunks to followers.
• ❌ Read needs the leader for replica info.

CRAQ: Chain Replication with Apportioned Queries.
Chunks are replicated over a chain of storage targets.
• ✅ Chunks can be read from any storage target.

CRAQ can save one request to the leader!

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 9 / 18

2.3. Data Replication

The CRAQ is read-friendly.

Failed Write Read

Leader-based leader ❌ ❌

Leader-based other ✅ ✅

CRAQ head ❌ ✅

CRAQ other ❌ ✅

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 10 / 18

2.4. Load Balance during Recovery

The chain consists of multiple storage targets.

Chain Table Example
• 6 SSDs (A, B, C, D, E, F),
• 5 targets in each SSD (1, 2, 3, 4, 5),
• 10 chains,
• 3 replicas.

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 11 / 18

2.4. Load Balance during Recovery

The chain consists of multiple storage targets.

Chain Table Example
• 6 SSDs (A, B, C, D, E, F),
• 5 targets in each SSD (1, 2, 3, 4, 5),
• 10 chains (different colors),
• 3 replicas.

Each SSD will handle 1/6 requests evenly.

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 11 / 18

2.4. Load Balance during Recovery

For CRAQ, chunks remain readable if a target is down.

How about when SSD A is broken ?

Read requests to SSD A will be redirected evenly to
SSD B and C.

The load of SSD B and C will be increased by 50%.

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 11 / 18

2.4. Load Balance during Recovery

The 3FS uses a special chain table to achieve balanced traffic during recovery.

Balanced Chain Table

* The target order within SSD is adjusted for a clearer chain view.

Each SSD will handle requests evenly before failure.

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 12 / 18

2.4. Load Balance during Recovery

The 3FS uses a special chain table to achieve balanced traffic during recovery.

Balanced Chain Table

* The target order within SSD is adjusted for a clearer chain view.

The chains that include SSD A are all marked in blue.

The load on remaining SSDs will remain balanced,
increasing by only 20%.

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 12 / 18

2.5. CRAQ based Chunk Storage

The 3FS use the CRAQ as replication method of chunk storage which is more
friendly on read workloads.

Pros.
• The chunks are readable when any node is down.
• The CRAQ can avoid the bottleneck of leader’s network.

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 13 / 18

2.5. CRAQ based Chunk Storage

The 3FS use the CRAQ as replication method of chunk storage which is more
friendly on read workloads.

Pros.
• The chunks are readable when any node is down.
• The CRAQ can avoid the bottleneck of leader’s network.

Cons.
• Chunk servers use local file system to manage SSDs.
• The write throughput may be much lower than other design.

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 13 / 18

1. Overview 1
2. Chunk Storage 6
3. Metadata Service 14
3.1. Metadata Layout 15
3.2. Metadata Design 16
4. Conclusion 17

3.1. Metadata Layout

The metadata is stored in FoundationDB.

Tree layout
The path '/a/b/foo.txt' will be resolved as follows:
1. find '/a' by key = 'DENT'+0+'a'.
2. find '/a/b' by key = 'DENT'+1+'b'.
3. find '/a/b/foo.txt' by key = 'DENT'+2+'foo.txt'.

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 15 / 18

3.1. Metadata Layout

The metadata is stored in FoundationDB.

Inode Attributes: permissions, file size, dir layout, …
The inode attributes can be found using ID.
• find metadata of foo.txt by key = 'INOD'+4

The metadata design of 3FS is simple and practical based on FoundationDB.

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 15 / 18

3.2. Metadata Design

The metadata design of 3FS is simple and practical based on FoundationDB.

Pros.
• Using inode id as the key can be well adapted with FUSE.
• The little-endian byte order of inode ids provides better load balance.
• The FoundationDB can support SSI, so it’s easy to implement the rename.

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 16 / 18

3.2. Metadata Design

The metadata design of 3FS is simple and practical based on FoundationDB.

Pros.
• Using inode id as the key can be well adapted with FUSE.
• The little-endian byte order of inode ids provides better load balance.
• The FoundationDB can support SSI, so it’s easy to implement the rename.

Cons.
• The inodes within a directory can not be listed by range query because the

directory entry only contains the inode id.
• Some operations (e.g., create/unlink) may use cross-shard transactions and

introduce high overheads.

DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 16 / 18

1. Overview 1
2. Chunk Storage 6
3. Metadata Service 14
4. Conclusion 17

4. Conclusion
The 3FS is a distributed file system designed for AI workloads.

Workloads R/W Descriptions
Data Preparation Mixed R/W 3.66 TiB/min sort throughput with 25 nodes
Dataloaders Read approximately 6.6 TiB/s with 180 nodes
Checkpointing Write estimated 4.9 TiB/s with 180 nodes¹
KV Cache Mixed R/W up to 40 GiB/s read throughput

The 3FS is high-performance and scalable.
• Use decentralized chunk servers for data.
• Use distributed key-value store for metadata.

¹estimated based on read throughput
DeepSeek-AI Fire-Flyer File System (3FS) Presenter: Chongzhuo Yang, Jiahao Li 18 / 18

Thanks

	Overview
	Fire-Flyer File System
	Diverse Workloads
	System Architecture

	Chunk Storage
	Overview
	Data Write Pipeline
	Data Replication
	Load Balance during Recovery
	CRAQ based Chunk Storage

	Metadata Service
	Metadata Layout
	Metadata Design

	Conclusion

