
1

Taming Throughput-Latency Tradeoff in LLM 

Inference with Sarathi-Serve

OSDI’ 24

Presented by Yinhe Chen, Dongqi Tian



⚫ Background and Existing Solutions

⚫ Design and Implementation

⚫ Evaluation

⚫ Discussion

2

Outline



3

Auto-regressive Nature of LLMs

San Francisco is 

Iteration 1

a

Iteration 2

city

Iteration 3



⚫ LLM inference serving request goes through two phases

4

Two Phases of LLM Inference

San Francisco is 

Iteration 1

a

Iteration 2

city

Iteration 3

Prefill Decode

1K token or more
（long task)

process 1 token at a time
(short task)



⚫ Latency
◆ Time-to-first-token (TTFT)
◼ Time processing the prompts

◆ Time-between-token (TBT)
◼ Time interval between each 

generated token

⚫ Throughput
◆ Maximum RPS the system 

can serve

5

Performance Metrics

Prefill Decode 1 Decode 2

t1 t2

TTFT TBT1 TBT2

t0 t3

user prompt token 1 token 2 token 3

How to optimizing both throughput and latency?



⚫ Batching: process tokens from different requests concurrently
⚫ Batching enhances the decoding throughput

6

Batching LLM Inference

Timeline

Request
A,B enter

Ap Bp Ad,Bd Ad,Bd

Batched decodePrefill

Mistral-7B on 1 A100, prompt length = 1024Example of batch decode



⚫ Single GPU HBM is limited
◆ OPT-175B needs 9 A100-40G

◆ Caching KV further accelerates

⚫ Splitting model and KV to multi-GPU
◆ Tensor parallelism (TP)
◼ TP involves high communication cost

◼ Inefficient for cross node network

◆ Pipeline parallelism (PP)
◼ PP only needs to communicate by layer

◼ Suitable for cross node network

7

Multi-GPU LLM Inference
GPU0

GPU1

GPU0

GPU1

Data

Data

Data

Tensor parallelism

Pipeline parallelism 

high comm. 
overhead

less comm. 
overhead



⚫ Existing works either prioritize prefill or decode

8

Existing Systems

vLLM [SOSP 23]

Orca [OSDI 22]

FasterTransformer (NV)



⚫ Either throughput or latency is sacrificed

9

Throughput-latency tradeoff

vLLM [SOSP 23]

Orca [OSDI 22]

FasterTransformer (NV)

Prefill finished early -> Large batch -> High throughput 
Decode stall -> High latency

Decode without interference -> Low latency
Prefill stall -> Insufficient decode to batch -> Poor throughput 



⚫ Generation stall can last over seconds 

⚫ Increasing load can significantly increase tail latency

10

Throughput-latency tradeoff

Generation stall High tail latency



⚫ Pipeline bubbles can waste GPU cycles

11

Pipeline Bubbles

Timeline

Ap,BpGPU0

GPU1 Ap,Bp

Cp,Dp

Cp,Dp

Ad,Bd …

…

Cd,Dd

Ad,Bd

Bubble 1 Bubble 2

Bubble 1 caused by 
prefill length variation

Bubble 2 caused by 
prefill decode difference



⚫ FasterTransformer
◆ Decode-prioritizing

◆ Poor throughput

⚫ vLLM
◆ Prefill-prioritizing

◆ High latency

⚫ Orca
◆ Prefill-prioritizing

◆ Prefill interferes decode

⚫ All involve pipeline bubbles

12

Current LLM serving systems



⚫ Background and Existing Solutions

⚫ Design and Implementation

⚫ Evaluation

⚫ Discussion

13

Outline



⚫ Linear layer dominates in both prefill & decode
◆ Therefore, we focus on cost of linear layer

14

Cost Analysis of Prefill & Decode

Prefill and decode time with different input sizes
for Mistral-7B running on single A100 GPU.



⚫ Linear layer arithmetic intensity varies with number of tokens
◆ Prefill: full prompt -> high arithmetic intensity (compute bound)

◆ Decode: generated token -> low arithmetic intensity (memory bound)

15

Cost Analysis of Prefill & Decode

Arithmetic intensity trend for LLaMA2-70B linear operations 
with different number of token running on four A100s.

T_comp > T_mem

T_comp < T_mem

T_comp = T_mem



⚫ Linear layer arithmetic intensity varies with number of tokens
◆ Prefill: full prompt -> high arithmetic intensity (compute bound)

◆ Decode: generated token -> low arithmetic intensity (memory bound)

16

Cost Analysis of Prefill & Decode

Arithmetic intensity trend for LLaMA2-70B linear operations 
with different number of token running on four A100s.

T_comp > T_mem

T_comp < T_mem

T_comp = T_mem Batch prefill & decode together?



