
 Yinmin Zhong1 Shengyu Liu1 Junda Chen2 Jianbo Hu1 Yibo Zhu3 Xuanzhe Liu1
Xin Jin1 Hao Zhang2

1Peking University 2UC San Diego 3StepFun

Presented by Mingxuan Liu, PhD student at Northwestern Polytechnical University
in 2024 Fall Reading Group Meeting at USTC

2025-1-7 1

Outline
• Background
• Motivations

• (Common) Challenges
• Existing Solutions
• Design Intuitions (to optimize on Existing Solutions)
• (Special) Challenges in Optimization beyond Existing Solutions

• Tradeoff Analysis
• Method

• Placement for High Node-Affinity Cluster
• Placement for Low Node-Affinity Cluster
• Online scheduling

• Implementation
• Evaluation
• Discussion & Summary

2025-1-7 2

Outline
• Background
• Motivations

• (Common) Challenges
• Existing Solutions
• Design Intuitions (to optimize on Existing Solutions)
• (Special) Challenges in Optimization beyond Existing Solutions

• Tradeoff Analysis
• Method

• Placement for High Node-Affinity Cluster
• Placement for Low Node-Affinity Cluster
• Online scheduling

• Implementation
• Evaluation
• Discussion & Summary

2025-1-7 3

Background: LLM Inference

2025-1-7 4

Background: LLM Inference
• LLM Inference: 1 prefill step + N decode step
• Constraints (X, Y, M are defined according to the scenario):

• TTFT (Time to first token) < X seconds
• TPOT (Time per output token): During the decode phase, at least M tokens must be returned

within Y seconds.

2025-1-7 5

Request Router
LLM Serving Instance

(Single-node multi-GPU / Multi-node multi-GPU)Local Request Queue

LLM Requests

GPU Cluster

LLM
Request

Requests Dispatching Requests Queuing
Prefill

Return Token 1
Return
Token 2

Return
Token 3

Token N
EOF

Decode
Time-To-First-Token (TTFT)

......

Background: Prefill in LLM Inference
• Prefill: Generate KV cache & first token -> Compute-bound

2025-1-7 6

Background: Decoding in LLM Inference
• Decode: Fetch KV cache & generate next token

2025-1-7 7

xx

Fetch From HBM

Background: Prefill vs Decode

2025-1-7 8

Prefill: generate KV cache
• Generate KV Cache
• Compute-bound*

Decode: generate next token
• Fetch KV Cache from HBM
• Memory-bound • Different apps have various latency requirements*

* Set the SLOs empirically based on their service target because there exists no
available SLO settings for these applications as far as we know

* For a 13B parameter LLM, processing a
single prompt of 512 tokens can fully engage
an A100 GPU.

Background: Batching in LLM Serving

• However, batching the two phases make them share the same batching strategy
• Sharing GPUs cause competition between prefill and decoding, which may hurt

both TTFT and TPOT
2025-1-7 9

• is the j-th token of the i-th request
• batch size = 4 in Figure
• Shaded: input tokens received from clients
• Unshaded: generated by Execution Engine

Chunked
prefill
Schedule

ji ,x

Decoding

Prefill

• However, batching the two phases make them share the same parallel strategy
2025-1-7 10

Background: Model Parallelism

GPU0

GPU1

TP=2 PP=2

Intra-op
Parallelism

Inter-op
Parallelism

Outline
• Background
• Motivations

• (Common) Challenges
• Existing Solutions
• Design Intuitions (to optimize on Existing Solutions)
• (Special) Challenges in Optimization beyond Existing Solutions

• Tradeoff Analysis
• Method

• Placement for High Node-Affinity Cluster
• Placement for Low Node-Affinity Cluster
• Online scheduling

• Implementation
• Evaluation
• Discussion & Summary

2025-1-7 11

Common Challenges

2025-1-7 12

Common Challenges Existing Solutions Design Intuitions Special Challenges

• Different apps have various latency requirements
• Title: DistServe: Disaggregating Prefill and Decoding for Goodput-

optimized Large Language Model Serving
• "Goodput-optimized" in Title: To be precise, Per-GPU goodput,

defined as the maximum request rate (RPS) that can be served
adhering to the SLO attainment goal (say, 90%) for each GPU.

• How to do?

Problem 1: Prefill-Decoding Interference
• Batch execution time when serving a 13B LLM as batch size increases.
• Batching prefill and decoding phase together hurt both TTFT and TPOT.

