Taming Throughput-Latency Tradeoff in LLM Inference with Sarathi-Serve

Amey Agrawal, *Georgia Institute of Technology;* Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, and Bhargav Gulavani, *Microsoft Research India;* Alexey Tumanov, *Georgia Institute of Technology;* Ramachandran Ramjee, *Microsoft Research India*

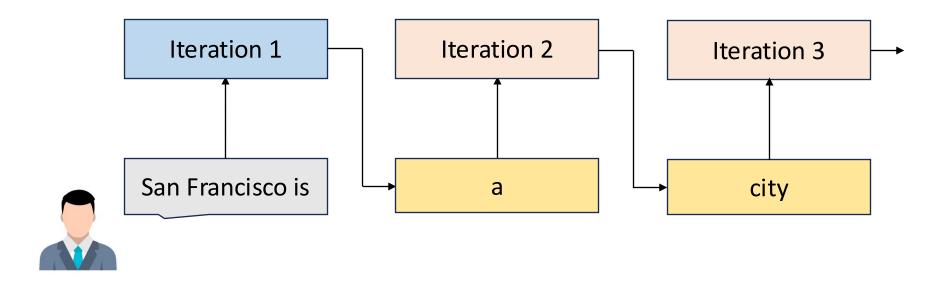
OSDI' 24

Presented by Yinhe Chen, Dongqi Tian

Outline

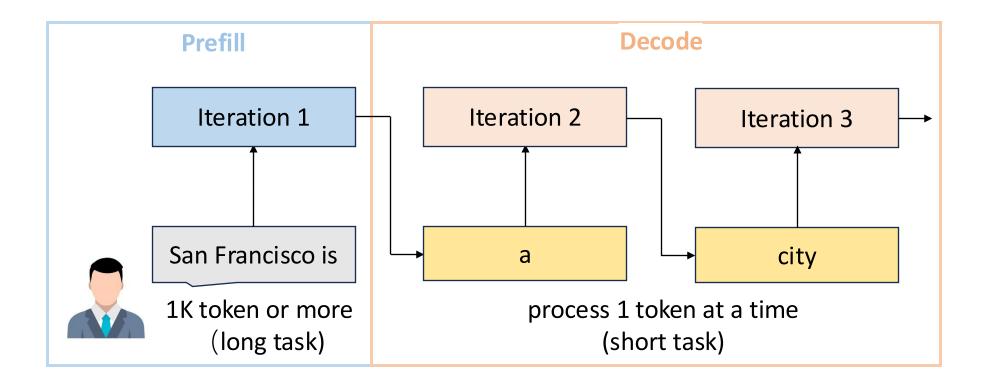
- Background and Existing Solutions
- Design and Implementation
- Evaluation
- Discussion

Auto-regressive Nature of LLMs



Two Phases of LLM Inference

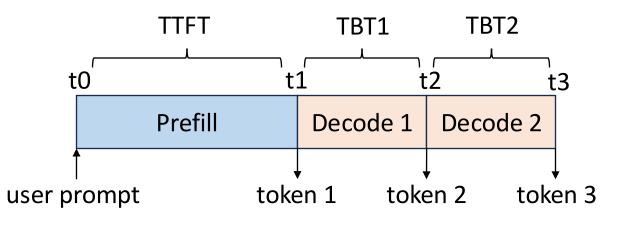
• LLM inference serving request goes through two phases



Performance Metrics

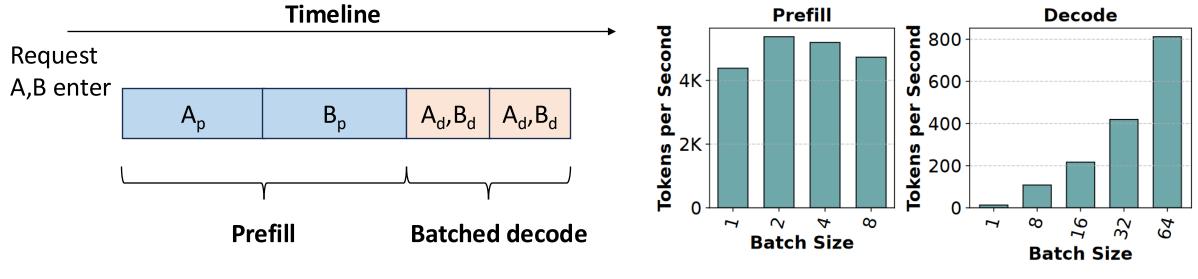
- Latency
 - Time-to-first-token (TTFT)
 - Time processing the prompts
 - ◆ Time-between-token (TBT)
 - Time interval between each generated token
- Throughput
 - Maximum RPS the system can serve

How to optimizing both throughput and latency?



