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Background: LLM Inference

| Tn ‘be 5 [ or | not ‘ to | be | 'rhu'r | |IS L‘ ‘ quesﬂund : ‘
. e o i pe T I 7 -
[ Key/Value Caches \ | / | (V] m & Vv
™~ g =3} II\“" e =
Prefill Phase Decoding Phase

2025-1-7



Yt Z )%

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Background: LLM Inference

* LLM Inference: 1 prefill step + N decode step

e Constraints (X, Y, M are defined according to the scenario):
 TTFT (Time to first token) < X seconds

* TPOT (Time per output token): During the decode phase, at least M tokens must be returned
within Y seconds.

Time-To-First-Token (TTFT)
y . Decode
. . . Prefill Return | Return Token N
Requests Dispatching Requests Queuing Return Token 1 Token 2 | Token3 | EOF
LLM
Request LLM Requests LLM Serving Instance

—>| Request Router § Local Request Queue  (Single-node multi-GPU / Multi-node multi-GPU)
|

GPU Cluster

2025-1-7 5



YIZ4H%

NORTHWESTERN POLYTECHNICAL UNIVERSITY

Background: Prefill in LLM Inference

* Prefill: Generate KV cache & first token -> Compute-bound
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Background: Decoding in LLM Inference

* Decode: Fetch KV cache & generate next token
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Background: Prefill vs Decode

Prefill: generate KV cache
* Generate KV Cache

 Compute-bound*

* For a 13B parameter LLM, processing a
single prompt of 512 tokens can fully engage
an A100 GPU.

Decode: generate next token
* Fetch KV Cache from HBM

* Memory-bound

2025-1-7
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TPOT

Match read speed (~
100ms)

Match read speed (~
100ms)

Very Low
(~ 50ms)

 Different apps have various latency requirements*

* Set the SLOs empirically based on their service target because there exists no
available SLO settings for these applications as far as we know



Background: Batching in LLM Serving
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Prefill
Prioritized
Schedule

| Decode
LIS

Prioritized
Schedule

Chunked
prefill
Schedule

 However, batching the two phases make them share the same batching strategy

* Sharing GPUs cause competition between prefill and decoding, which may hurt

both TTFT and TPOT
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* (Special) Challenges in Optimization beyond Existing Solutions
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Common Challenges

 Different apps have various latency requirements

* Title: DistServe: Disaggregating Prefill and Decoding for Goodput-
optimized Large Language Model Serving

* "Goodput-optimized" in Title: To be precise, Per-GPU goodput,
defined as the maximum request rate (RPS) that can be served
adhering to the SLO attainment goal (say, 90%) for each GPU.

e How to do?

Common ChaIIenges>

2025-1-7 12



Problem 1: Prefill-Decoding Interference

e Batch execution time when serving a 13B LLM as batch size increases.
« Batching prefill and decoding phase together hurt both TTFT and TPOT.
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TPOT l Both time get shorter due to

What if Batching strategy can't reduce these times to SLO? §pesdup with mare GPU

add more GPU
XD —— 0 x4
* Batching the two phases makes them share the same parallel strategy (TP=xx, PP=xx...)
* Coupling leads to overprovision resources to meet the more demanding SLO

> Existing Solutions >

2025-1-7 14




Opportunity: Disaggregting Prefill and Decoding

* Prefill-Decoding interference is eliminated
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 The term instance: Requests EE—_—

* a unit of resources that manages exactly one — ‘
complete copy of model weights | ===

* One instance can correspond to many GPUs when '
model parallelism (TP or PP) is applied. Prefill Instance L g Ehelies

* Repliaction: When disaggregate Prefill/Decoding sl LLM Model

hase to different GPUs, each instance manages e

its copy of the model weights, resulting in prefill GPU | | GPU | A er> GPU | | GPU
mstanc.es.and decoding instances. = e ors | Teru

* M Prefill instances : N Decode instances (M >= N) Parallel Runtime | | Tt

/ /

* Naturally divide the SLO satisfaction
problem into two optimizations:
 Prefill instance optimizes for TTFT.
* Decoding instance optimizes for TPOT.

