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Background: LLM Inference

2025-1-7 4



Background: LLM Inference
• LLM Inference: 1 prefill step + N decode step
• Constraints (X, Y, M are defined according to the scenario):

• TTFT (Time to first token) < X seconds
• TPOT (Time per output token): During the decode phase, at least M tokens must be returned 

within Y seconds.
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Background: Prefill in LLM Inference
• Prefill: Generate KV cache & first token -> Compute-bound  
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Background: Decoding in LLM Inference
• Decode: Fetch KV cache & generate next token
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Background: Prefill vs Decode
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Prefill: generate KV cache
• Generate KV Cache
• Compute-bound*

Decode: generate next token
• Fetch KV Cache from HBM
• Memory-bound • Different apps have various latency requirements*

* Set the SLOs empirically based on their service target because there exists no 
available SLO settings for these applications as far as we know

* For a 13B parameter LLM, processing a 
single prompt of 512 tokens can fully engage 
an A100 GPU.



Background: Batching in LLM Serving

• However, batching the two phases make them share the same batching strategy
• Sharing GPUs cause competition between prefill and decoding, which may hurt 

both TTFT and TPOT
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• batch size = 4 in Figure
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• However, batching the two phases make them share the same parallel strategy
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Common Challenges
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Common Challenges Existing Solutions Design Intuitions Special Challenges

• Different apps have various latency requirements
• Title: DistServe: Disaggregating Prefill and Decoding for Goodput-

optimized Large Language Model Serving
• "Goodput-optimized" in Title: To be precise, Per-GPU goodput, 

defined as the maximum request rate (RPS) that can be served 
adhering to the SLO attainment goal (say, 90%) for each GPU.

• How to do?



Problem 1: Prefill-Decoding Interference
• Batch execution time when serving a 13B LLM as batch size increases.
• Batching prefill and decoding phase together hurt both TTFT and TPOT.
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Problem 2: Resource & Parallelism Coupling

• Batching the two phases makes them share the same parallel strategy (TP=xx, PP=xx...)
• Coupling leads to overprovision resources to meet the more demanding SLO

2025-1-7 14

What if Batching strategy can't reduce these times to SLO?

Common Challenges Existing Solutions Design Intuitions Special Challenges



Opportunity: Disaggregting Prefill and Decoding
• Prefill-Decoding interference is eliminated
• The term instance:  

• a unit of resources that manages exactly one 
complete copy of model weights

• One instance can correspond to many GPUs when 
model parallelism (TP or PP) is applied. 

• Repliaction: When disaggregate Prefill/Decoding 
phase to different GPUs, each instance manages 
its copy of the model weights, resulting in prefill 
instances and decoding instances.

• M Prefill instances : N Decode instances (M >= N)
• Naturally divide the SLO satisfaction 

problem into two optimizations: 
• Prefill instance optimizes for TTFT.
• Decoding instance optimizes for TPOT. 
• Choose the most suitable parallelism and 

resource allocation for Prefill/Decoding phase.
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Common Challenges Existing Solutions Design Intuitions Special Challenges

One instance with 4 GPUS => (TP, PP) = (4, 1) or (1, 4) or (2, 2)

M Prefill : N Decode instances (batching more decodeing jobs)



Opportunity: Disaggregting Prefill and Decoding
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Common Challenges Existing Solutions Design Intuitions Special Challenges

Disaggregting Prefill and Decoding Adding 2 GPUs
Compare the maximum per-GPU goodput

× 3 GPU = 5.6 rps 



Challenges of Disaggregation
• C1: Communication overhead for KV-Cache transmission
• C2: The optimization target, per-GPU goodput, is difficult to 

optimize:
• the workload pattern
• SLO requirements
• parallelism strategies
• resource allocation
• network bandwidth
• ...

The author calls this challenge the Placement problem
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Tradeoff Analysis: Setup
• Analysis for Prefill Instance (Prefill-only)

• 1) Batching strategy: 13B Model + 1 A100-80G
• 2) Parallelism plan (TP/PP):  66B Model + 2 A100-80G (Why select this 

setting?)
• Analysis for Decoding Instance (Decoding-only)

• 1) Batching strategy: 13B Model + 1 A100-80G (Same as the Prefill)
• 2) Parallelism plan (TP/PP): 13B Model + 1/2/4/8 A100-80G (Counter-

intuitive, because if the model can be placed on a single GPU, it is usually 
not considered to use multiple GPUs in parallel.)