Batching LLM Inference

- Batching: process tokens from different requests concurrently
- Batching enhances the decoding throughput

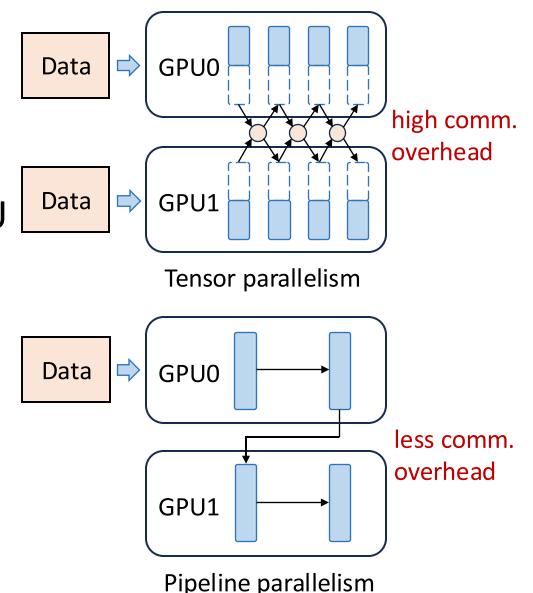


Example of batch decode

Mistral-7B on 1 A100, prompt length = 1024

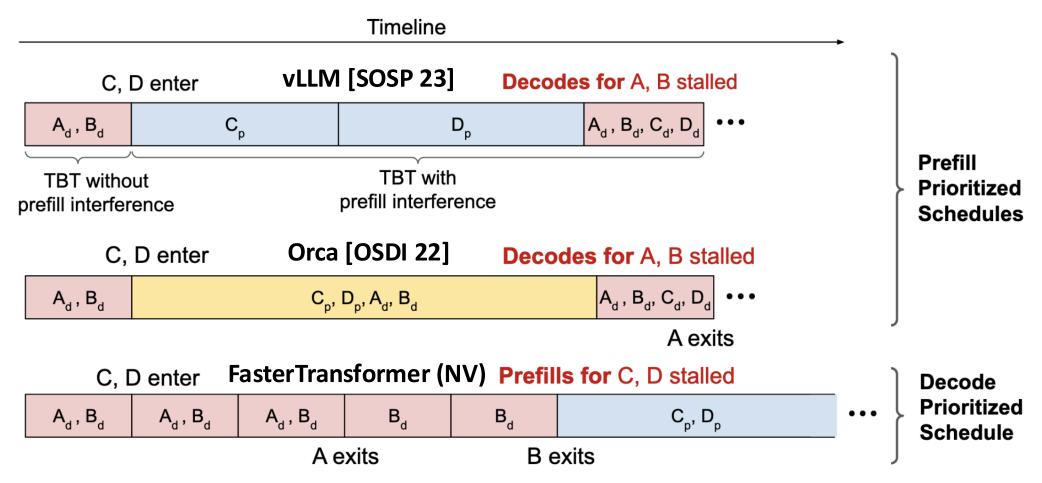
Multi-GPU LLM Inference

- Single GPU HBM is limited
 - ◆ OPT-175B needs 9 A100-40G
 - Caching KV further accelerates
- Splitting model and KV to multi-GPU
 - ◆ Tensor parallelism (TP)
 - TP involves high communication cost
 - Inefficient for cross node network
 - ♦ Pipeline parallelism (PP)
 - PP only needs to communicate by layer
 - Suitable for cross node network



