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Background-DM

Insufficient Memory Utilization in Cloud (20%~60%[1-4])

[1] MemTrade@SIGMERTICS’23, Borg@Eurosys’20, LegoOS@OSDI’18

[2] Google Production Cluster Trace. https://github.com/google/cluster-data

[3] Alibaba Production Cluster Trace. https://github.com/alibaba/clusterdata

[4] Snowflake Dataset. https://github.com/resource-disaggregation/snowset
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Background-DM

Disaggregated Memory(DM)
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Background-DM

Disaggregated Memory(DM)

Need Distributed Transaction

Atomic operation execution

Data consistency and reliability

Provide

Guarantee
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Background-Transaction
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Background-Transaction
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Background-Transaction on DM
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Existing Studies

Single-versioning distributed transaction system for DM[1]

limit concurrency

[1] FORD@FAST’22

A(version1) B(version1)
Txn2 overwrites B

A(version1) B(version2)

Txn1 reads A and B Txn1 abort due to version change

High logging overhead

Coordinator Memory Node
Written

Data

Write-

ahead

log
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Existing Studies

Multi-versioning helps address limitations of single-versioning
Allow more concurrency

[1] FORD@FAST’22

A(version1) B(version1)
Txn2 adds B(version2)

A(version1) B(version1)

Txn1 reads A and B

Reduce logs
B(version2)

A(version1) B(version1)

B(version2)

old version act as undo log
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Does Multi-Versioning Work on DM?

Existing systems are based on monolithic servers
Inefficient linked version chain does not fit DM

[1] DST@NSDI’21 [2] Hekaton@SIGMOD’13 [3] Aurogon@FAST’22

[4] FaRMv2@SIGMOD’19 [5] Neumann et al.@SIGMOD’15 [6] NAM-DB@VLDB’17

key value version1 Ptr

value version2 Ptr

value version3 Ptr

key value version3 Ptr

value version2 Ptr

value version1 Ptr

Old-to-new chain[1-3] New-to-old chain[4-6]

Incompatible transaction protocol
• Frequently consumes CPU of each data node[1,4,5]

• Memory node stores data but only has weak CPU
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Design

Clients(apps)

Coordinators DB Tables

Txn Protocol Memory Store

Indexes

Compute Pool Memory Pool

System Overview

Consecutive

Version

Tuple

One-sided

RDMA-based

MVCC

CVT
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Design

Clients(apps)

Coordinators DB Tables

Txn Protocol Memory Store

Indexes

Compute Pool Memory Pool

2.RDMA connect

1.Load data3.Issue txn requests

4.Execute,

Commit/Abort

One-sided RDMA

READ/WRITE/CAS
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Version
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Consecutive Version Tuple
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Consecutive Version Tuple
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Reducing Memory Overhead
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Number of versions to store

Number of Versions: depending on workload characteristics
• Read-write contention
• Number of accessed Records
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Coordinator-Active Garbage Collection

A CVT runs out of space - GC required
Prior systems track transaction states
• CPU in memory nodes is too weak to frequently track

High overhead for compute nodes

to maintain remote states

Simple, no tracking

Low abort rate with fast RDMA
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Anchor-Assisted Read
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Anchor-Assisted Read
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One-Sided RDMA-Based MVCC
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Evaluation

Workloads
• KV Store

• 8B key + 40B value

• Skewed (skewness tunable)

• TATP
• RO/RW: 80%/20%, max 48B

• SmallBank
• RO/RW: 15%/85%, 16B

• TPCC
• RO/RW: 8%/92%, max 672B

Comparisons
• FaRMv2@SIGMOD’19 (referred as FaRMv2-DM)

• FORD@FAST’22

Intel Xeon 
Gold 6330 CPU
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Performance of Version Structures

KV Store
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End-to-end Performance
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Memory Overhead 
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Conclusion

Existing multi-version distributed transactions do not fit DM
• Inefficient linked version chain

• Incompatible transaction protocol

Motor: a holistic multi-version design for DM
• Consecutive version tuple structure (memory pool)

• One-sided RDMA MVCC based on CVT (compute pool)

Benefits
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