* Choose the most suitable parallelism and
resource allocation for Prefill/Decoding phase.

/

> Design Intuitions >

2025-1-7
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One instance with 4 GPUS => (TP, PP) = (4, 1) or (1, 4) or (2, 2)

M Prefill : N Decode instances (batching more decodeing jobs)
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Opportunity: Disaggregting Prefill and Decoding
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> Design Intuitions >
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Challenges of Disaggregation

e C1: Communication overhead for KV-Cache transmission

* C2: The optimization target, per-GPU goodput, is difficult to
optimize:
* the workload pattern
* SLO requirements
 parallelism strategies
* resource allocation
* network bandwidth

The author calls this challenge the Placement problem

> Special Challenges >

2025-1-7 17
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* Tradeoff Analysis
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Tradeoff Analysis: Setup

* Analysis for Prefill Instance (Prefill-only)
e 1) Batching strategy: 13B Model + 1 A100-80G
» 2) Parallelism plan (TP/PP): 66B Model + 2 A100-80G (Why select this
setting?)
* Analysis for Decoding Instance (Decoding-only)

1) Batching strategy: 13B Model + 1 A100-80G (Same as the Prefill)

* 2) Parallelism plan 1(TP/PP): 13B Model + 1/2/4/8 A100-80G (Counter-
intuitive, because if the model can be placed on a single GPU, it is usually
not considered to use multiple GPUs in parallel.)

* Some assumptions:

* All prompts are of equal length
* All GPUs on one machine
* Which LLM Engine to test? Not vLLM

2025-1-7 19
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Prefill/Decoding Instance: Batching strategy =~
* Profile Throughput for Prefill/Decoding phases with different batch sizes and input lengths

e Serving an LLM with 13B parameters on 1 A100-80G GPU.
10000 10000

2 @ —e— input length: 128
c 8000 c 80001 s input length: 256
S > e —e— input length: 512
£ 60001 £ 6000/ 'np '
= ./*/.__./o—o 5 —e— input length: 1024
2 4000 2 4000
(@)} (@)]
o -]
S 2000 S 2000
o x o
" 0 " 0

1 2 4 8 16 32 64128 1 2 4 8 16 32 64128

Batch Size Batch Size
(a) Prefill phase (b) Decoding phase

* The optimal batch size expected by prefill and decoding is different:

 Prefill: Throughput growth plateaus with larger batch sizes due to compute-bound
limitations. It is necessary to profile the specific LLM and GPUs to identify a critical input

length threshold L_m.

* Decode: Throughput increases siFnificantIy with larger batch sizes due to memory-bound
limitations. Disaggregation enables multiple prefill instances to a single decoding instance,
allows for accumulating a larger batch size on dedicated GPUs.

2025-1-7 20
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Prefill Instance: Parallelism Plan (1)

* To simplify, assume uniform input length = 512 and a Poisson arrival process.

» Disaggregation enables the prefill phase to function analogously to an M/D/1 queue* \\

* M: Requests follow a Poisson distribution, meaning arrivals are independent and equally likely
within a time unit.

D: All requests have the same prefill processing time.
1: Assume only one GPU is available.
R: the Poisson arrival rate
Avg TTFT = the time a single request is processed + the time the request waits in the queue
= the time a single request is processed + (the number of requests before this request

*Use queuing theory to verify the observation
(next slide). Since one request saturates the GPU,
schedule requests via FCFS without batching

* the time a single request is processed) i i the request-level latency
= RD: RD~ <
Rp2 2% Avg TTFTyue =Ds+ m___pg D~D,~2xD,,
Avg_TTFT =D + , 2(1=RDy,) 4(2—RD)

L ‘&_ RD) | : the time the
the time a single \ D RD~ slowest stage
request is RD . - Al"g—TTF?}Hfra _— E ‘l‘ 2K(K = RD) . 1 < K < 2 takes
processed 2(1-RD) D 1p=2 e

the number of

requests before

this request
2025-1-7 21
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Prefill Instance: Parallelism Plan (2)

* Profile Average TTFT when serving a 66B LLM (input length = 512, without batching)
using different parallelism on two A100 GPUs (TP=2 vs PP=2)

* Observation (use queuing theory to verify):
 When RPS is small, TP is more suitable. Since each request’s execution time (first term) is dominated.

