DualPipe & Cross-Node All-to-All Communication

Mentor : HAIQUAN WANG ZEWEN JIN

Reporter: JIAHUI TAN

- JIAHUI TAN
- School : UESTC

(University of Electronic Science and Technology of China)

- Grade : junior year
- Major : software engineering
- Email : <u>2022090907024@std.uestc.edu.cn</u>
- Finding graduate school opportunities

DualPipe & Cross-Node All-to-All Communication

- Background
- DualPipe
 - Insight & Motivation
 - Design & Implementation
 - Comparison
- All-to-All
 - Insight & Motivation
 - Design & Implementation

• EP

an inefficient computation-to-communication ratio of approximately 1:1

• **PP**

♦ Naive Pipeline Parallelism

• **PP**

♦ 1F1B

Device 3				F0	B0	F1	B1	F2	B2	F3	B3				UPDATE	
Device 2			F0	F1	F2	B0	F3	B1		B2		B3			UPDATE	
Device 1		F0	F1	F2	F3		B0		B1		B2		B3			
Device 0	F0	F1	F2	F3		,		В0		B1		B2		B3	UPDATE	
				TIME												
	Forward chunk Backward chunk															

• **PP**

♦ Zero Bubble PP

Device 1	1	2	3	4				1	1	5	2	2	6	3	3	7	4	4	8	5	5	6	6	7	7	8	8	
Device 2		1	2	3			1	4	2	1	5	3	2	6	4	3	7	5	4	8	6	5	7	6	8	7	8	
Device 3			1	2		1	3	2	4	3	1	5	4	2	6	5	3	7	6	4	8	7	5	8	6	7	8	
Device 4				1	1	2	2	3	3	4	4	1	5	5	2	6	6	3	7	7	4	8	8	5	6	7	8	
Time	\rightarrow																											
	F					В					W					Optimizer step												

DualPipe Insight & Motivation

 heavy communication overhead introduced by expert parallelism

 overlap the computation and communication phases across forward and backward processes

reduce the pipeline bubbles (improve GPU utilization)

 overlap the computation and communication within a pair of individual forward and backward chunks

laye	er0	layer1	layer2	layer3	layer4	layer5	layer6	layer7
gpı	u0	gpu1	gpu2	gpu3	gpu4	gpu5	gpu6	gpu7
laye	er7	layer6	layer5	layer4	layer3	layer2	layer1	layer0

 \triangle Forward chunk

Backward chunk

Comparison

Method	Bubble	Parameter	Activation
1F1B	(PP-1)(F+B)	$1 \times$	PP
ZB1P	(PP-1)(F+B-2W)	1×	PP
DualPipe (Ours)	$(\frac{PP}{2}-1)(F\&B+B-3W)$	$2\times$	PP + 1

DualPipe significantly reduces the pipeline bubbles while only increasing the peak activation memory by 1 PP times

Link

DualPipeV: <u>https://github.com/deepseek-ai/DualPipe</u>

Nvidia: <u>https://mp.weixin.qq.com/s/vCy6ga5EA2dzvFoL8p6QjA</u>

All-to-All Insight & Motivation

- To ensure sufficient computational performance for DualPipe
 - Utilizing IB and NVLink bandwidths
 - Conserving Streaming Multiprocessors (SMs) dedicated to communication (20 SMs)

all-to-all Design & Implementation

• cross-node GPUs are fully interconnected with IB

- intra-node communications are handled via NVLink
- NVLink 160 GB/s, IB (50 GB/s)

all-to-all Design & Implementation

• For each token

- Be transmitted via IB to the GPUs with the same in-node index on its target nodes.
- Be forwarded via NVLink to specific GPUs that host their target experts
- Be dispatched to at most 4 nodes

Naive All2All

deepEP all to all

THANKS FOR YOUR LISTENING

Mentor : HAIQUAN WANG ZEWEN JIN

Reporter : JIAHUI TAN

2025.3.11