2025-1-7 13

Common Challenges Existing Solutions Design Intuitions Special Challenges

Decoding

Prefill

Problem 2: Resource & Parallelism Coupling

• Batching the two phases makes them share the same parallel strategy (TP=xx, PP=xx...)
• Coupling leads to overprovision resources to meet the more demanding SLO

2025-1-7 14

What if Batching strategy can't reduce these times to SLO?

Common Challenges Existing Solutions Design Intuitions Special Challenges

Opportunity: Disaggregting Prefill and Decoding
• Prefill-Decoding interference is eliminated
• The term instance:

• a unit of resources that manages exactly one
complete copy of model weights

• One instance can correspond to many GPUs when
model parallelism (TP or PP) is applied.

• Repliaction: When disaggregate Prefill/Decoding
phase to different GPUs, each instance manages
its copy of the model weights, resulting in prefill
instances and decoding instances.

• M Prefill instances : N Decode instances (M >= N)
• Naturally divide the SLO satisfaction

problem into two optimizations:
• Prefill instance optimizes for TTFT.
• Decoding instance optimizes for TPOT.
• Choose the most suitable parallelism and

resource allocation for Prefill/Decoding phase.

2025-1-7 15

Common Challenges Existing Solutions Design Intuitions Special Challenges

One instance with 4 GPUS => (TP, PP) = (4, 1) or (1, 4) or (2, 2)

M Prefill : N Decode instances (batching more decodeing jobs)

Opportunity: Disaggregting Prefill and Decoding

2025-1-7 16

Common Challenges Existing Solutions Design Intuitions Special Challenges

Disaggregting Prefill and Decoding Adding 2 GPUs
Compare the maximum per-GPU goodput

× 3 GPU = 5.6 rps

Challenges of Disaggregation
• C1: Communication overhead for KV-Cache transmission
• C2: The optimization target, per-GPU goodput, is difficult to

optimize:
• the workload pattern
• SLO requirements
• parallelism strategies
• resource allocation
• network bandwidth
• ...

The author calls this challenge the Placement problem

2025-1-7 17

Common Challenges Existing Solutions Design Intuitions Special Challenges

Outline
• Background
• Motivations

• (Common) Challenges
• Existing Solutions
• Design Intuitions (to optimize on Existing Solutions)
• (Special) Challenges in Optimization beyond Existing Solutions

• Tradeoff Analysis
• Method

• Placement for High Node-Affinity Cluster
• Placement for Low Node-Affinity Cluster
• Online scheduling

• Implementation
• Evaluation
• Discussion & Summary

2025-1-7 18

Tradeoff Analysis: Setup
• Analysis for Prefill Instance (Prefill-only)

• 1) Batching strategy: 13B Model + 1 A100-80G
• 2) Parallelism plan (TP/PP): 66B Model + 2 A100-80G (Why select this

setting?)
• Analysis for Decoding Instance (Decoding-only)

• 1) Batching strategy: 13B Model + 1 A100-80G (Same as the Prefill)
• 2) Parallelism plan (TP/PP): 13B Model + 1/2/4/8 A100-80G (Counter-

intuitive, because if the model can be placed on a single GPU, it is usually
not considered to use multiple GPUs in parallel.)

• Some assumptions:
• All prompts are of equal length
• All GPUs on one machine
• Which LLM Engine to test? Not vLLM

2025-1-7 19

Prefill/Decoding Instance: Batching strategy
• Profile Throughput for Prefill/Decoding phases with different batch sizes and input lengths
• Serving an LLM with 13B parameters on 1 A100-80G GPU.

2025-1-7 20

• The optimal batch size expected by prefill and decoding is different:
• Prefill: Throughput growth plateaus with larger batch sizes due to compute-bound

limitations. It is necessary to profile the specific LLM and GPUs to identify a critical input
length threshold L_m.

• Decode: Throughput increases significantly with larger batch sizes due to memory-bound
limitations. Disaggregation enables multiple prefill instances to a single decoding instance,
allows for accumulating a larger batch size on dedicated GPUs.

Prefill Instance: Parallelism Plan (1)
• To simplify, assume uniform input length = 512 and a Poisson arrival process.
• Disaggregation enables the prefill phase to function analogously to an M/D/1 queue*

• M: Requests follow a Poisson distribution, meaning arrivals are independent and equally likely
within a time unit.

• D: All requests have the same prefill processing time.
• 1: Assume only one GPU is available.
• R: the Poisson arrival rate
• Avg_TTFT = the time a single request is processed + the time the request waits in the queue
 = the time a single request is processed + (the number of requests before this request
 * the time a single request is processed)

2025-1-7 21

• K: depends on the input length, model architecture,
communication bandwidth, and placement...