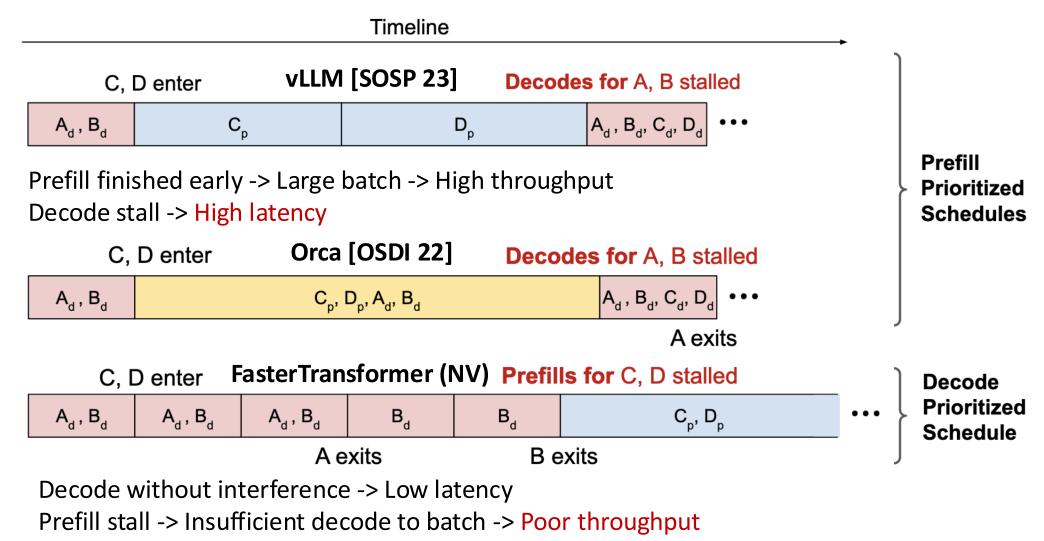
Existing Systems

• Existing works either prioritize prefill or decode



Throughput-latency tradeoff

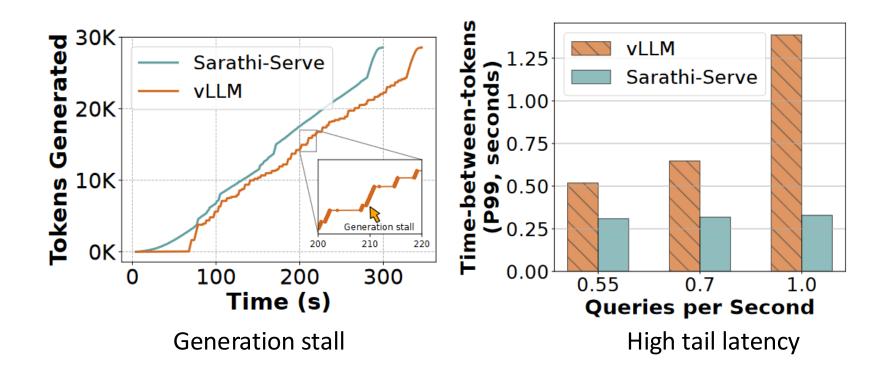
• Either throughput or latency is sacrificed



9

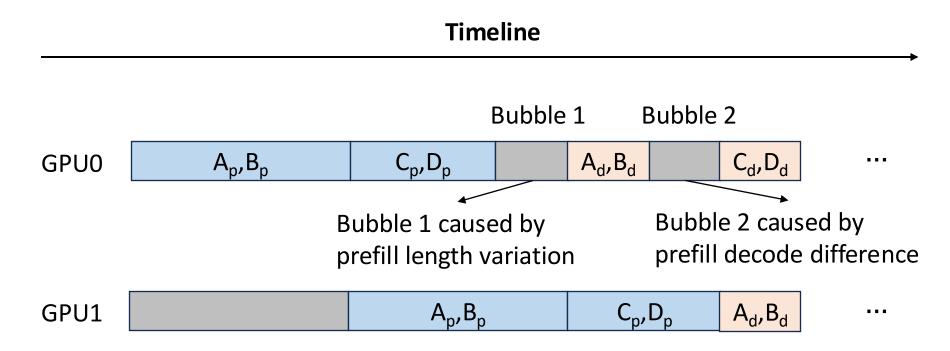
Throughput-latency tradeoff

- Generation stall can last over seconds
- Increasing load can significantly increase tail latency



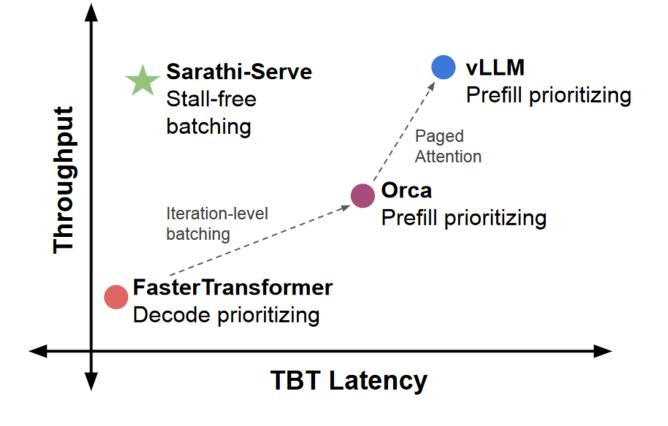
Pipeline Bubbles

• Pipeline bubbles can waste GPU cycles



Current LLM serving systems

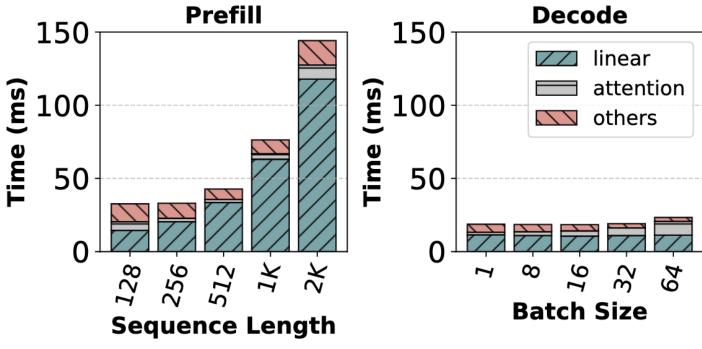
- FasterTransformer
 - Decode-prioritizing
 - Poor throughput
- vLLM
 - Prefill-prioritizing
 - ♦ High latency
- Orca
 - Prefill-prioritizing
 - Prefill interferes decode
- All involve pipeline bubbles



