
Motor: Enabling Multi-Versioning for Distributed Transactions on

Disaggregated Memory

Ming Zhang, Yu Hua, Zhijun Yang
Huazhong University of Science and Technology, China

Presented by Sen Han

2

Background-DM

Insufficient Memory Utilization in Cloud (20%~60%[1-4])

[1] MemTrade@SIGMERTICS’23, Borg@Eurosys’20, LegoOS@OSDI’18

[2] Google Production Cluster Trace. https://github.com/google/cluster-data

[3] Alibaba Production Cluster Trace. https://github.com/alibaba/clusterdata

[4] Snowflake Dataset. https://github.com/resource-disaggregation/snowset

3

Background-DM

Disaggregated Memory(DM)

4

Background-DM

Disaggregated Memory(DM)

Need Distributed Transaction

Atomic operation execution

Data consistency and reliability

Provide

Guarantee

5

Background-Transaction

6

Background-Transaction

7

Background-Transaction on DM

8

Existing Studies

Single-versioning distributed transaction system for DM[1]

limit concurrency

[1] FORD@FAST’22

A(version1) B(version1)
Txn2 overwrites B

A(version1) B(version2)

Txn1 reads A and B Txn1 abort due to version change

High logging overhead

Coordinator Memory Node
Written

Data

Write-

ahead

log

9

Existing Studies

Multi-versioning helps address limitations of single-versioning
Allow more concurrency

[1] FORD@FAST’22

A(version1) B(version1)
Txn2 adds B(version2)

A(version1) B(version1)

Txn1 reads A and B

Reduce logs
B(version2)

A(version1) B(version1)

B(version2)

old version act as undo log

10

Does Multi-Versioning Work on DM?

Existing systems are based on monolithic servers
Inefficient linked version chain does not fit DM

[1] DST@NSDI’21 [2] Hekaton@SIGMOD’13 [3] Aurogon@FAST’22

[4] FaRMv2@SIGMOD’19 [5] Neumann et al.@SIGMOD’15 [6] NAM-DB@VLDB’17

key value version1 Ptr

value version2 Ptr

value version3 Ptr

key value version3 Ptr

value version2 Ptr

value version1 Ptr

Old-to-new chain[1-3] New-to-old chain[4-6]

Incompatible transaction protocol
• Frequently consumes CPU of each data node[1,4,5]

• Memory node stores data but only has weak CPU

11

Design

Clients(apps)

Coordinators DB Tables

Txn Protocol Memory Store

Indexes

Compute Pool Memory Pool

System Overview

Consecutive

Version

Tuple

One-sided

RDMA-based

MVCC

CVT

12

Design

Clients(apps)

Coordinators DB Tables

Txn Protocol Memory Store

Indexes

Compute Pool Memory Pool

System Overview

1.Load data

Consecutive

Version

Tuple

One-sided

RDMA-based

MVCC

CVT

13

Design

Clients(apps)

Coordinators DB Tables

Txn Protocol Memory Store

Indexes

Compute Pool Memory Pool

2.RDMA connect

1.Load data

Consecutive

Version

Tuple

One-sided

RDMA-based

MVCC

System Overview

CVT

14

Design

Clients(apps)

Coordinators DB Tables

Txn Protocol Memory Store

Indexes

Compute Pool Memory Pool

2.RDMA connect

1.Load data3.Issue txn requests

Consecutive

Version

Tuple

One-sided

RDMA-based

MVCC

System Overview

CVT

15

Design

Clients(apps)

Coordinators DB Tables

Txn Protocol Memory Store

Indexes

Compute Pool Memory Pool

2.RDMA connect

1.Load data3.Issue txn requests

4.Execute,

Commit/Abort

One-sided RDMA

READ/WRITE/CAS

Consecutive

Version

Tuple

One-sided

RDMA-based

MVCC

System Overview

CVT

16

Consecutive Version Tuple

17

Consecutive Version Tuple

18

Reducing Memory Overhead

19

Number of versions to store

Number of Versions: depending on workload characteristics
• Read-write contention
• Number of accessed Records

20

Coordinator-Active Garbage Collection

A CVT runs out of space - GC required
Prior systems track transaction states
• CPU in memory nodes is too weak to frequently track

High overhead for compute nodes

to maintain remote states

Simple, no tracking

Low abort rate with fast RDMA

21

Anchor-Assisted Read

22

Anchor-Assisted Read

23

One-Sided RDMA-Based MVCC

24

Evaluation

Workloads
• KV Store

• 8B key + 40B value

• Skewed (skewness tunable)

• TATP
• RO/RW: 80%/20%, max 48B

• SmallBank
• RO/RW: 15%/85%, 16B

• TPCC
• RO/RW: 8%/92%, max 672B

Comparisons
• FaRMv2@SIGMOD’19 (referred as FaRMv2-DM)

• FORD@FAST’22

Intel Xeon
Gold 6330 CPU

25

Performance of Version Structures

KV Store

26

End-to-end Performance

27

Memory Overhead

28

Conclusion

Existing multi-version distributed transactions do not fit DM
• Inefficient linked version chain

• Incompatible transaction protocol

Motor: a holistic multi-version design for DM
• Consecutive version tuple structure (memory pool)

• One-sided RDMA MVCC based on CVT (compute pool)

Benefits

Motor: Enabling Multi-Versioning for Distributed Transactions on

Disaggregated Memory

Ming Zhang, Yu Hua, Zhijun Yang
Huazhong University of Science and Technology, China

Thanks you for your attention

	幻灯片 1: Motor: Enabling Multi-Versioning for Distributed Transactions on Disaggregated Memory
	幻灯片 2: Background-DM
	幻灯片 3: Background-DM
	幻灯片 4: Background-DM
	幻灯片 5: Background-Transaction
	幻灯片 6: Background-Transaction
	幻灯片 7: Background-Transaction on DM
	幻灯片 8: Existing Studies
	幻灯片 9: Existing Studies
	幻灯片 10: Does Multi-Versioning Work on DM?
	幻灯片 11: Design
	幻灯片 12: Design
	幻灯片 13: Design
	幻灯片 14: Design
	幻灯片 15: Design
	幻灯片 16: Consecutive Version Tuple
	幻灯片 17: Consecutive Version Tuple
	幻灯片 18: Reducing Memory Overhead
	幻灯片 19: Number of versions to store
	幻灯片 20: Coordinator-Active Garbage Collection
	幻灯片 21: Anchor-Assisted Read
	幻灯片 22: Anchor-Assisted Read
	幻灯片 23: One-Sided RDMA-Based MVCC
	幻灯片 24: Evaluation
	幻灯片 25: Performance of Version Structures
	幻灯片 26: End-to-end Performance
	幻灯片 27: Memory Overhead
	幻灯片 28: Conclusion
	幻灯片 29: Motor: Enabling Multi-Versioning for Distributed Transactions on Disaggregated Memory