·

the number of
requests before
this request

PP = 2

TP = 2

the time the
slowest stage
takes

the request-level latency

the time a single
request is
processed

*Use queuing theory to verify the observation
(next slide). Since one request saturates the GPU,
schedule requests via FCFS without batching

Prefill Instance: Parallelism Plan (2)
• Profile Average TTFT when serving a 66B LLM (input length = 512, without batching)

using different parallelism on two A100 GPUs (TP=2 vs PP=2)
• Observation (use queuing theory to verify):

• When RPS is small, TP is more suitable. Since each request’s execution time (first term) is dominated.
• When RPS is large, PP is more suitable. Since the queue delay (second term) is dominated.
• TTFT is also influenced by the speedup coefficient K (1＜K＜TP=xx).

2025-1-7 22

PP = 2

TP = 2

each request’s execution time

the queue delay

Decoding Instance: Parallelism Plan
• As the decoding batch size continue to increase to approach the compute-bound, the

decoding computation begins to resemble the prefill phase.
• Profile Decoding phase latency and throughput when serving a 13B LLM with batch

size = 128 and input length = 256 under different parallel degrees (TP=xx vs PP=xx).
• Observation:

• We hope to see that increasing the number of GPUs can bring linear improvements. However, TP
cannot bring linearity to Lantecy or Thpt.

• Despite this, when the TPOT SLO is stringent, TP is essential to reduce TPOT to meet.
• PP can bring linearity to Thpt. This is of great value for optimizing Decoding.

2025-1-7 23

Practical Problems
• Variable prefill length.

• In real deployments, the lengths of requests are non-uniform. This can cause pipeline
bubbles for prefill instances applying PP.

• Develop a simple scheduling to reduce pipeline bubbles.

• Communication overhead.
• The KV cache size of a single 512-token request on OPT-66B is approximately 1.13GB.

Assuming an average arrival rate of 10 RPS, it needs to transfer 1.13GB×10=11.3GB data
per second—or equivalently 90Gbps bandwidth to render the overhead invisible.

• Many modern GPU clusters for LLMs, equipped with cross-node InfiniBand (e.g., 800 Gbps),
can effectively hide these communication overheads.

• If cross-node bandwidth is limited, DistServe relies on the commonly available intra-node
NVLINK, where the peak bandwidth between A100 GPUs is 600 GB/s, again rendering the
transmission overhead negligible.

• Solving the placement problem can reduce communication overhead.

2025-1-7 24

Outline
• Background
• Motivations

• (Common) Challenges
• Existing Solutions
• Design Intuitions (to optimize on Existing Solutions)
• (Special) Challenges in Optimization beyond Existing Solutions

• Tradeoff Analysis
• Method

• Placement for High Node-Affinity Cluster
• Placement for Low Node-Affinity Cluster
• Online scheduling

• Implementation
• Evaluation
• Discussion & Summary

2025-1-7 25

DistServe Overview
• Definition of Placement:

• 1) parallelism strategy for prefill/decoding instance
• 2) the number of each instance to deploy (repliactions)
• 3) how to place them onto the physical cluster
• Goal: find a placement that maximizes the per-gpu goodput

• Algorithm Sketch:
• Step 1: Use simulation to measure the goodput for all parallelism config.
• Step 2: Obtain the optimal parallelism config for Prefill/Decoding phase.
• Step 3: Use replication to match the overall traffic.

• Alg. 1: Placement for High Node-Affinity Cluster
• Assume nodes are connected with high bandwidth network, e.g., InfiniBand.
• The communication overhead between nodes is negligible. (We can deploy

prefill and decoding instances across any two nodes without constraints)
• Alg. 2: Placement for Low Node-Affinity Cluster

• Assume GPUs inside one node are connected with NVLINK.
• The communication overhead within the node is negligible. (Require the same

stage of prefill/decoding instances to be on the same node)
2025-1-7 26

Alg. 1 Placement for High Node-Affinity Cluster

• Algorithm Sketch:
• ① Enumerating the search space for the best_plm
• ② Use simulation and profiling to obtain the

optimal parallelism config
• ③ Use replication to match the overall traffic

• Simulator building*:
• Define Goodput Range: Start with a range of

possible goodput values (e.g., goodput = 5 means
RPS is between 0 and 5).

• Simulate Load: Send simulated requests at different
goodput (RPS) values to the prefill/decode instance,
using the current parallel strategy (e.g., TP=xx,
PP=xx), and measure P90 TTFT&TPOT.