Outline

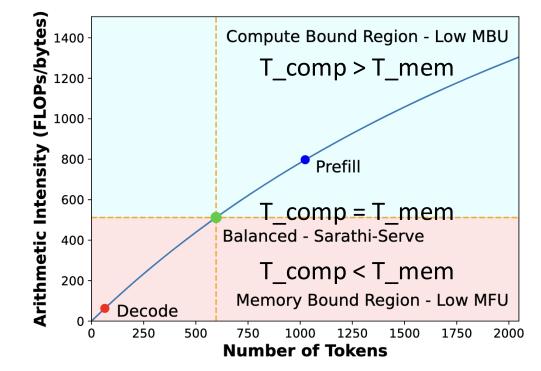
- Background and Existing Solutions
- Design and Implementation
- Evaluation
- Discussion

- Linear layer dominates in both prefill & decode
 - ◆ Therefore, we focus on cost of linear layer



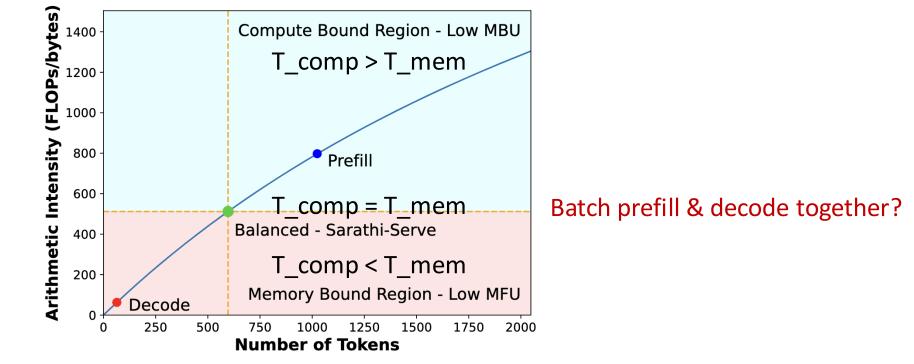
Prefill and decode time with different input sizes for Mistral-7B running on single A100 GPU.

- Linear layer arithmetic intensity varies with number of tokens
 - Prefill: full prompt -> high arithmetic intensity (compute bound)
 - Decode: generated token -> low arithmetic intensity (memory bound)



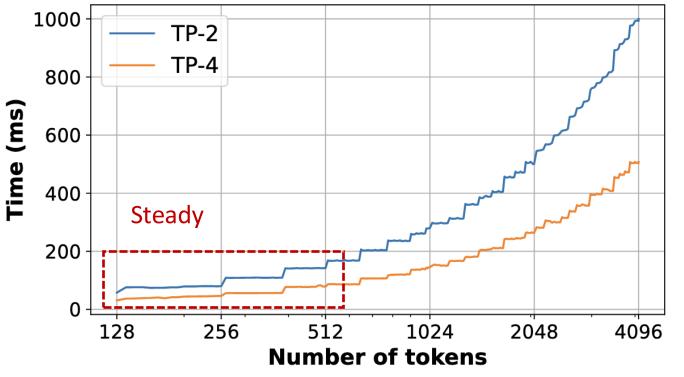
Arithmetic intensity trend for LLaMA2-70B linear operations with different number of token running on four A100s.

- Linear layer arithmetic intensity varies with number of tokens
 - Prefill: full prompt -> high arithmetic intensity (compute bound)
 - Decode: generated token -> low arithmetic intensity (memory bound)



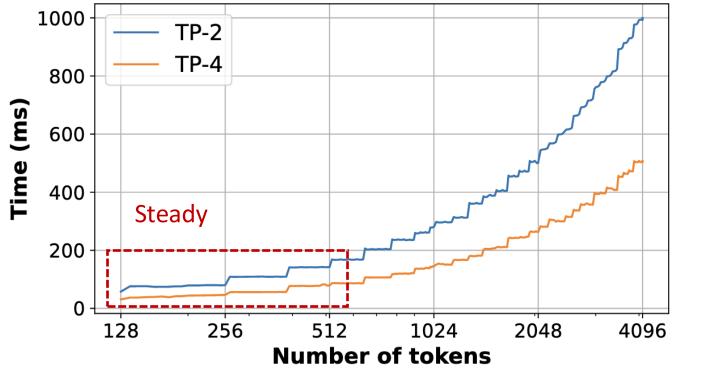
Arithmetic intensity trend for LLaMA2-70B linear operations with different number of token running on four A100s.