• Some assumptions:
• All prompts are of equal length
• All GPUs on one machine
• Which LLM Engine to test? Not vLLM
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Prefill/Decoding Instance: Batching strategy
• Profile Throughput for Prefill/Decoding phases with different batch sizes and input lengths
• Serving an LLM with 13B parameters on 1 A100-80G GPU.
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• The optimal batch size expected by prefill and decoding is different:
• Prefill: Throughput growth plateaus with larger batch sizes due to compute-bound 

limitations.  It is necessary to profile the specific LLM and GPUs to identify a critical input 
length threshold L_m.

• Decode: Throughput increases significantly with larger batch sizes due to memory-bound 
limitations. Disaggregation enables multiple prefill instances to a single decoding instance, 
allows for accumulating a larger batch size on dedicated GPUs.



Prefill Instance: Parallelism Plan (1)
• To simplify, assume uniform input length = 512 and a Poisson arrival process.
• Disaggregation enables the prefill phase to function analogously to an M/D/1 queue*

• M: Requests follow a Poisson distribution, meaning arrivals are independent and equally likely 
within a time unit.

• D: All requests have the same prefill processing time.
• 1: Assume only one GPU is available.
• R: the Poisson arrival rate
• Avg_TTFT = the time a single request is processed + the time the request waits in the queue
                       = the time a single request is processed + (the number of requests before this request                          
                          * the time a single request is processed) 
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• K: depends on the input length, model architecture, 
communication bandwidth, and placement...

·

the number of 
requests before 
this request

PP = 2

TP = 2

the time the 
slowest stage 
takes

the request-level latency

the time a single 
request is 
processed

*Use queuing theory to verify the observation 
(next slide). Since one request saturates the GPU, 
schedule requests via FCFS without batching



Prefill Instance: Parallelism Plan (2)
• Profile Average TTFT when serving a 66B LLM (input length = 512, without batching) 

using different parallelism on two A100 GPUs (TP=2 vs PP=2)
• Observation (use queuing theory to verify): 

• When RPS is small, TP is more suitable. Since each request’s execution time (first term) is dominated.
• When RPS is large, PP is more suitable. Since the queue delay (second term) is dominated.
• TTFT is also influenced by the speedup coefficient K (1＜K＜TP=xx).
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PP = 2

TP = 2

each request’s execution time

the queue delay



Decoding Instance: Parallelism Plan
• As the decoding batch size continue to increase to approach the compute-bound, the 

decoding computation begins to resemble the prefill phase.
• Profile Decoding phase latency and throughput when serving a 13B LLM with batch 

size = 128 and input length = 256 under different parallel degrees (TP=xx vs PP=xx).
• Observation: 

• We hope to see that increasing the number of GPUs can bring linear improvements. However, TP 
cannot bring linearity to Lantecy or Thpt. 

• Despite this, when the TPOT SLO is stringent, TP is essential to reduce TPOT to meet.   
• PP can bring linearity to Thpt. This is of great value for optimizing Decoding.
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Practical Problems
• Variable prefill length.

• In real deployments, the lengths of requests are non-uniform. This can cause pipeline 
bubbles for prefill instances applying PP.

• Develop a simple scheduling to reduce pipeline bubbles.

• Communication overhead.
• The KV cache size of a single 512-token request on OPT-66B is approximately 1.13GB. 

Assuming an average arrival rate of 10 RPS, it needs to transfer 1.13GB×10=11.3GB data 
per second—or equivalently 90Gbps bandwidth to render the overhead invisible.

• Many modern GPU clusters for LLMs, equipped with cross-node InfiniBand (e.g., 800 Gbps), 
can effectively hide these communication overheads.

• If cross-node bandwidth is limited, DistServe relies on the commonly available intra-node 
NVLINK, where the peak bandwidth between A100 GPUs is 600 GB/s, again rendering the 
transmission overhead negligible.

• Solving the placement problem can reduce communication overhead.
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DistServe Overview
• Definition of Placement: 

• 1) parallelism strategy for prefill/decoding instance
• 2) the number of each instance to deploy (repliactions)
• 3) how to place them onto the physical cluster
• Goal: find a placement that maximizes the per-gpu goodput

•  Algorithm Sketch: 
• Step 1: Use simulation to measure the goodput for all parallelism config.
• Step 2: Obtain the optimal parallelism config for Prefill/Decoding phase. 
• Step 3: Use replication to match the overall traffic.