Steady

⚫ Linear layer execution time as function of input length
◆ Marginal increase for input length < 512 (memory bound)

◆ Linear increase for input length > 512 (compute bound)

17

Cost Analysis of Prefill & Decode

Linear layer execution time as function of number of tokens in a batch 
for LLaMA2-70B on A100(s) with different tensor parallel degrees.



Steady

⚫ Linear layer execution time as function of input length
◆ Marginal increase for input length < 512 (memory bound)

◆ Linear increase for input length > 512 (compute bound)

18

Cost Analysis of Prefill & Decode

Linear layer execution time as function of number of tokens in a batch 
for LLaMA2-70B on A100(s) with different tensor parallel degrees.

In practice, prefill often > 1024 tokens.

Dataset Prompt length

Median P90

openchat_sharegpt4 1730 5696

arxiv_summarization 7059 12985



⚫ Arithmetic intensity
◆ Prefill: high intensity 

◆ Decode: low intensity 

⚫ Execution time is decided by token count
◆ Marginal increase initially -> marginal batching overhead

◆ Then linear growth -> increasing batching overhead

19

Brief Summary

Batching prefill & decode seems great!

Limiting token count ensures low latency and efficiency.



20

Design

How can we batch prefill and decode while limiting token count?
[Chunked Prefill] Split long prefill into several short chunks

[Stall-free batching] Batch prefill and decode together w.o. stall



⚫ Full prefill attention

21

Design: Chunked Prefill

mask, softmax

mask = V =

×

Q K Osoftmax(mask(QK))

× V



⚫ Full prefill attention

22

Design: Chunked Prefill

mask, softmax

mask = V =

× V

Q K Osoftmax(mask(QK))

⚫ Chunked prefill attention: chunk 1

mask, softmax

mask = V1 =

× V1

Q1 K1
O1softmax(mask(Q1K1))

×

×



⚫ Full prefill attention

23

Design: Chunked Prefill

mask, softmax

mask = V =

× V

Q K Osoftmax(mask(QK))

⚫ Chunked prefill attention: chunk 2

Q2 K O2softmax(mask(Q2K))

mask, softmax

mask = V =

× V

Full prefill = Conjunct (chunk 1, chunk 2)

cached
cached

×

×



⚫ Chunked prefill attention masks

24

Design: Chunked Prefill

1st chunked prefill

2nd chunked prefill

3rd chunked prefill



⚫ Add prefill task to decode batch
◆ Decode + full prefill

◆ Decode + chunked prefill

25

Design: Stall-Free Batching

Mistral-7B on one A100, with token count 
limitation for chunked prefill set to 256.



26

Design: Stall-Free Batching

Prefill
Prioritized
Schedule

⚫ Stall-free batching coalesced with chunked prefill
◆ Limit token count per batch to a certain value (token budget)

◆ Goodness 1: efficiency for both prefill and decode



⚫ Stall-free batching coalesced with chunked prefill
◆ Limit token count per batch to a certain value (token budget)

◆ Goodness 2: pipeline bubble reduction

27

Design: Stall-Free Batching



⚫ Factors to Consider When Determining Token Budget
1. TBT reduction -> smaller token budget

2. Chunked prefill overhead -> larger token budget
◼ Lower GPU utilization

◼ Repeated KV cache access

3. Tile-quantization -> token budget divided by tile size

4. Pipeline bubble -> smaller token budget

⚫ Implementation
◆ Based on vLLM

◆ Paged chunk prefill kernel: FlashAttention v2 & FlashInfer

◆ Communication in TP & PP: NCCL

28

Practical Details



⚫ Background and Existing Solutions

⚫ Design and Implementation

⚫ Evaluation

⚫ Discussion

29

Outline



⚫ Models, GPUs and SLOs

30

Evaluation: Setup

Model Attention
Mechanism

GPU
Configuration

Memory
Total (per-GPU)

relaxed SLO
P99 TBT (s)

strict SLO
P99 TBT (s)

Mistral-7B GQA-SW 1 A100 80GB (80GB) 0.5 0.1

Yi-34B GQA 2 A100 (TP2) 160GB (80GB) 1 0.2

LLaMA2-70B GQA 8 A40 (TP4-PP2) 384GB (48GB) 5 1

Falcon-180B GQA 4 A100 x 2 nodes (TP4-PP2) 640GB (80GB) 5 1

◆ KV reduction
◼ GQA (Grouped-Query Attention): share KV across different heads of Q

◼ SW (sliding window): limit attention context to fix length

◆ SLO
◼ SLO for P99 TBT is set to 5x (strict) and 25x (relaxed) decode execution time without interference

◼ TTFT is not included in SLO



⚫ Workload
◆ Sampled from following datasets

◆ Generated by a Poisson Process

31

Evaluation: Setup

Dataset Prompt Tokens Output Tokens

Median P90 Std. Median P90 Std.

openchat_sharegpt4 1730 5696 2088 415 834 101

arxiv_summarization 7059 12985 3638 208 371 265

⚫ Baseline
◆ vLLM and Orca 
◆ Where is FasterTransformer?