- Linear layer execution time as function of input length
 - Marginal increase for input length < 512 (memory bound)
 - Linear increase for input length > 512 (compute bound)



Linear layer execution time as function of number of tokens in a batch for LLaMA2-70B on A100(s) with different tensor parallel degrees.

- Linear layer execution time as function of input length
 - Marginal increase for input length < 512 (memory bound)
 - Linear increase for input length > 512 (compute bound)



Dataset	Prompt length		
	Median	P90	
openchat_sharegpt4	1730	5696	
arxiv_summarization	7059	12985	

In practice, prefill often > 1024 tokens.

Linear layer execution time as function of number of tokens in a batch for LLaMA2-70B on A100(s) with different tensor parallel degrees.

Brief Summary

- Arithmetic intensity
 - Prefill: high intensity
 - Decode: low intensity

Batching prefill & decode seems great!

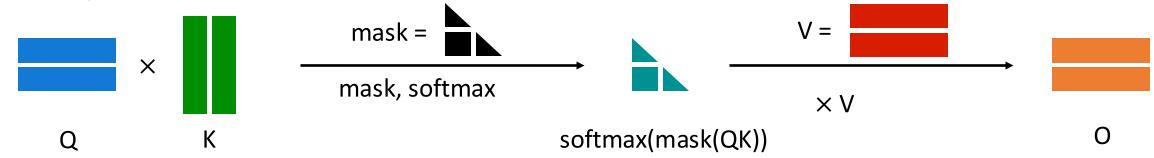
- Execution time is decided by token count
 - Marginal increase initially -> marginal batching overhead
 - Then linear growth -> increasing batching overhead

Limiting token count ensures low latency and efficiency.

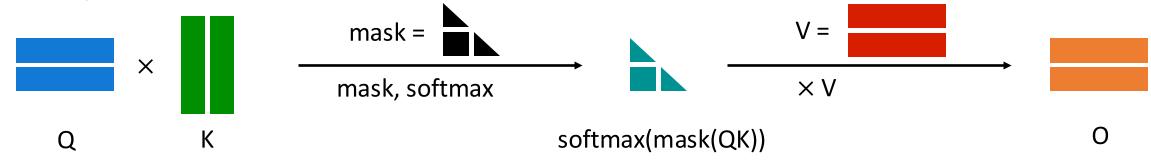
Design

How can we batch prefill and decode while limiting token count? [Chunked Prefill] Split long prefill into several short chunks [Stall-free batching] Batch prefill and decode together w.o. stall

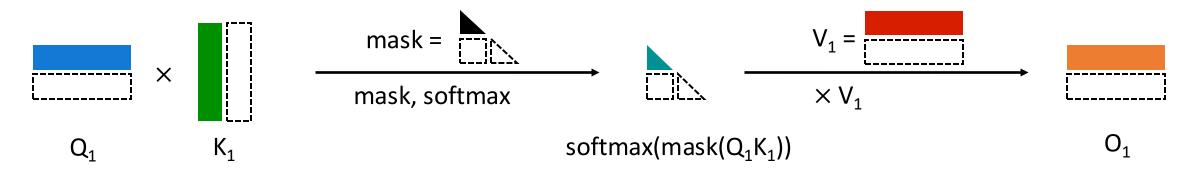
• Full prefill attention



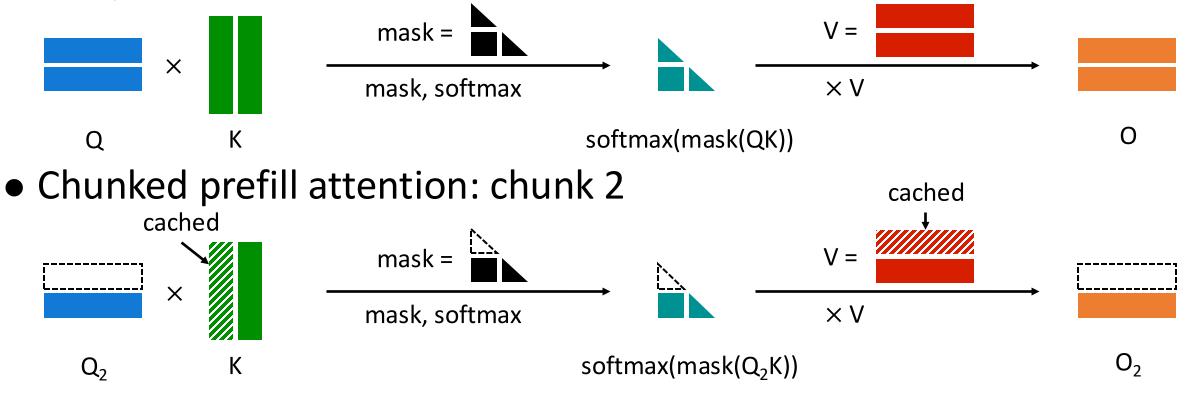
• Full prefill attention



• Chunked prefill attention: chunk 1



• Full prefill attention



Full prefill = Conjunct (chunk 1, chunk 2)