• Compare with SLO: Compare the measured P90
TTFT&TPOT with the SLO. If TTFT&TPOT < SLO,
increase RPS; otherwise, decrease it.

• Binary Search for Optimal Goodput: Use binary
search to adjust the RPS bounds based on the
comparison, iteratively finding the final goodput.

2025-1-7 27

①

③

②

TP_Prefill=xx, PP_Prefill=xx

TP_Decode=xx, PP_Decode=xx

* How to build an accurate simulator, see Appendix A of the original article.

Alg. 2 Placement for Low Node-Affinity Cluster

2025-1-7 28

• Difference between Alg. 1:
• Add the constraint to require the

same stage of prefill/decoding
instances to be on the same node
(which can eliminate the
communication overhead)

• PP_Prefill = PP_Decode

KV Cache Transfer Activation Transfer

KV-Cache Transfer only happens between the same layer.

TP_Prefill=xx
TP_Decode=xx

PP=xx
①

③

②
one prefill
instance

one decode
instance

Online Scheduling Optimization

• Scheduling to reduce pipeline bubbles.
• For prefill, profile the model and GPU to figure out the shortest prompt

length L_m needed to saturate the GPU. Then schedule batches with a total
sequence length close to L_m.

• For decoding, set L_m as the largest batch size.
• Combat workload burstiness.

• Decoding instances fetch KV cache from prefill instances as needed, using
the GPU memory of prefill instances as a queuing buffer.

• Periodic replaning.
• A workload profiler monitors key parameters.
• If a workload pattern shift is detected, DistServe will trigger a rerun of the

placement algorithm based on recent historical data.

2025-1-7 29

Outline
• Background
• Motivations

• (Common) Challenges
• Existing Solutions
• Design Intuitions (to optimize on Existing Solutions)
• (Special) Challenges in Optimization beyond Existing Solutions

• Tradeoff Analysis
• Method

• Placement for High Node-Affinity Cluster
• Placement for Low Node-Affinity Cluster
• Online scheduling

• Implementation
• Evaluation
• Discussion & Summary

2025-1-7 30

Implementation

• a placement algorithm module (Python)
• implements the algorithm
• implements the simulator
• placement decision for a specific model & cluster

• a RESTful API frontend (Python)
• an OpenAI API-compatible interface

• an orchestration layer (Python)
• manages the prefill and decoding instances (parallel execution engine)
• responsible for request dispatching, KV cache transmission, and results delivery
• NCCL for cross-node GPU communication
• asynchronous CudaMemcpy for intra-node communication

• a parallel execution engine: 8.1K lines of C++/CUDA (similar to vLLM Engine)
• Each instance is powered by a parallel execution engine
• Ray actor to implement GPU workers that execute the LLM inference and manage the KV Cache
• Integrates many LLM optimizations: continuous batching, FlashAttention, PagedAttention

2025-1-7 31

Outline
• Background
• Motivations

• (Common) Challenges
• Existing Solutions
• Design Intuitions (to optimize on Existing Solutions)
• (Special) Challenges in Optimization beyond Existing Solutions

• Tradeoff Analysis
• Method

• Placement for High Node-Affinity Cluster
• Placement for Low Node-Affinity Cluster
• Online scheduling

• Implementation
• Evaluation
• Discussion & Summary

2025-1-7 32

Evaluation: Setup
• Test bed: 4 GPU server with {8 A100-80GB GPUs/NVLINK} connected with 25Gbps

cross-node network (Most experiments used one GPU Server and evaluate Algorithm 2)
• Model: OPT-13B/66B/175B
• Workloads: 3 apps with setting the SLOs empirically & All the datasets do not

include timestamps, generate request arrival times using Poisson distribution.

2025-1-7 33

• Metric: SLO Attainment
• Baseline:

• vLLM - supports continuous batching and paged-attention
• DeepSpeed-MII - supports chunked-prefill

Evaluation 1: End-to-end Experiments

• vLLM: Since vLLM only supports TP, we follow previous work to set TP equals 1, 4, 8 for
OPT 13B/66B/175B.

• DeepSpeed-MII: We set its TP the same as vLLM for OPT-13B and OPT-66B for a fair
comparison. DeepSpeed-MII does not support 175B.

2025-1-7 34

• The parallelism strategies chosen by DistServe in the end-to-end experiments.

Total 4×1+2×2 = 8 GPUs

Total 2×1+1×1 = 3 GPUs

Total 3×3+4×3 = 21 GPUs

Compare the maximum
per-GPU goodput
Ignore GPU cost/Model
Replication cost?

Evaluation 1: End-to-end Experiments
• Chatbot application with OPT models on the ShareGPT dataset.

