
LoongServe: Efficiently Serving
Long-Context Large Language Models

with Elastic Sequence Parallelism

Bingyang Wu1, Shengyu Liu1, Yinmin Zhong1,

Peng Sun2, Xuanzhe Liu1, Xin Jin1

1Peking University, 2Shanghai AI Lab

Presenter: Zewen Jin, Hongrui Zhan, Shen Fu @ USTC

USTC Systems Reading Group 2

❑Background & Motivation

❖Prefill & Decoding

❖Sequence Parallelism

❑Design

❖Elastic Sequence Parallelism

❖Scheduling w/ Cost Model

❑Implementation

❑Evaluation

❑Discussion

Outline

USTC Systems Reading Group 3

❑KV Cache

❖Storing the KV tensors to avoid recomputation in decoding

❖Huge KV cache footprint for a sentence of 1M tokens for Llama2-7B

➢1000000(seqlen)*4096(hidden_size)*32(layer)*2(k+v)*2(fp16)/10243

= 488.3GiB

Background – Prefill & Decoding

Prefill: Generate KV Cache Decoding: Use KV Cache

USTC Systems Reading Group 4

❑Chunked prefill: fine-grained scheduling

❖to avoid prefill or decoding delayed for too long

Background – Prefill & Decoding

USTC Systems Reading Group 5

❑P/D disaggregation: dedicated GPUs for P/D

❖to avoid interference between P/D

❖to allocate dedicated parallel GPUs to P/D

➢Prefill: compute-bound; Decoding: memory-bound

Background – Prefill & Decoding

Prefill Decoding

Significant gain of Prefill
from adding TP degree

Less gain of Decoding
from adding TP degree

USTC Systems Reading Group 6

❑Ring Attention

❖Circulating kvi among GPUs to get complete qkv results

Background – Sequence Parallelism

USTC Systems Reading Group 7

❑Motivation:

❖Static setup vs dynamic requirement

➢prefill: different lengths across requests

➢decoding: increasing lengths for each request

➢prefill→decoding: different requirements for different phases

Motivation & Challenge

USTC Systems Reading Group 8

❑Motivation:

❖Static setup vs dynamic requirement

❖Sequence Parallelism with KV cache

➢SP natively supports KV cache replication

➢SP is comparable to TP

Motivation & Challenge

Prefill Decoding

USTC Systems Reading Group 9

❑Motivation:

❖Static setup vs dynamic requirement

❖Elastic Sequence Parallelism

❑Challenge:

❖Migration overhead of KV Cache for scaling

❖Fast scheduling in large searching space

➢DoP of each batch, GPU grouping, request batching, KV cache placement

Motivation & Challenge

USTC Systems Reading Group 10

② ①

❑Elastic sequence parallelism

❖Scale-down: prefill→decoding

❖Scale-up: decoding (length)

❑Scheduling w/ cost models

❖Request batching

❖GPU grouping

❖DoP scheduling

❖KV cache placement

Design: Overview

①

②

USTC Systems Reading Group 11

❑Elastic sequence parallelism

❖Scale-down: prefill→decoding

❖Scale-up: decoding (length)

Design: Overview

①

②

②

①

① ①
Instance

②

USTC Systems Reading Group 12

❑ESP: proactive migration w/ SP

❖In SP, the KV cache chunks are inherently circulated among GPUs

➢no additional overhead of KV cache migration

ESP: Group Scale-down (Prefill→Decoding)

USTC Systems Reading Group 13

GPU 1

Unified Cache Pool

GPU 2

Unified Cache Pool

kv1 kv4Gen

Buffer

kv2 kv5Gen

Buffer

GPU 3

Unified Cache Pool

kv3 kv6Gen

Buffer

Prefill: Step 1 (Start)

Prefill: Step 2

GPU 1

Unified Cache Pool

kv1 kv4

kv1

kv4 kv3

Gen

kv3 kv6Buffer

GPU 2

Unified Cache Pool

kv2 kv5

kv5

Gen

kv1 kv4Buffer

GPU 3

Unified Cache Pool

kv3 kv6Gen

kv2 kv5Buffer

Prefill: Step 3 (End)

GPU 1

Unified Cache Pool

kv1 kv4

kv1

kv4 kv3 kv2

Gen

kv2 kv5Buffer

GPU 2

Unified Cache Pool

kv2 kv5

kv5 kv6

Gen

kv3 kv6Buffer

GPU 3 (ready to free)

Unified Cache Pool

kv3 kv6Gen

kv1 kv4Buffer
GPU 1

GPU 1
3,6 1,4 2,5

GPU 1
1,4 2,5 3,6

kv5

kv1

kv4

USTC Systems Reading Group 15

❑Existing: Moving requests to new GPUs w/o huge KV cache

❖Problem: huge overhead of cache migration

❑ESP: Multi-master distributed decoding

❖①Compute qi, kvi; ②store kvi in local cache pool; ③circulate qi

❖④Reduce the results; ⑤continue with layer_norm and FFN

ESP: Group Scale-up (Decoding Length)

projection

r2: wxy→z
r1: abc→d

a b w
x d

kvd

y c
z

partial
decodingqd

projection partial
decodingkvz

partial
decoding

partial
decodingqz

kvyz
kvc

kvabd kvwx
reduce

reduce FFN, etc.