 When RPS is large, PP is more suitable. Since the queue delay (second term) is dominated.
 TTFT is also influenced by the speedup coefficient K (1 < K < TP=xx).

120 —e— Inter-Op 10 —e— Inter-Op the queue delay
1.251 —*— Intra-Op 1.251 Intra-Op (K=1.5)

_ _ Intra-Op (K = 1.6) PP =2 Foor ‘R—D‘:Z: 1

©1.001 ©1.00- Intra-Op (K =1.7) Avg_TTF Toter :'D:+'—. !

& E Intra-Op (K = 1.8) | : I :4(2 —RD) :

= 0.751 £ 0.75 Intra-Op (K = 1.9) : Ll :

= 0.50- 2 0.50 / TP =2 D1 RD®

=L =L ¥ /g( Avg_TTFEmra—|EH‘|2K(K_RD)|- 1< K<?2
0.25 0251 oo w-nt ¥ I'SI R '
0.000 7 3 3 A . 0.000 1 3 3 2 5 each request’s execution time

Rate (req/s) Rate (req/s)

(a) Real experiment results  (b) Changing intra-op speedup
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Decoding Instance: Parallelism Plan

* As the decoding batch size continue to increase to approach the compute-bound, the
decoding computation begins to resemble the prefill phase.

* Profile Decoding phase latency and throughput when serving a 13B LLM with batch
size = 128 and input length = 256 under different parallel degrees (TP=xx vs PP=xx).

* Observation:
* We hope to see that increasing the number of GPUs can bring linear improvements. However, TP
cannot bring linearity to Lantecy or Thpt.
* Despite this, when the TPOT SLO is stringent, TP is essential to reduce TPOT to meet.

* PP can bring linearity to Thpt. This is of great value for optimizing Decoding.

601 '.g 150001 Linear Scaling
s S Inter-op
w Fa
= = —e— Intra-op .~
=50 £100001 s
% g_ |
e - R
® 40 z 5000 B
_E:I—- /'/"/'k
30+ e .
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Practical Problems

* Variable prefill length.

* Inreal deployments, the lengths of requests are non-uniform. This can cause pipeline
bubbles for prefill instances applying PP.

* Develop a simple scheduling to reduce pipeline bubbles.

e Communication overhead.

* The KV cache size of a single 512-token request on OPT-66B is approximately 1.13GB.
Assuming an average arrival rate of 10 RPS, it needs to transfer 1.13GBXx10=11.3GB data
per second—or equivalently 90Gbps bandwidth to render the overhead invisible.

* Many modern GPU clusters for LLMs, equipped with cross-node InfiniBand (e.g., 800 Gbps),
can effectively hide these communication overheads.

* If cross-node bandwidth is limited, DistServe relies on the commonly available intra-node
NVLINK, where the peak bandwidth between A100 GPUs is 600 GB/s, again rendering the
transmission overhead negligible.

* Solving the placement problem can reduce communication overhead.

2025-1-7 24
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Outline

* Method
* Placement for High Node-Affinity Cluster
* Placement for Low Node-Affinity Cluster
* Online scheduling
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DistServe Overview

* Definition of Placement:

1) parallelism strategy for prefill/decoding instance

2) the number of each instance to deploy (repliactions)

3) how to place them onto the physical cluster

Goal: find a placement that maximizes the per-gpu goodput

* Algorithm Sketch:
e Step 1: Use simulation to measure the goodput for all parallelism config.
 Step 2: Obtain the optimal parallelism config for Prefill/Decoding phase.
e Step 3: Use replication to match the overall traffic.

* Alg. 1: Placement for High Node-Affinity Cluster
* Assume nodes are connected with high bandwidth network, e.g., InfiniBand.
 The communication overhead between nodes is negligible. (We can deploy
prefill and decoding instances across any two nodes without constraints)
* Alg. 2: Placement for Low Node-Affinity Cluster
* Assume GPUs inside one node are connected with NVLINK.