• Chunked prefill attention masks

	k0	k1	k2	k3				
q0	1	-	-	-				
q1	1	1	-	-				
q2	1	1	1	-				
qЗ	1	1	1	1				
				· · · ·				
1° 	st chu k0	inkec k1	1 pret k2	' k3	k4	k5	k6	k7
1° q4					k4 1	k5 -	k6 -	k7 -
	k0			k3		k5 - 1	k6 - -	k7 - -
q4	k0 1			k3		k5 - 1 1	k6 - - 1	k7 - - -
q4 q5	k0 1 1	k1 1 1		k3 1 1	1 1	k5 - 1 1	k6 - 1 1	k7 - - 1

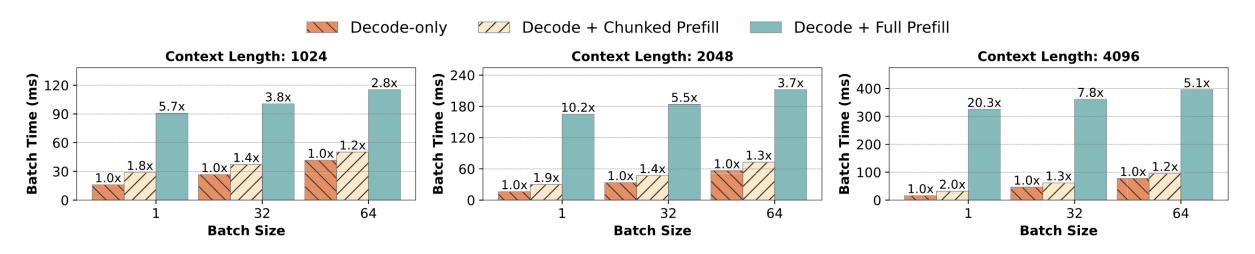
2^{nd} chunked prefill

	k0	k1	k2	k3	k4	k5	k6	k7	k8	k9	k10	k11
q	3 1	1	1	1	1	1	1	1	1	-	-	-
q	9 1	1	1	1	1	1	1	1	1	1	-	-
q1() 1	1	1	1	1	1	1	1	1	1	1	-
q1′	1	1	1	1 1 1 1	1	1	1	1	1	1	1	1

3rd chunked prefill

Design: Stall-Free Batching

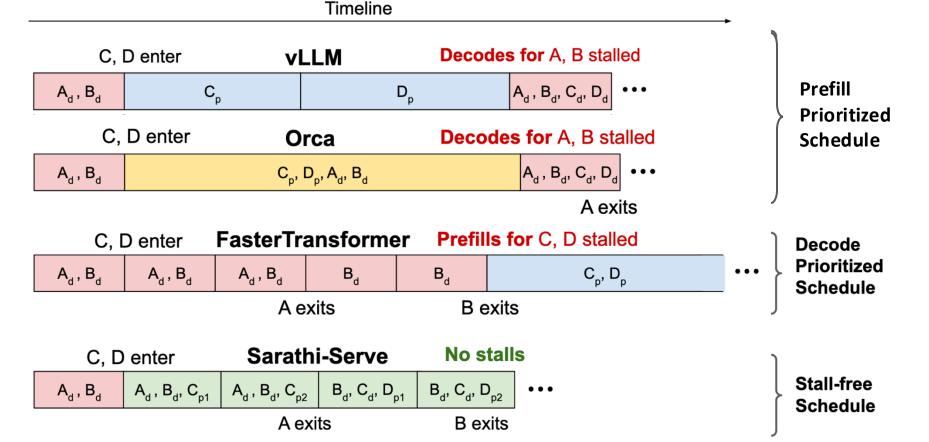
- Add prefill task to decode batch
 - ♦ Decode + full prefill
 - Decode + chunked prefill



Mistral-7B on one A100, with token count limitation for chunked prefill set to 256.

