LoongServe: Efficiently Serving Long-Context Large Language Models with Elastic Sequence Parallelism

Bingyang Wu¹, Shengyu Liu¹, Yinmin Zhong¹, Peng Sun², Xuanzhe Liu¹, Xin Jin¹ ¹Peking University, ²Shanghai Al Lab

Presenter: Zewen Jin, Hongrui Zhan, Shen Fu @ USTC

Outline

Background & Motivation

✤Prefill & Decoding

Sequence Parallelism

Design

Elastic Sequence ParallelismScheduling w/ Cost Model

□Implementation

Discussion

Background – Prefill & Decoding

KV Cache

Storing the KV tensors to avoid recomputation in decoding

✤Huge KV cache footprint for a sentence of 1M tokens for Llama2-7B

>1000000(seqlen)*4096(hidden_size)*32(layer)*2(k+v)*2(fp16)/1024³

= 488.3GiB

Background – Prefill & Decoding

Chunked prefill: fine-grained scheduling

to avoid prefill or decoding delayed for too long

Background – Prefill & Decoding

□P/D disaggregation: dedicated GPUs for P/D

5

Background – Sequence Parallelism

Ring Attention

Circulating kv_i among GPUs to get complete qkv results

Motivation & Challenge

Omega Motivation:

Static setup vs dynamic requirement

- > prefill: different lengths across requests
- > decoding: increasing lengths for each request
- ➢ prefill→decoding: different requirements for different phases

Motivation & Challenge

Motivation:

- Static setup vs dynamic requirement
- Sequence Parallelism with KV cache
 - > SP natively supports KV cache replication
 - ➤ SP is comparable to TP

Motivation & Challenge

Omega Motivation:

Static setup vs dynamic requirement

Elastic Sequence Parallelism

Challenge:

Migration overhead of KV Cache for scaling

- Fast scheduling in large searching space
 - > DoP of each batch, GPU grouping, request batching, KV cache placement

Design: Overview

□Elastic sequence parallelism

① ☆ Scale-down: prefill→decoding

② ◆ Scale-up: decoding (length /)

Scheduling w/ cost models

Request batching
GPU grouping
DoP scheduling
KV cache placement

Design: Overview

□Elastic sequence parallelism

- **① ☆** Scale-down: prefill→decoding
- ② ◆ Scale-up: decoding (length /)

ESP: Group Scale-down (Prefill→Decoding)

DESP: proactive migration w/ SP

In SP, the KV cache chunks are inherently circulated among GPUs

> no additional overhead of KV cache migration

USTC Systems Reading Group

ESP: Group Scale-up (Decoding Length >)

Existing: Moving requests to new GPUs w/o huge KV cache

Problem: huge overhead of cache migration

ESP: Multi-master distributed decoding

 $\texttt{Orbital Compute } q_i, \, kv_i; \, \texttt{Ostore } kv_i \, in \, \text{local cache pool}; \, \texttt{Ostirculate } q_i$

♦ ④ Reduce the results; ⑤ continue with layer_norm and FFN

Scheduling space:

- dispatch which requests from a pending queue
- how to batch requests

✤DoP

✤allocate which GPUs

Dispatching

- *****FCFS (First-Come-First-Serve)
- Adding requests until
 - ➤ memory is not enough
 - to avoid eviction and recomputation
 - becoming compute-bound
 - to avoid slowdown
 - > preemption cost is too high for preempted batches
 - to avoid slowdown decoding batches too much

□Elastic instance allocation

- Adding idle instances to a batch
- If idle instances are not enough
 - > try to scale-down decoding instances and allocate for decoding
 - until too many KVs to migrate in decoding instances

✤If still not enough

> try to preempt decoding instances with most unused KV slots

□Batching

Group requests with the similar lengths
Use dynamic programming to minimize average TTFT
Avoid FFN to be compute-bound

□Elastic scaling plan generation

Scale-down: minimum DoP s.t. memory is enough
Scale-up: adding DoP until memory is enough

Implementation

□15k lines of code:

- Language: C++, CUDA, Python, and Triton
- Extended from Striped Attention
- Communication: Ray RPC, NCCL
- Reusing some components from vLLM and LightLLM
- Front end: similar to OpenAI API
- GitHub repo: https://github.com/LoongServe/LoongServe.