 The communication overhead within the node is negligible. (Require the same
stage of prefill/decoding instances to be on the same node)



Alg. 1 Placement for High Node-Affinity Cluster
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Algorithm 1 High Node-Affinity Placement Algorithm  Algorithm Sketch:

Input: LLM G, #node limit per-instance N, #GPU per-node
M, GPU memory capacity C, workload W, traffic rate R.

configp, configg < 0,0 I
for intra_op € {1,2,....M} do

inter_op Xintra_op
config <+ (inter_op,intra_op)
G + parallel(G, config)

if configp.goodput config.goodput then
configp.num_gpus config.num_gpus

config, < config TP_Prefill=xx, PP_Prefill=xx

config.goodput < simu_decode(G, W)
configy.goodput config.goodput then
configy.num_gpus config.num_gpus
configg < config TP_Decode=xx, PP_Decode=xx
P e e s e T e e T e el = === = - 1
R R
: By [conﬁgp.goodpur—l ? [caqﬁgd.gondpur—l

best_plm < (n,config,,m,config,)

return best_plm

@ Enumerating the search space for the best_plm

(@ Use simulation and profiling to obtain the
optimal parallelism config

(3 Use replication to match the overall traffic

|
; NxM i ildi
for inter_op E {1.2..... m} do * Simulator building™:
; G.size < C then )

Define Goodput Range: Start with a range of
possible goodput values (e.g., goodput = 5 means
RPS is between 0 and 5).

Simulate Load: Send simulated requests at different
goodput (RPS) values to the prefill/decode instance,
using the current parallel strategy (e.g., TP=xx,
PP=xx), and measure P90 TTFT&TPOT.

Compare with SLO: Compare the measured P90
TTFT&TPOT with the SLO. If TTFT&TPOT < SLO,
increase RPS; otherwise, decrease it.

Binary Search for Optimal Goodput: Use binary
search to adjust the RPS bounds based on the
comparison, iteratively finding the final goodput.

2025-1-7 * How to build an accurate simulator, see Appendix A of the original article. 27
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Alg. 2 Placement for Low Node-Affinity Cluster

Algorithm 2 Low Node-Affinity Placement Algorithm * Difference between Alg. 1:

Input: LLM G, #node limit per-instance N, #GPU per-node

G : b s * Add the constraint to require the
M, GPU memory capacity C, workload W, traffic rate R. same stage of prefill/decoding
QOutput: the placement best_plm.

e e i | instances to be on the same node
config® <0 : . . .
for inter_op € {1,2,..., N} do PP=xx (which can eliminate the

communication overhead)
* PP_Prefill = PP_Decode

|

|

: P + get_intra_node_configs(G.M,C,inter_op)

I for P, € Pdo  TP_Prefill=xx

: for P, € Pdo TP_Decode=xx

| if P,.num_gpus + Py.num_gpus < M then
|

|

— L.
Conﬁg.‘g(lmer 0p. Py, Py) @ KV Cache Transfer — Activation Transfer

o — - — — _ _ _ Gp, Gy ¢ parallel(G. go_rv‘i_g Node 0 Node 1
config. goodpur — %1muiate(G G W T g |
config.” goodput config. goodpur [ 1 -
config.*num_gpus = config.num_gpus then I Prefill.s0 I > Prefill.s1 | Oni preflll
config® < config | | 'pstance
rCT T T TR TR T T T T T T T T T T T 1 L= . — g — g S I —
R
|1 | o gaodpu | S T XS SNimgE £ X X
L _bf‘si—-flﬂl f_(]i’ E()fﬁfv _______________ : I Decode.s0 4 o, Decode.sl | gne decode
return best_plm e I e —— | instance

KV-Cache Transfer only happens between the same layer.
2025-1-7 28
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Online Scheduling Optimization

* Scheduling to reduce pipeline bubbles.

* For prefill, profile the model and GPU to figure out the shortest prompt
length L_m needed to saturate the GPU. Then schedule batches with a total
sequence length close to L_m.