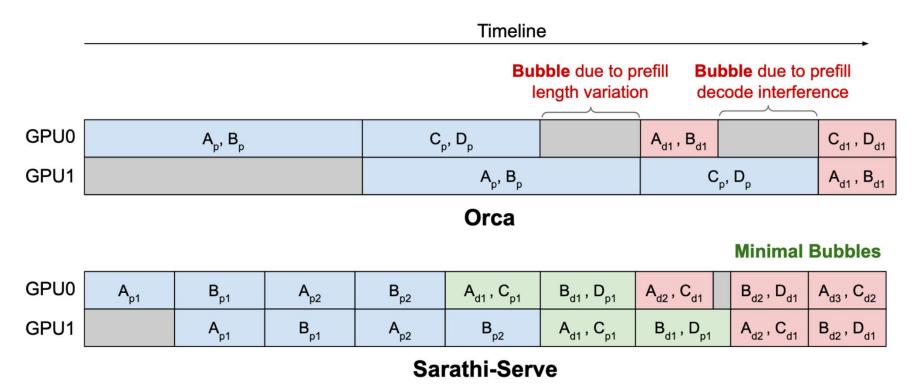
Design: Stall-Free Batching

- Stall-free batching coalesced with chunked prefill
 - Limit token count per batch to a certain value (token budget)
 - ♦ Goodness 1: efficiency for both prefill and decode



Design: Stall-Free Batching

- Stall-free batching coalesced with chunked prefill
 - Limit token count per batch to a certain value (*token budget*)
 - ♦ Goodness 2: pipeline bubble reduction



Practical Details

- Factors to Consider When Determining Token Budget
 - 1. TBT reduction -> smaller token budget
 - 2. Chunked prefill overhead -> larger token budget
 - Lower GPU utilization
 - Repeated KV cache access
 - 3. Tile-quantization -> token budget divided by tile size
 - 4. Pipeline bubble -> smaller token budget

Implementation

- Based on vLLM
- Paged chunk prefill kernel: FlashAttention v2 & FlashInfer
- Communication in TP & PP: NCCL

Outline

- Background and Existing Solutions
- Design and Implementation
- Evaluation
- Discussion

Evaluation: Setup

• Models, GPUs and SLOs

Model	Attention Mechanism	GPU Configuration	Memory Total (per-GPU)	relaxed SLO P99 TBT (s)	strict SLO P99 TBT (s)
Mistral-7B	GQA-SW	1 A100	80GB (80GB)	0.5	0.1
Yi-34B	GQA	2 A100 (TP2)	160GB (80GB)	1	0.2
LLaMA2-70B	GQA	8 A40 (TP4-PP2)	384GB (48GB)	5	1
Falcon-180B	GQA	4 A100 x 2 nodes (TP4-PP2)	640GB (80GB)	5	1

- KV reduction
 - GQA (Grouped-Query Attention): share KV across different heads of Q
 - SW (sliding window): limit attention context to fix length
- SLO
 - SLO for P99 TBT is set to 5x (strict) and 25x (relaxed) decode execution time without interference
 - TTFT is not included in SLO

Evaluation: Setup

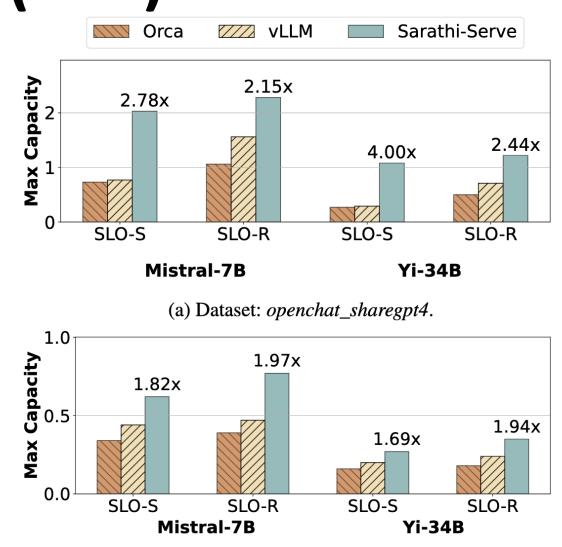
- Workload
 - Sampled from following datasets
 - Generated by a Poisson Process

Dataset	Prompt Tokens			Output Tokens		
	Median	Vedian P90 Std. N		Median	P90	Std.
openchat_sharegpt4	1730	5696	2088	415	834	101
arxiv_summarization	7059	12985	3638	208	371	265

- Baseline
 - vLLM and Orca
 - Where is FasterTransformer?

Evaluation: Capacity (RPS)

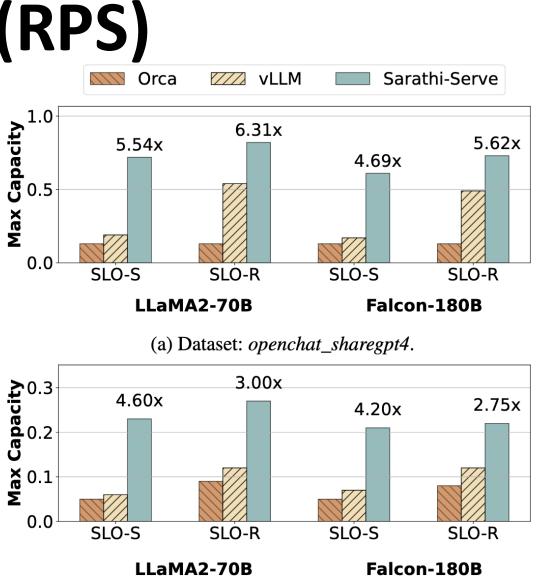
- Capacity improvement
 - up to 4.0x (compared to Orca)
 - ◆ up to 3.7x (compared to vLLM)
- SLO-S vs SLO-R
 - Orca and vLLM improves a lot
 - Decode stall hurts P99 TBT
 - Sarathi performs similarly
 - Various token budget
 - 2048 for relaxed SLO , 512 for strict SLO
 - Tight token budget helps tail latency



(b) Dataset: *arxiv_summarization*.

