
PowerInfer: Fast Large Language Model Serving with a
Consumer-grade GPU

Group: Haiquan Wang, Jiaqi Ruan and Jia He
2024-12-10

2

2

❑Background

❑Related Work

❑Motivation

❑PowerInfer

❑Evaluations

Agenda

3

3

Background - The trends of LLMs

The market for
large models will
continue to grow
in the future

Admitting the top 2,000
students who are best at
using ChatGPT is a very
interesting approach

Applications of LLMs are continuously emerging

Chat Robot Text2Img Code Assistant

…

4

4

Background - LLM inference

● The process starts with a prompt and unfolds in two phases：
○ The prompt phase outputs an initial token
○ the generation phase sequentially produces tokens until a

maximum limit or an end-of-sequence (<EOS>) token is reached

Figure cited from Gong Ping's group

5

5

Background - LLM infer with consumer-grade GPU

4090

A100

Memory PricePeak TFLOPs
(FP16)

24 GB

80 GB

330

312 $18000

$2300

By using PowerInfer, the Llama 70B model can be deployed on the 4090. Combined with
quantization techniques, it can further support inference with the OPT 175B model.

6

6

Background - LLM infer with consumer-grade GPU

https://docs.google.com/file/d/1p2iPUeXFRpYY_bWCiss3DnW9rzODJ2kO/preview

7

7

Background - LLM infer with consumer-grade GPU

● Spending 12% of the money can achieve 70% to 80% of the
performance of an A100.

● Although llama.cpp can run on the 4090, its performance is poor.

8

8

❑Background

❑Related Work

❑Motivation

❑PowerInfer

❑Evaluations

Agenda

9

9

● Model Quantization
○ Reduces the bit-precision of deep learning models which helps to reduce the model size and

accelerate inference
○ GPTQ（ICLR 23’）、MARLIN（MLSys 24’）、AWQ（MLSys 24’）

Drawback: Even deeply compressed models remain too large for consumer-grade GPUs. SOTA Method
AWQ can only hold up to 30B LLM on RTX4090 while PowerInfer can hold up to 70B without additional
quantization.

Related Work

10

10

● Offloading-based LLM Inference
○ GPU-Centric Offloading (FlexGen、DejaVu(UM)、SpecInfer)

■ Use CPU memory to store model parameters, computation only happens on GPU
■ Drawback: Huge data transfer overhead between CPU and GPU

○ GPU-CPU Hybrid Offloading (Llama.cpp)
■ Use both CPU and GPU to store transformer layers and do serial computation
■ Drawback: Large dense computation on CPU results suboptimal latency

Related Work

GPU-Centric Offloading

GPU-CPU Hybrid Offloading

11

11

❑Background

❑Related Work

❑Motivation

❑PowerInfer

❑Evaluations

Agenda

12

12

Sparsity in LLM Inference

LLM inference shows a contextual sparsity where small, input-dependent sets of attention
heads and MLP neurons[1] lead to (nearly) the same output as the full model for any input.

Up to 80% sparsity on attention heads on average Up to 95% sparsity on MLP neurons on average
[1]: neuron can be defined as a specific row/column in a weight matrix

13

13

Sparsity Prediction
● Dive into Sparsity

○ Reason (take MLP layer as an example)
■ Activation Functions like ReLU selectively influence neuron activations in MLP

○ Effect
■ FLOPs can be drastically reduced by predicting non-important computations and

avoiding them, thus speeding up the inference process. DejaVu has done such work

Predictors here are small MLPs

0

0
0

14

14

Sparsity is prevalent

● For ReLU-based models, sparsity is the proportion of neurons with zero
activation.

● For SwiGLU-based models, it’s the proportion of neurons that can be
dynamically pruned with less than 1% impact on perplexity.

15

15

● Locality
○ A consistent group of neurons is frequently activated

Locality in LLM Sparse Inference

ReLUReLU

FC1 Weights FC1 Output
FC1 Input1

FC1 Weights FC1 Output
FC1 Input2

Hot neurons are always activated across all inputs, while cold neurons are not.

Token 1 Token 2

16

16

Locality in LLM Sparse Inference

● GPU-CPU Hierarchical Architecture● The Locality in LLM Sparse Inference

 Small subset of hot neurons is always activated across various inputs
 Majority cold neurons are selectively activated based on the inputs

Matching them together: Hot neurons should be placed on GPU while cold neurons on CPU

 GPU has less memory but computes fast
 CPU has more memory but computes slow

CPU
Intel i9-13900K

GPU
4090

Mem.: 24GB (1.01TB/s)
Comp.: 330TFLOPS (fp16)

Mem.: 192GB (67.2GB/s)
Comp.: 846GFLOPS (fp32)

(a) MLP Block (b) Entire Model

17

17

Locality in LLM Computation

● Fast In-CPU Computation
○ with the small number of activated neurons and the small batch sizes typical in local

deployments, computing activated cold neurons on the CPU is faster than transferring
and computing them on the GPU