* For decoding, set L_m as the largest batch size.

e Combat workload burstiness.

* Decoding instances fetch KV cache from prefill instances as needed, using
the GPU memory of prefill instances as a queuing buffer.

* Periodic replaning.
* A workload profiler monitors key parameters.

* |f a workload pattern shift is detected, DistServe will trigger a rerun of the
placement algorithm based on recent historical data.

2025-1-7 29
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* Implementation
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Implementation

Requests
— > Controller

* a placement algorithm module (Python) [| / | |
° implements the algorithm Prefill Instance Decoding Instance
* implements the simulator LLM Model LLM Model
. .« o oge KV Cache
placement decision for a specific model & cluster a4 mrenster | [ oo | [ ory |
* a RESTful API frontend (Python) opu | [opu | || ) oru | [oru ] || |||
* an OpenAl API-compatible interface Parallel Runtime | | |— Parallel Runtime | |

an orchestration layer (Python)
* manages the prefill and decoding instances (parallel execution engine)
* responsible for request dispatching, KV cache transmission, and results delivery
e NCCL for cross-node GPU communication
* asynchronous CudaMemcpy for intra-node communication

a parallel execution engine: 8.1K lines of C++/CUDA (similar to vLLM Engine)
* Each instance is powered by a parallel execution engine
* Ray actor to implement GPU workers that execute the LLM inference and manage the KV Cache
* Integrates many LLM optimizations: continuous batching, FlashAttention, PagedAttention

2025-1-7 31
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Outline

 Evaluation
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Evaluation: Setup
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* Test bed: 4 GPU server with {8 A100-80GB GPUs/NVLINK} connected with 25Gbps
cross-node network (Most experiments used one GPU Server and evaluate Algorithm 2)

* Model: OPT-13B/66B/175B

* Workloads: 3 apps with setting the SLOs empirically & All the datasets do not
include timestamps, generate request arrival times using Poisson distribution.

le-3 le-3 le—3
81 Input (avg=755.5) Input (avg=171.3) 15 Input (avg=1738.3)
Application Model Size TTFT TPOT Dataset y Gemitieniiak | 6 Sitetlag =) Cuipet{pansalil)
Chatbot OPT-13B 26GB 0.25s 0.1s ShareGPT (8] §4_ a{ 0
Chatbot OPT-66B 132GB 2.5s 0.15s ShareGPT [8] ©° "
Chatbot OPT-175B 350GB 4.0s 0.2s ShareGPT [8] 21 £
Code Completion OPT-66B 132GB 0.125s 0.2s HumanEval [14] oLk T —— o | 0 1]

G2t 0 500 1000 1500 2000
Summarization OPT-66B 132GB 15s 0.15s  LongBench [13] Pt

(a) ShareGPT

e Metric: SLO Attainment

 Baseline:

0 '500 1000 1500 2000
# Tokens

(b) HumanEval

* vLLM - supports continuous batching and paged-attention

* DeepSpeed-MIl - supports chunked-prefill

2025-1-7

0

500 1000 1500 2000
# Tokens

(c) LongBench
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Evaluation 1: End-to-end Experiments

Application Model Size TTFT TPOT Dataset
Chatbot OPT-13B 26GB 0.25s 0.1s ShareGPT (8]
Chatbot OPT-66B 132GB 2.5s 0.15s ShareGPT [8]

Chatbot OPT-175B 350GB 4.0s 0.2s ShareGPT (8]
Code Completion OPT-66B 132GB 0.125s 0.2s HumanEval [14]
Summarization OPT-66B 132GB 15s 0.15s  LongBench [13]

* The parallelism strategies chosen by DistServe in the end-to-end experiments.