• Alg. 1:  Placement for High Node-Affinity Cluster
• Assume nodes are connected with high bandwidth network, e.g., InfiniBand. 
• The communication overhead between nodes is negligible. (We can deploy 

prefill and decoding instances across any two nodes without constraints)
• Alg. 2: Placement for Low Node-Affinity Cluster

• Assume GPUs inside one node are connected with NVLINK. 
• The communication overhead within the node is negligible. (Require the same 

stage of  prefill/decoding instances to be on the same node)
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Alg. 1 Placement for High Node-Affinity Cluster

• Algorithm Sketch: 
• ① Enumerating the search space for the best_plm
• ② Use simulation and profiling to obtain the 

optimal parallelism config
• ③ Use replication to match the overall traffic

• Simulator building*:
• Define Goodput Range: Start with a range of 

possible goodput values (e.g., goodput = 5 means 
RPS is between 0 and 5).

• Simulate Load: Send simulated requests at different 
goodput (RPS) values to the prefill/decode instance, 
using the current parallel strategy (e.g., TP=xx, 
PP=xx), and measure P90 TTFT&TPOT.

• Compare with SLO: Compare the measured P90 
TTFT&TPOT with the SLO. If TTFT&TPOT < SLO, 
increase RPS; otherwise, decrease it.

• Binary Search for Optimal Goodput: Use binary 
search to adjust the RPS bounds based on the 
comparison, iteratively finding the final goodput.
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①

③

②

TP_Prefill=xx, PP_Prefill=xx

TP_Decode=xx, PP_Decode=xx

* How to build an accurate simulator, see Appendix A of the original article. 



Alg. 2 Placement for Low Node-Affinity Cluster
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• Difference between Alg. 1:
• Add the constraint to require the 

same stage of  prefill/decoding 
instances to  be on the same node 
(which can eliminate the 
communication overhead)

• PP_Prefill = PP_Decode

KV Cache Transfer Activation Transfer

KV-Cache Transfer only happens between the same layer.

TP_Prefill=xx
TP_Decode=xx

PP=xx
①

③

②
one prefill 
instance

one decode
instance



Online Scheduling Optimization

• Scheduling to reduce pipeline bubbles.
• For prefill, profile the model and GPU to figure out the shortest prompt 

length L_m needed to saturate the GPU. Then schedule batches with a total 
sequence length close to L_m.

• For decoding, set L_m as the largest batch size.
• Combat workload burstiness.

• Decoding instances fetch KV cache from prefill instances as needed, using 
the GPU memory of prefill instances as a queuing buffer.

• Periodic replaning.
• A workload profiler monitors key parameters.
• If a workload pattern shift is detected, DistServe will trigger a rerun of the 

placement algorithm based on recent historical data.
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Implementation

• a placement algorithm module (Python)
• implements the algorithm
• implements the simulator
• placement decision for a specific model & cluster

• a RESTful API frontend (Python)
• an OpenAI API-compatible interface

• an orchestration layer (Python)
• manages the prefill and decoding instances (parallel execution engine)
• responsible for request dispatching, KV cache transmission, and results delivery 
• NCCL for cross-node GPU communication
• asynchronous CudaMemcpy for intra-node communication

• a parallel execution engine:  8.1K lines of C++/CUDA (similar to vLLM Engine)
• Each instance is powered by a parallel execution engine 
• Ray actor to implement GPU workers that execute the LLM inference and manage the KV Cache
• Integrates many LLM optimizations: continuous batching, FlashAttention, PagedAttention
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Evaluation: Setup
• Test bed: 4 GPU server with {8 A100-80GB GPUs/NVLINK} connected with 25Gbps 

cross-node network (Most experiments used one GPU Server and evaluate Algorithm 2)
• Model: OPT-13B/66B/175B
• Workloads: 3 apps with setting the SLOs empirically & All the datasets do not 

include timestamps, generate request arrival times using Poisson distribution.
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• Metric:  SLO Attainment
• Baseline:

• vLLM -  supports continuous batching and paged-attention
• DeepSpeed-MII - supports chunked-prefill



Evaluation 1: End-to-end Experiments

• vLLM: Since vLLM only supports TP, we follow previous work to set TP equals 1, 4, 8 for 
OPT 13B/66B/175B.