Evaluation: Capacity (RPS)

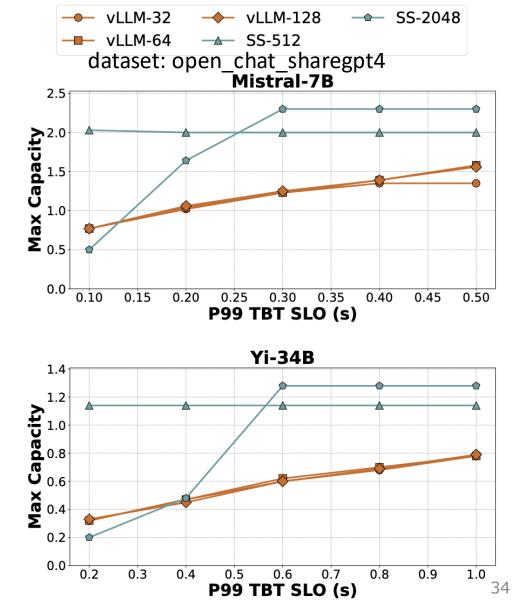
- PP = 2
- Capacity gain
 - up to 6.3x (compared to Orca)
 - up to 4.3x (compared to vLLM)
- Increment in capacity gain
 - Pipeline bubble reduction
- vLLM always outperforms Orca
 - Orca batch policy increases tail latency
 - Orca is not equipped with Paged-Attention



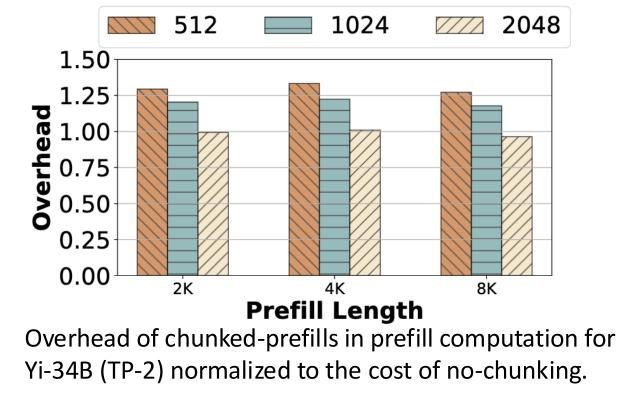
(b) Dataset: *arxiv_summarization*.

Evaluation: Throughput-latency Tradeoff

- Setup
 - vLLM with different batch size
 - Sarathi with different token budget
- vLLM
 - Capacity drops under strict SLO
 - Generation stall
- Sarathi-Serve
 - SS-512 performs consistently well
 - SS-2048 performs better under relaxed SLO
 - Choose optimal token budget for various SLO



Evaluation: Chunked Prefill Overhead



- Overhead is almost unchanged across different prefill length
- Smaller chunk -> higher overhead (from repeated KV access)
- ◆ token budget 512: about 25% overhead
- token budget 2048: negligible overhead

Evaluation: Ablation Study

Scheduler	openchat_s	haregpt4	arxiv_summarization		
	P50 TTFT	P99 TBT	P50 TTFT	P99 TBT	
hybrid-batching-only	0.53	0.68	3.78	1.38	
chunked-prefill-only	1.04	0.17	5.38	0.20	
sarathi-serve (combined)	0.76	0.14	3.90	0.17	

TTFT and TBT latency measured in seconds for Yi-34B TP2 with a token budget of 1024.

- Impact of individual techniques
 - ♦ Hybrid-batching: prefill prioritizing, bad P99 TBT
 - Chunked-prefill: decode prioritizing, bad P50 TTFT
 - ◆ Sarathi-serve: optimal P99 TBT as well as P50 TTFT

Outline

- Background and Existing Solutions
- Design and Implementation
- Evaluation
- Discussion

Discussion

- Pros
 - Identify the throughput-latency trade-off in LLM serving
 - Comprehensive analysis of cost of prefill and decode
 - Chunked prefill reduces batch latency with marginal overhead
 - ◆ Stall-free batching unifies different kinds of batch (P, D, and P+D)
- Cons
 - Insufficient comparison to FasterTransformer
 - ◆ Capacity does not consider SLO for TTFT, only TBT