Prefill Decoding

e [T PP TR | PR R Compare the maximum
ximu
OPT-13B ShareGPT _2 | _1 _l Total 2x1+1%1 = 3 GPUs | per-GPU goodput
OPT-66B ShareGPT || 4 | 2 2 | i
OPT-66B | LongBench || 4 1 2 7 |Total 4%x1+2%2 = 8 GPUs f :‘gnolre ?PU Costt4M°d9|
OPT-66B | HumanEval || 4 | 1 | 2 | 2 | eplication cos
OPT-175B ShareGPT 3 3 4 3 |Total 3x3+4%3 = 21 GPUSI l

e VLLM: Since vLLM only supports TP, we follow previous work to set TP equals 1,4,8 for
OPT 13B/66B/175B. ===

* DeepSpeed-MIl: We set its TP the same as vLLM for OPT-13B and OPT-66B for a fair
comparison. DeepSpeed-MIl does not support 175B.
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Evaluation 1: End-to-end Experiments

* Chatbot application with OPT models on the ShareGPT dataset.

* 1st row: SLO attainment of 90% (the vertical lines) to observe the maximum per-GPU goodput
* 2nd row: vary the SLO latency requirements to observe how the SLO attainment changes. ("We

2025-1-7

fix the rate and then linearly scale the TTFT/TPOT latency requirements", RPS=?)

%)

(
=
o
CID

SLO Attainment

SLO Attainment (%)

un
o

100

i
o

o

—e— DistServe —+— DeepSpeed-MIl —— vLLM
100 e—o—t—e—g— 100+
i 50 i 50
9 025 050 075 1.00 0.05 010 015 020 0.25
Per-GPU Rate (req/s) Per-GPU Rate (req/s)
1001 &= SO ey
50 ] 50
R
150 1.25 1.00 0.75 03'.0 25 2.0 15 1.0 0 150 1.25 1.00 0.75
SLO Scale SLO Scale SLO Scale
(a) OPT-13B (b) OPT-66B (C) OPT-175B
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Evaluation 1: End-to-end Experiments

* Code completion and summarization tasks with OPT-66B on HumanEval and LongBench
datasets, respectively.

* The results is similar to Chatbot application.

—e— DistServe —+— DeepSpeed-MIl —— vLLM

gg“:
~— 1001 100 1001+ 100
'E" i T e, Bt I T, TEREEEEE T "‘"’-1."""?-'-."_:'_'“""' R
@ 1 i ' i e - i
£ ; ! : : , : !
= 507 i 501 i N 50- | ; 50 N
: ; - T i
@) : : | 4 : . : : : b
= 0 R : 0L e - o

0.5 1.0 1.5 20 1.5 1.0 0.5 0.2 0.4 0.6 10 8 6 4 2

Per-GPU Rate (req/s) SLO Scale Per-GPU Rate (req/s) SLO Scale
(a) Code Completion (b) Summarization
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Evaluation 1: End-to-end (99% SLO)

e Similar to 90% SLO attainment
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. —e— DistServe —+— DeepSpeed-MIl —+— vLLM
£
<= 100 100 100
g |
@ :
E :
& 501 50 50
% ~—
o i ! . -
a 0 0 ; : : . 0 - : — . :
0.25 0.50 075 1.00 0.05 0.10 0.15 0.20 0.25
Per-GPU Rate (req/s) Per-GPU Rate (reqg/s)
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ot i i . - H
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£ e :\ | A
c 50 ; 501 { % 501 ]
5 e . | a
< ] , : ! ! ;
9 0 - i 0 . i gL i
n 1.50 125 1.00 0.75 3.0 25 20 15 1.0 1.50 1.25 1.00 0.75
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= —e— DistServe —+— DeepSpeed-Mil —+— vLLM
(=]
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E 4 1 !
= lE &N : |
£ 50 501 I 501 | 501 |
ﬁ :: : ! 1 -..'l-"'t.,
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Evaluation 2: Latency Breakdown
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* Divide the processing lifecycle of a request in DistServe into five stages: prefill queuing,
prefill execution, KV Cache transmission, decoding queuing, and decoding execution.

 Left: Latency breakdown with OPT-175B on ShareGPT dataset with DistServe (Alg. 2).
* Right: The CDF function of KV Cache transmission time for three OPT models (Alg. 2).