Evaluation: Setup

Workload: Poison

ShareGPT: 4-2.3k (short input, long output)

✤L-Eval: 2.7k-210.k (used in Qwen 1.5)

↔LV-Eval: 15.1k-497.3k

Mixed: ¹/₃ ShareGPT + ¹/₃ L-Eval + ¹/₃ LV-Eval

□Baseline:

◇vLLM[OSDI23]: fine-grained KV cache management
◇DeepSpeed-MII[arXiv24]: SplitFuse (seq_len ≤ 32k)
◇LightLLM w/ SplitFuse: open-source for long seq_len
◇DistServe[OSDI24]: P/D Disaggregation

Evaluation: Setup

Output Description

\$ per-token latency (end-to-end latency / number of tokens)
\$ SLO attainment (requiring P90 latency <= SLO)</pre>

Hardware:

☆A800 (80 GB) x 16

✤200 Gbps IB NiC x 4

✤400 GBps NVLink (full connectivity between each pair of GPUs)

□Model

LWM-1M-Text (Llama-2-7B + 1M seq_len)

Evaluation: Single-Node End-to-End (Decoding)

Evaluation: Single-Node End-to-End (Prefill)

Evaluation: Single-Node End-to-End (Both)

LoongServe throughput speedup

- ↔vLLM: up to 4.64x
- DeepSpeed-MII, LightLLM: up to 3.85x

DistServe: up to 5.81x

	System	Paralleism
	vLLM	TP=8
——	DeepSpeed-MII	TP=8
-	LightLLM	TP=8
_	DistServe	P(TP=4) D(TP=4)
	LoongServe	TP=2; ESP≤4

Evaluation: Two-Node End-to-End

LoongServe also outperforms

- ♦vLLM: up to 1.86x
- ✤LightLLM: up to 3.37x

SystemParalleism→vLLMTP=8, 2 nodes→LightLLMTP=8, 2 nodes→LoongServeTP=2; ESP≤8

> lower than one-node speedups (significant inter-node comm. overhead of SP)

□Benefit of ESP vs static parallelism

- □Scale-up: benefit and frequency
- **Overhead of scale-down and scale-up**
- **□Accuracy of LoongServe analytical model**

□Benefit of ESP vs static parallelism

◆P90 goodput: maximum throughput where P90 latency ≤ SLO
 ◆ESP outperforms static SP + TP schemes
 > speedup: 2.33x, 1.98x, 1.53x

□Scale-up: benefit and frequency

- ShareGPT: short input length, long output length
 - P90 goodput: 2.87x vs LoongServe w/o Scale-up
 - > necessary scale-up to handle dynamic workloads

□Overhead of scale-down: ≤2%

*additional KV cache copy operation to the cache pool

Different number of SP masters:

- Setup: 4 instances with 1/2/4 masters
- FFN*Projection executed in a single master
- Higher BS: lower latency
 - ➤ more tasks are parallelized
 - ≻4-master outperforms 1-master
- ✤Lower BS:
 - ➤ overhead of comm. and sync.
 - ➤ in worst cases,
 - 4-master is slower than 1-master by $\leq 10\%$

□Accuracy of LoongServe analytical model

♦≤10% deviation

>under different parallelism schemes and input lengths

Discussion

□Is two-node evaluation enough for LoongServe?

- More nodes enlarge the cache pool size
- More nodes involve higher inter-node comm. overhead of SP
- Maybe two-node setup is enough to serve a 7B model

Doubts:

- Zero-overhead scaling down?
 - > No when scaling down decoding instances to boost prefill instances

♦ Writing:

- > clarity: e.g., unclear KV cache migration scheduling when scaling
- ➤ mismatch with caption, code, etc.