• DeepSpeed-MII: We set its TP the same as vLLM for OPT-13B and OPT-66B for a fair 
comparison. DeepSpeed-MII does not support 175B.
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•  The parallelism strategies chosen by DistServe in the end-to-end experiments.

Total 4×1+2×2 = 8 GPUs

Total 2×1+1×1 = 3 GPUs

Total 3×3+4×3 = 21 GPUs

Compare the maximum 
per-GPU goodput
Ignore GPU cost/Model 
Replication cost?



Evaluation 1: End-to-end Experiments
• Chatbot application with OPT models on the ShareGPT dataset.

• 1st row: SLO attainment of 90% (the vertical lines) to observe the maximum per-GPU goodput
• 2nd row: vary the SLO latency requirements to observe how the SLO attainment changes. ("We 

fix the rate and then linearly scale the TTFT/TPOT latency requirements", RPS=?)
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Evaluation 1: End-to-end Experiments
• Code completion and summarization tasks with OPT-66B on HumanEval and LongBench 

datasets, respectively.
• The results is similar to Chatbot application.
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Evaluation 1:  End-to-end (99% SLO)
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• Similar to 90% SLO attainment



Evaluation 2: Latency Breakdown
• Divide the processing lifecycle of a request in DistServe into five stages: prefill queuing, 

prefill execution, KV Cache transmission, decoding queuing, and decoding execution.
• Left: Latency breakdown with OPT-175B on ShareGPT dataset with DistServe (Alg. 2). 
• Right: The CDF function of KV Cache transmission time for three OPT models (Alg. 2).
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Prefill.stage 0 Prefill.stage 1 Prefill.stage 2

Decode.stage0 Decode.stage1 Decode.stage2
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3 GPUs
TP=3

4 GPUs
TP=4
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• Baseline:
• vLLM: The default parallelism setting
• vLLM++: enumerates different parallelism strategies and chooses the best. (Simulations)
• DistServe-Low: the placement found by Alg. 2 
• DistServe-High: the placement found by Alg. 1 which has fewer searching constraints and assumes 

high cross-node bandwidth. (Simulations)
• OPT-66B on the ShareGPT dataset
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Evaluation 3: Ablation Studies

• Comparison of the SLO attainment reported 
by the simulator and the real system.



Evaluation 4: Algorithm Running Time
• Alg. 1 (DistServe-Low) and Alg. 2 (DistServe-High) on an AWS m5d.metal instance (VM) as 

the number of GPUs (N ×M) to a single instance (VM) increases.
• The execution time of "Dist-Low" becomes higher than that of "Dist-High":

• the search for parallelism strategies in "Dist-High" is independent and can be parallelized. 
• For "Dist-Low", due to additional restrictions on deployment, we need to enumerate all the 

possible intra-node parallelism combinations for prefill and decoding instances. 

• Even so, the execution time of the algorithm is in minutes, and since it only needs to be 
executed once before each redeployment, this overhead is acceptable.
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Discussion
• DistServe:

• Throughput-optimized scenarios. 
• Resource-constrained scenarios.
• Long-context scenarios -> LoongServe@SOSP24

• My personal opinion on the advantages of PD disaggregation:
• 3-Level disaggregation. DistServe indicates Level 1 and Level 2.

• Level 1: Disaggregate P and D within one node (homogeneous devices) and intra-node 
interconnect (e.g., both P and D on the same A800 node) without cluster-level modifications.

• Level 2: Disaggregate P and D across nodes (homogeneous devices) and different networks (e.g., 
P and D on separate A800 nodes) with efficient inter-cluster communication, such as RDMA.

• Level 3: Disaggregate P and D across heterogeneous devices and networks (e.g., P on an MI300 
cluster, D on an H20 cluster) requiring significant cluster modifications and high-performance 
inter-node communication.

• Resource asymmetry (Similar to the insights of Disaggregated Memory?)
• P clusters and D clusters can use different batching methods and optimal parallel configurations
• How to manage the KV Cache Transfering bewteen P instances and D instances?
• How to manage the workflow between P instances and D instances?
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Summary
• Pros 

• A good explanation of "Why use a PD disaggregation architecture"
• Solved the conflict of TTFT and TPOT

• Cons
• Deals with the sub-problem of the PD disaggregation problem: how to find 

the optimal parallel configuration for P instances and D instances respectively.
• Communication Overhead is not adequately solved.
• Just compare the maximum per-GPU goodput, it seems that ignore GPU# 

cost/Model Replication cost.
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