Prefill Queuing

Decoding Queuing

mm Prefill Execution B Decoding Execution
B Transmission

'_I
o
o

N
un

Latency Breakdown (%)

~J
un
L

w
(w]

'mHE NN
0

0.03

0.09 0.16 0.22

0.28

Per-GPU Rate (req/s)
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AY

Prefill.stage 0

Prefill.stage 1

Prefill Decoding
Model Dataset TP TPP T TP | PP
OPT-175B ShareGPT 3 3 4 3
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Prefill.stage 2
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=
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Decode.stage?2
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Evaluation 3: Ablation Studies

 Baseline:

* VvLLM: The default parallelism setting
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e vLLM++: enumerates different parallelism strategies and chooses the best. (Simulations)

* DistServe-Low: the placement found by Alg. 2
* DistServe-High: the placement found by Alg. 1 which has fewer searching constraints and assumes
high cross-node bandwidth. (Simulations)

e OPT-66B on the ShareGPT dataset

Rate vLLM DistServe-Low
(req/s) | Real System  Simulator | Real System  Simulator
1.0 97.0% 96.8% 100.0% 100.0%
1.5 65.5% 65.1% 100.0% 100.0%
2.0 52.8% 51.0% 99.3% 99.3%
2 44.9% 46.1% 87.3% 88.3%
3.0 36.7% 38.3% 83.0% 84.1%
3.5 27.8% 28.0% 77.3% 77.0%
4.0 23.6% 24.1% 70.0% 68.9%

* Comparison of the SLO attainment reported
by the simulator and the real system.

2025-1-7

—e— DistServe-High

—

SLO Attainment (%

100

Ul
o

o
o

¢— DistServe-Low —*— vLLM++4+ —— VvLLM
1001

—"'I'_:é':-"--'.—ff_. —————————————————————

0.2 04 06 08 12 10 08 06 04
Per-GPU Rate (req/s) SLO Scale
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Evaluation 4: Algorithm Running Time 2

Alg. 1 (DistServe-Lowz and Alg. 2 (DistServe-High) on an AWS m5d.metal instance (VM) as
the number of GPUs (N xM) to a single instance (VM) increases.

* The execution time of "Dist-Low" becomes higher than that of "Dist-High":
» the search for parallelism strategies in "Dist-High" is independent and can be parallelized.

* For "Dist-Low", due to additional restrictions on deplpyment, we need to enumerate all the
possible intra-node parallelism combinations for prefill and decoding instances.

801 mmm DistServe-Low
| DistServe-High

N J
2 4 8 16 32

The number of GPUs

* Even so, the execution time of the algorithm is in minutes, and since it only needs to be

executed once before each redeployment, this overhead is acceptable.
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Outline

* Discussion & Summary
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Discussion

¢ DiStserve: December 03
* Throughput-optimized scenarios. e i i
* Resource-constrained scenarios. B i m

* Long-context scenarios -> LoongServe@SOSP24

* My personal opinion on the advantages of PD disaggregation:

* 3-Level disaggregation. DistServe indicates Level 1 and Level 2.

* Level 1: Disaggregate P and D within one node (homogeneous devices) and intra-node
interconnect (e.g., both P and D on the same A800 node) without cluster-level modifications.

* Level 2: Disaggregate P and D across nodes (homogeneous devices) and different networks (e.g.,
P and D on separate A800 nodes) with efficient inter-cluster communication, such as RDMA.

* Level 3: Disaggregate P and D across heterogeneous devices and networks (e.g., P on an MI300
cluster, D on an H20 cluster) requiring significant cluster modifications and high-performance
inter-node communication.

* Resource asymmetry (Similar to the insights of Disaggregated Memory?)
* P clusters and D clusters can use different batching methods and optimal parallel configurations
* How to manage the KV Cache Transfering bewteen P instances and D instances?
* How to manage the workflow between P instances and D instances?
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Summary

* Pros

* A good explanation of "Why use a PD disaggregation architecture"
* Solved the conflict of TTFT and TPOT

e Cons

* Deals with the sub-problem of the PD disaggregation problem: how to find
the optimal parallel configuration for P instances and D instances respectively.

« Communication Overhead is not adequately solved.

* Just compare the maximum per-GPU goodput, it seems that ignore GPU#
cost/Model Replication cost.
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