18

18

Reduce FLOPS

What If We Combine Them Together…

Sparsity

Locality

PowerInfer

Offload Storage and Computation
of Cold Neurons

Enable Fast LLM Inference on Consumer-Grade GPU

19

19

❑Background

❑Related Work

❑Motivation

❑PowerInfer

❑Evaluations

Agenda

20

20

Design - PowerInfer Overview
❏ PowerInfer

❏ Exploit the high sparsity and locality inherent in LLM inference

Technique Contributions:
1. How to determine neuron

placement
2. How to efficiently execute

sparse operators in a GPU-CPU
hybrid manner

21

21

❏ How to decide which neuron is hot or cold?
❏ Insight: the hot neurons in general corpus are also activated

frequently across different scenarios
❏ Profile the activation information of neurons across multiple

general datasets
❏ Hot or cold neuron is defined by its activation frequency obtained

during profiling

Design - Neuron Placement Policy

22

22

Design - Neuron Placement Policy

Comm

Memory

[1]: To expedite the process, aggregating neurons within each layer into groups.
[2]: In LLM inference, particularly with smaller batch sizes and high sparsity, the limiting factor is memory bandwidth.

neurons on CPU time - neurons on GPU time[2] ≥ sync

the memory of neurons ≤ GPU and CPU capability
Constraint

Target: Maximize the placement of high-frequency neurons[1] on the GPU
❏ How to decide neuron placement?

23

23

Design - Adaptive Sparsity Predictors
The online predictor reduces comp by processing only the predicted activated neurons.

How to add Online Predictor on a single consumer gpu?

stored in GPU （low latency）

Large (accuracy) occupy gpu memory

a useful online predictor 4090 OOM!

24

24

Design - Adaptive Sparsity Predictors
Insight：

PowerInfer predictor：
Each layer has adaptive iterative training non-fixed-size predictors[1].

 High skewness[1] reduce predicator hidden size, vice versa

[2] High skewness indicate that neuron activation values are too concentrated or sparse, limiting the neural network's expressive capacity.

With high model sparsity and skewness, a small predictor can achieve the same accuracy.

The sparsity of the layer decide the origin predictor hidden size
Adaptive

Iterative Training stops when the model's perplexity with the predictor approximates that of the baseline model.

[1] Predictors training on the WikiText-2 dataset

Extra memory footprint: 6%

25

25

Design - Neuron-aware Operator
The Neuron-aware Operator reduces comp by directly computing activated neurons
why need design Neuron-aware operator

require dynamic conversion of sparse to denseSOTA sparse-aware[1]

[1]: SparTA, FlashLLM, cuSPARSE, PIT
[2]: AVX2 is a CPU instruction set extension that accelerates integer and floating-point operations

static compilation

not support GPU-CPU hybrid execution

PowerInfo sparse operator:
GPU: Focus on individual row/colomn vector computation (vector computation are advantageous

in small batch)
CPU: Assign a neuron-aware operator to multiple cores, dividing neurons into smaller batches for

concurrent activation checking and hardware vector extensions like AVX2[2] optimizing.

PowerInfo scenario: Dynamic sparsity, GPU-CPU hybrid execution

26

26

❑Background

❑Related Work

❑Motivation

❑PowerInfer

❑Evaluations

Agenda

27

27

● Hardware:
○ PC-High: Intel i9-13900K processor (eight 5.4GHz cores), 192GB host

memory (bandwidth of 67.2 GB/s), an NVIDIA RTX 4090 GPU (24GB),
and PCIe 4.0 interface (64GB/s bandwidth)

○ PC-Low: Intel i7-12700K processor (eight 4.9GHz cores), 64GB host
memory (bandwidth 38.4 GB/s), an NVIDIA RTX 2080Ti GPU (11GB),
and PCIe 3.0 interface (32GB/s bandwidth)

● Models:

Evaluations - Setup

28

28

● Batch size:
○ 1 in overall experiment

● Baseline:
○ llama.cpp: LLM inference framework for local scenarios with GPU-CPU

hybrid offloading
○ SpecInfer: Support speculative inference and GPU-Centric offloading

Evaluations - Baseline

29

29

Evaluations - Overall Results

PC-High
● outperforming

llama.cpp and
SpecInfer with average
speedups of 7.23× and
6.19×

● Longer output seq
length, higher speedup

30

30

Evaluations - Overall Results

PC-Low
● performance

enhancement over
llama.cpp and
SpecInfer, averaging a
speedup of 4.71×, 5.97
× and peaking at 7.06×
and 7.47×

31

31

Evaluations - Accuracy

PowerInfer causes negligible loss in inference accuracy,
regardless of the model size or type of task

32

32

Evaluations - Performance Breakdown

● PO: add PowerInfer’s predictors and neuron-aware operators into llama.cpp
● Engine: PowerInfer’s hybrid inference engine
● Policy: integrating our optimized policy

33

33

Evaluations - Neuron-aware Operators

Focus on sparse matrix-vector multiplication using a [4096, 4096] × [4096, 1]

Traditional sparse operators do not outperform
dense computation until sparsity surpasses 87%

34

34

Evaluation - Neuron Load Distribution

GPU processes 70% of activated
neurons in PowerInfer

The GPU's neuron load is reduced
to 42% due to limitations in GPU
memory.

35

35

Evaluation - Batch Inference

As the batch size increases, the speed-up
ratio offered by PowerInfer decreases.

36

36

Problems:
● The necessity of the current design under a large batch size
● Longer sequences will result in greater KV cache storage overhead, and KV

cache offloading also needs to be considered
● If the model's memory demand greatly exceeds GPU memory, most neurons

will be placed on the CPU, diluting PowerInfer's benefits.

Conclusion

37

37

❑Thank you!

❑Q&A

End