⚫ Capacity improvement
◆ up to 4.0x (compared to Orca)

◆ up to 3.7x (compared to vLLM)

⚫ SLO-S vs SLO-R
◆ Orca and vLLM improves a lot
◼ Decode stall hurts P99 TBT

◆ Sarathi performs similarly
◼ Various token budget

◼ 2048 for relaxed SLO , 512 for strict SLO

◼ Tight token budget helps tail latency 

32

Evaluation: Capacity (RPS)



⚫ PP = 2

⚫ Capacity gain
◆ up to 6.3x (compared to Orca)

◆ up to 4.3x (compared to vLLM)

⚫ Increment in capacity gain
◆ Pipeline bubble reduction

⚫ vLLM always outperforms Orca
◆ Orca batch policy increases tail latency

◆ Orca is not equipped with Paged-Attention

33

Evaluation: Capacity (RPS)



⚫ Setup
◆ vLLM with different batch size

◆ Sarathi with different token budget

⚫ vLLM
◆ Capacity drops under strict SLO

◆ Generation stall

⚫ Sarathi-Serve
◆ SS-512 performs consistently well

◆ SS-2048 performs better under relaxed SLO

◆ Choose optimal token budget for various SLO

34

Evaluation: Throughput-latency Tradeoff
dataset: open_chat_sharegpt4



◆ Overhead is almost unchanged across different prefill length

◆ Smaller chunk -> higher overhead (from repeated KV access) 

◆ token budget 512: about 25% overhead

◆ token budget 2048: negligible overhead
35

Evaluation: Chunked Prefill Overhead

Overhead of chunked-prefills in prefill computation for 
Yi-34B (TP-2) normalized to the cost of no-chunking.



⚫ Impact of individual techniques
◆ Hybrid-batching: prefill prioritizing, bad P99 TBT

◆ Chunked-prefill: decode prioritizing, bad P50 TTFT

◆ Sarathi-serve: optimal P99 TBT as well as P50 TTFT

36

Evaluation: Ablation Study
Scheduler openchat_sharegpt4 arxiv_summarization

P50 TTFT P99 TBT P50 TTFT P99 TBT

hybrid-batching-only 0.53 0.68 3.78 1.38

chunked-prefill-only 1.04 0.17 5.38 0.20

sarathi-serve (combined) 0.76 0.14 3.90 0.17

TTFT and TBT latency measured in seconds for Yi-34B 
TP2 with a token budget of 1024.



⚫ Background and Existing Solutions

⚫ Design and Implementation

⚫ Evaluation

⚫ Discussion

37

Outline



⚫ Pros
◆ Identify the throughput-latency trade-off in LLM serving

◆ Comprehensive analysis of cost of prefill and decode 

◆ Chunked prefill reduces batch latency with marginal overhead

◆ Stall-free batching unifies different kinds of batch (P, D, and P+D)

⚫ Cons
◆ Insufficient comparison to FasterTransformer

◆ Capacity does not consider SLO for TTFT, only TBT

38

Discussion


	background
	Slide 1
	Slide 2: Outline
	Slide 3: Auto-regressive Nature of LLMs
	Slide 4: Two Phases of LLM Inference
	Slide 5: Performance Metrics
	Slide 6: Batching LLM Inference
	Slide 7: Multi-GPU LLM Inference
	Slide 8: Existing Systems
	Slide 9: Throughput-latency tradeoff
	Slide 10: Throughput-latency tradeoff
	Slide 11: Pipeline Bubbles
	Slide 12: Current LLM serving systems

	design
	Slide 13: Outline
	Slide 14: Cost Analysis of Prefill & Decode
	Slide 15: Cost Analysis of Prefill & Decode
	Slide 16: Cost Analysis of Prefill & Decode
	Slide 17: Cost Analysis of Prefill & Decode
	Slide 18: Cost Analysis of Prefill & Decode
	Slide 19: Brief Summary
	Slide 20: Design
	Slide 21: Design: Chunked Prefill
	Slide 22: Design: Chunked Prefill
	Slide 23: Design: Chunked Prefill
	Slide 24: Design: Chunked Prefill
	Slide 25: Design: Stall-Free Batching
	Slide 26: Design: Stall-Free Batching
	Slide 27: Design: Stall-Free Batching
	Slide 28: Practical Details

	evaluation
	Slide 29: Outline
	Slide 30: Evaluation: Setup
	Slide 31: Evaluation: Setup
	Slide 32: Evaluation: Capacity (RPS)
	Slide 33: Evaluation: Capacity (RPS)
	Slide 34: Evaluation: Throughput-latency Tradeoff
	Slide 35: Evaluation: Chunked Prefill Overhead
	Slide 36: Evaluation: Ablation Study
	Slide 37: Outline
	Slide 38: Discussion