FFN, etc.

exchange exchange

d

z

GPU 1

GPU 2

USTC Systems Reading Group 19

❑Scheduling space:

❖dispatch which requests from a pending queue

❖how to batch requests

❖DoP

❖allocate which GPUs

Design: Scheduling with Cost Models

USTC Systems Reading Group 20

❑Dispatching

❖FCFS (First-Come-First-Serve)

❖Adding requests until

➢memory is not enough

• to avoid eviction and recomputation

➢becoming compute-bound

• to avoid slowdown

➢preemption cost is too high for preempted batches

• to avoid slowdown decoding batches too much

Design: Scheduling with Cost Models

USTC Systems Reading Group 21

❑Elastic instance allocation

❖Adding idle instances to a batch

❖If idle instances are not enough

➢try to scale-down decoding instances and allocate for decoding

• until too many KVs to migrate in decoding instances

❖If still not enough

➢try to preempt decoding instances with most unused KV slots

Design: Scheduling with Cost Models

USTC Systems Reading Group 22

❑Batching

❖Group requests with the similar lengths

❖Use dynamic programming to minimize average TTFT

❖Avoid FFN to be compute-bound

❑Elastic scaling plan generation

❖Scale-down: minimum DoP s.t. memory is enough

❖Scale-up: adding DoP until memory is enough

Design: Scheduling with Cost Models

USTC Systems Reading Group 25

Implementation

❑15k lines of code:

❖Language: C++, CUDA, Python, and Triton

❖Extended from Striped Attention

❖Communication: Ray RPC, NCCL

❖Reusing some components from vLLM and LightLLM

❖Front end: similar to OpenAI API

❖GitHub repo: https://github.com/LoongServe/LoongServe.

USTC Systems Reading Group 26

❑Workload: Poison

❖ShareGPT: 4-2.3k (short input, long output)

❖L-Eval: 2.7k-210.k (used in Qwen 1.5)

❖LV-Eval: 15.1k-497.3k

❖Mixed: ⅓ ShareGPT + ⅓ L-Eval + ⅓ LV-Eval

❑Baseline:

❖vLLM[OSDI23]: fine-grained KV cache management

❖DeepSpeed-MII[arXiv24]: SplitFuse (seq_len ≤ 32k)

❖LightLLM w/ SplitFuse: open-source for long seq_len

❖DistServe[OSDI24]: P/D Disaggregation

Evaluation: Setup

USTC Systems Reading Group 27

❑Metrics

❖per-token latency (end-to-end latency / number of tokens)

❖SLO attainment (requiring P90 latency <= SLO)

❑Hardware:

❖A800 (80 GB) x 16

❖200 Gbps IB NiC x 4

❖400 GBps NVLink (full connectivity between each pair of GPUs)

❑Model

❖LWM-1M-Text (Llama-2-7B + 1M seq_len)

Evaluation: Setup

USTC Systems Reading Group 28

❑Metrics: end-to-end latency per token

❑LoongServe outperforms a lot

Evaluation: Single-Node End-to-End (Decoding)

System Paralleism

vLLM TP=8

DeepSpeed-MII TP=8

LightLLM TP=8

DistServe P(TP=4) D(TP=4)

LoongServe TP=2; ESP

4-2.3k

2.7k-210.k

15.1k-497.3k

USTC Systems Reading Group 29

Evaluation: Single-Node End-to-End (Prefill)

System Paralleism

vLLM TP=8

DeepSpeed-MII TP=8

LightLLM TP=8

DistServe P(TP=4) D(TP=4)

LoongServe TP=2; ESP≤4

4-2.3k

2.7k-210.k

15.1k-497.3k

❑LoongServe still outperforms

❖vLLM: interference of P/D

❖DeepSpeed-MII, LightLLM (SplitFuse)

➢ inefficient prefill + still interference of P/D

❖DistServe: limited GPUs for each phase

USTC Systems Reading Group 30

Evaluation: Single-Node End-to-End (Both)