• 1st row: SLO attainment of 90% (the vertical lines) to observe the maximum per-GPU goodput
• 2nd row: vary the SLO latency requirements to observe how the SLO attainment changes. ("We

fix the rate and then linearly scale the TTFT/TPOT latency requirements", RPS=?)

2025-1-7 35

Evaluation 1: End-to-end Experiments
• Code completion and summarization tasks with OPT-66B on HumanEval and LongBench

datasets, respectively.
• The results is similar to Chatbot application.

2025-1-7 36

Evaluation 1: End-to-end (99% SLO)

2025-1-7 37

• Similar to 90% SLO attainment

Evaluation 2: Latency Breakdown
• Divide the processing lifecycle of a request in DistServe into five stages: prefill queuing,

prefill execution, KV Cache transmission, decoding queuing, and decoding execution.
• Left: Latency breakdown with OPT-175B on ShareGPT dataset with DistServe (Alg. 2).
• Right: The CDF function of KV Cache transmission time for three OPT models (Alg. 2).

2025-1-7 38

Prefill.stage 0 Prefill.stage 1 Prefill.stage 2

Decode.stage0 Decode.stage1 Decode.stage2

Node 0 Node 1 Node 2

3 GPUs
TP=3

4 GPUs
TP=4

PP=3

• Baseline:
• vLLM: The default parallelism setting
• vLLM++: enumerates different parallelism strategies and chooses the best. (Simulations)
• DistServe-Low: the placement found by Alg. 2
• DistServe-High: the placement found by Alg. 1 which has fewer searching constraints and assumes

high cross-node bandwidth. (Simulations)
• OPT-66B on the ShareGPT dataset

2025-1-7 39

Evaluation 3: Ablation Studies

• Comparison of the SLO attainment reported
by the simulator and the real system.

Evaluation 4: Algorithm Running Time
• Alg. 1 (DistServe-Low) and Alg. 2 (DistServe-High) on an AWS m5d.metal instance (VM) as

the number of GPUs (N ×M) to a single instance (VM) increases.
• The execution time of "Dist-Low" becomes higher than that of "Dist-High":

• the search for parallelism strategies in "Dist-High" is independent and can be parallelized.
• For "Dist-Low", due to additional restrictions on deployment, we need to enumerate all the

possible intra-node parallelism combinations for prefill and decoding instances.

• Even so, the execution time of the algorithm is in minutes, and since it only needs to be
executed once before each redeployment, this overhead is acceptable.

2025-1-7 40

Outline
• Background
• Motivations

• (Common) Challenges
• Existing Solutions
• Design Intuitions (to optimize on Existing Solutions)
• (Special) Challenges in Optimization beyond Existing Solutions

• Tradeoff Analysis
• Method

• Placement for High Node-Affinity Cluster
• Placement for Low Node-Affinity Cluster
• Online scheduling

• Implementation
• Evaluation
• Discussion & Summary

2025-1-7 41

Discussion
• DistServe:

• Throughput-optimized scenarios.
• Resource-constrained scenarios.
• Long-context scenarios -> LoongServe@SOSP24

• My personal opinion on the advantages of PD disaggregation:
• 3-Level disaggregation. DistServe indicates Level 1 and Level 2.

• Level 1: Disaggregate P and D within one node (homogeneous devices) and intra-node
interconnect (e.g., both P and D on the same A800 node) without cluster-level modifications.

• Level 2: Disaggregate P and D across nodes (homogeneous devices) and different networks (e.g.,
P and D on separate A800 nodes) with efficient inter-cluster communication, such as RDMA.

• Level 3: Disaggregate P and D across heterogeneous devices and networks (e.g., P on an MI300
cluster, D on an H20 cluster) requiring significant cluster modifications and high-performance
inter-node communication.

• Resource asymmetry (Similar to the insights of Disaggregated Memory?)
• P clusters and D clusters can use different batching methods and optimal parallel configurations
• How to manage the KV Cache Transfering bewteen P instances and D instances?
• How to manage the workflow between P instances and D instances?

2025-1-7 42

Summary
• Pros

• A good explanation of "Why use a PD disaggregation architecture"
• Solved the conflict of TTFT and TPOT

• Cons
• Deals with the sub-problem of the PD disaggregation problem: how to find

the optimal parallel configuration for P instances and D instances respectively.
• Communication Overhead is not adequately solved.
• Just compare the maximum per-GPU goodput, it seems that ignore GPU#

cost/Model Replication cost.

2025-1-7 43

2025-1-7 44