System Paralleism

vLLM TP=8

DeepSpeed-MII TP=8

LightLLM TP=8

DistServe P(TP=4) D(TP=4)

LoongServe TP=2; ESP≤4

4-2.3k

2.7k-210.k

❑LoongServe throughput speedup

❖vLLM: up to 4.64x

❖DeepSpeed-MII, LightLLM: up to 3.85x

❖DistServe: up to 5.81x

15.1k-497.3k

USTC Systems Reading Group 31

❑LoongServe also outperforms

❖vLLM: up to 1.86x

❖LightLLM: up to 3.37x

➢ lower than one-node speedups (significant inter-node comm. overhead of SP)

Evaluation: Two-Node End-to-End

avg latency avg latency
per input token

avg latency
per output token

System Paralleism

vLLM TP=8, 2 nodes

LightLLM TP=8, 2 nodes

LoongServe TP=2; ESP≤8

USTC Systems Reading Group 32

❑Benefit of ESP vs static parallelism

❑Scale-up: benefit and frequency

❑Overhead of scale-down and scale-up

❑Accuracy of LoongServe analytical model

Evaluation: Ablation Study

USTC Systems Reading Group 33

❑Benefit of ESP vs static parallelism

❖P90 goodput: maximum throughput where P90 latency ≤ SLO

❖ESP outperforms static SP + TP schemes

➢speedup: 2.33x, 1.98x, 1.53x

Evaluation: Ablation Study

P90

P90 goodput

USTC Systems Reading Group 34

❑Scale-up: benefit and frequency

❖ShareGPT: short input length, long output length

➢P90 goodput: 2.87x vs LoongServe w/o Scale-up

➢necessary scale-up to handle dynamic workloads

Evaluation: Ablation Study

P90

P90 goodput for ShareGPT frequency of scale-up for ShareGPT

USTC Systems Reading Group 35

❑Overhead of scale-down: ≤2%

❖additional KV cache copy operation to the cache pool

Evaluation: Ablation Study

Scale-down overhead

USTC Systems Reading Group 36

❑Different number of SP masters:

❖Setup: 4 instances with 1/2/4 masters

❖FFN*Projection executed in a single master

❖Higher BS: lower latency

➢more tasks are parallelized

➢4-master outperforms 1-master

❖Lower BS:

➢overhead of comm. and sync.

➢ in worst cases,

• 4-master is slower than 1-master by ≤10%

Evaluation: Ablation Study

Scale-up overhead

USTC Systems Reading Group 37

❑Accuracy of LoongServe analytical model

❖≤10% deviation

➢under different parallelism schemes and input lengths

Evaluation: Ablation Study

USTC Systems Reading Group 39

❑Is two-node evaluation enough for LoongServe?

❖More nodes enlarge the cache pool size

❖More nodes involve higher inter-node comm. overhead of SP

❖Maybe two-node setup is enough to serve a 7B model

❑Doubts:

❖Zero-overhead scaling down?

➢No when scaling down decoding instances to boost prefill instances

❖Writing:

➢clarity: e.g., unclear KV cache migration scheduling when scaling

➢mismatch with caption, code, etc.

Discussion

	Slide 1
	Slide 2: Outline
	Slide 3: Background – Prefill & Decoding
	Slide 4: Background – Prefill & Decoding
	Slide 5: Background – Prefill & Decoding
	Slide 6: Background – Sequence Parallelism
	Slide 7: Motivation & Challenge
	Slide 8: Motivation & Challenge
	Slide 9: Motivation & Challenge
	Slide 10: Design: Overview
	Slide 11: Design: Overview
	Slide 12: ESP: Group Scale-down (Prefill→Decoding)
	Slide 13
	Slide 15: ESP: Group Scale-up (Decoding Length)
	Slide 19: Design: Scheduling with Cost Models
	Slide 20: Design: Scheduling with Cost Models
	Slide 21: Design: Scheduling with Cost Models
	Slide 22: Design: Scheduling with Cost Models
	Slide 25: Implementation
	Slide 26: Evaluation: Setup
	Slide 27: Evaluation: Setup
	Slide 28: Evaluation: Single-Node End-to-End (Decoding)
	Slide 29: Evaluation: Single-Node End-to-End (Prefill)
	Slide 30: Evaluation: Single-Node End-to-End (Both)
	Slide 31: Evaluation: Two-Node End-to-End
	Slide 32: Evaluation: Ablation Study
	Slide 33: Evaluation: Ablation Study
	Slide 34: Evaluation: Ablation Study
	Slide 35: Evaluation: Ablation Study
	Slide 36: Evaluation: Ablation Study
	Slide 37: Evaluation: Ablation Study
	Slide 39: Discussion

