UGACHE: A Unified GPU Cache for Embedding-based Deep Learning

Xiaoniu Song^{1,2}, Yiwen Zhang¹, Rong Chen^{1,2} and Haibo Chen¹

¹Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University,

²Shanghai Artificial Intelligence Laboratory

SOSP 23

Presented by **Zheng Yang** and Yicheng Zhang

2024-11-19

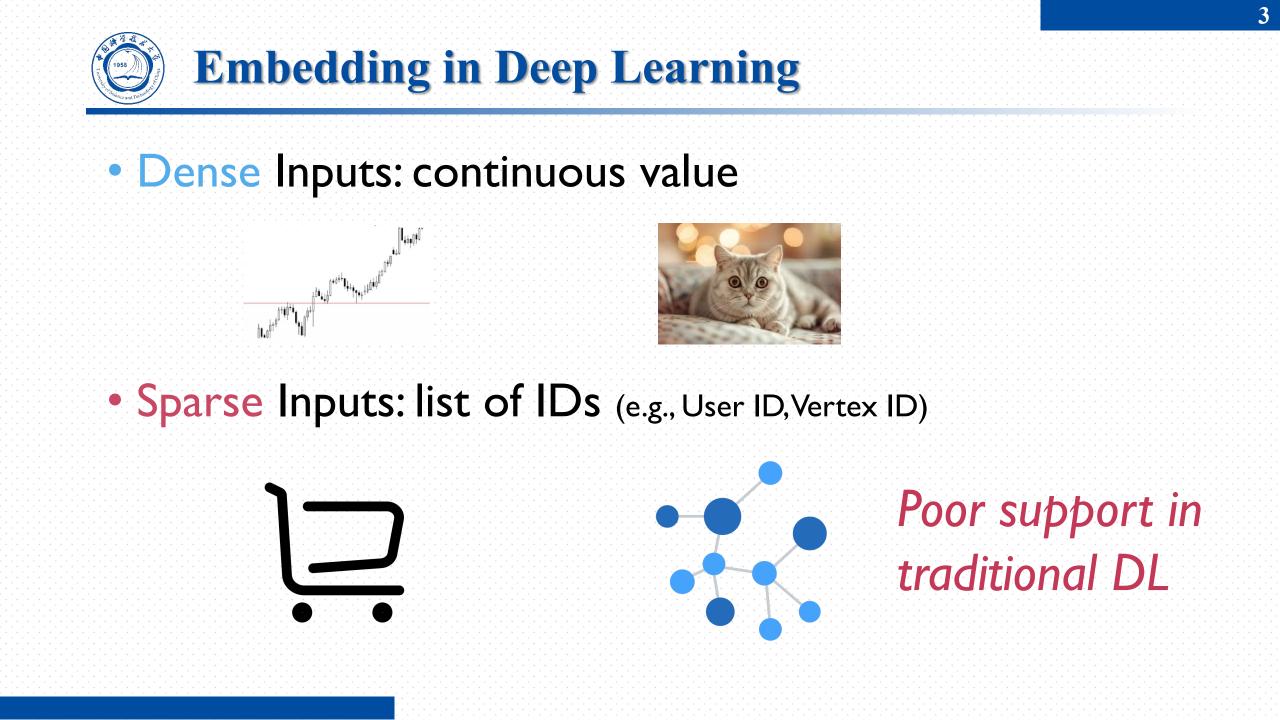
Introduction

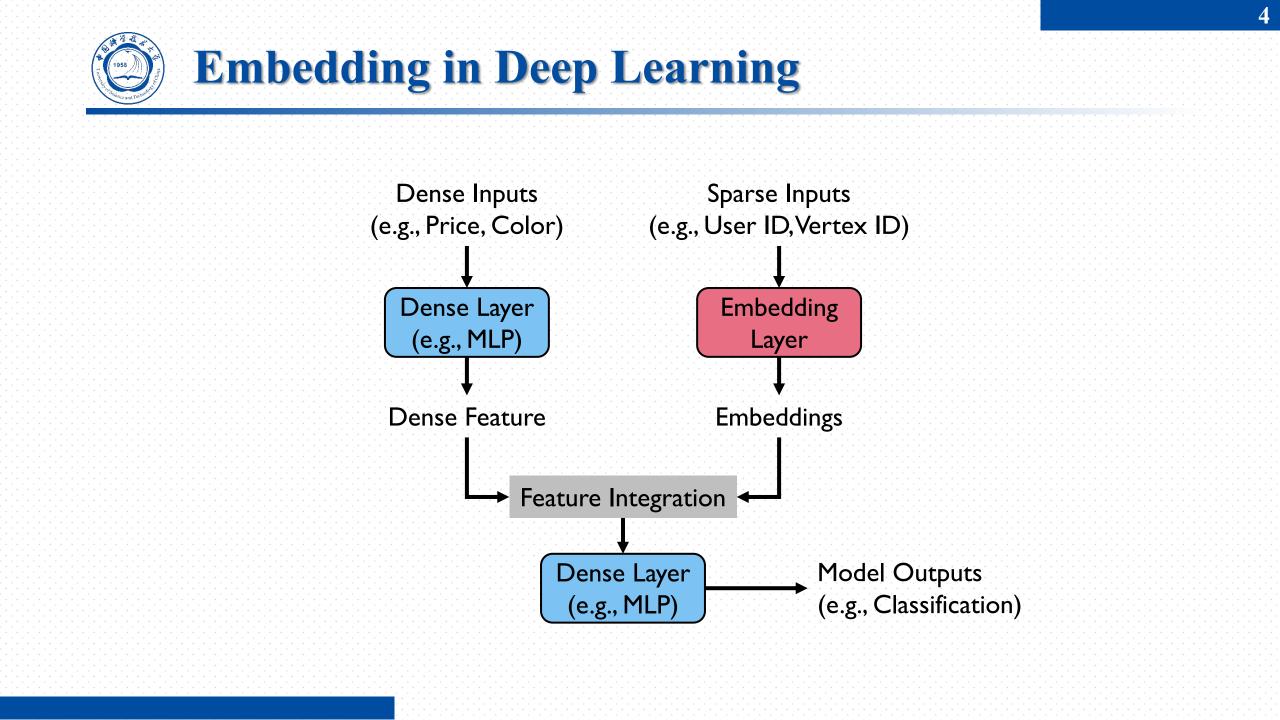
Background and Motivation

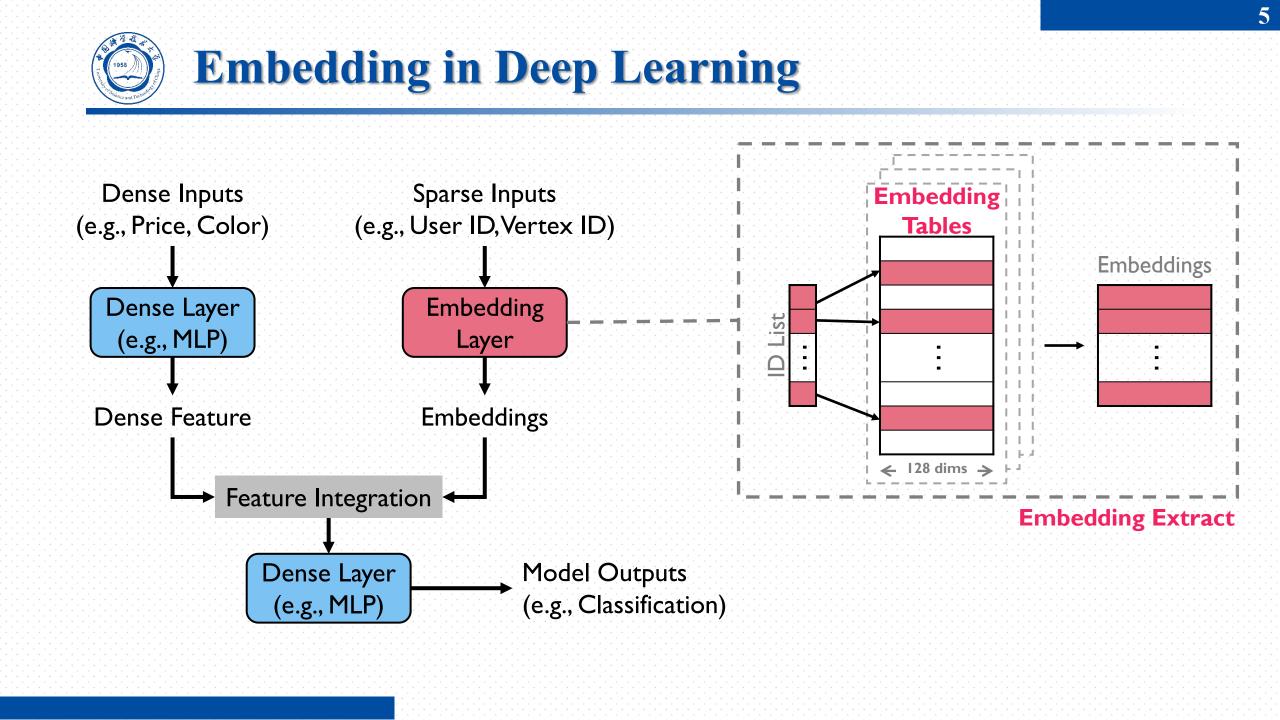
2

- ➢ UGache
 - Extractor
 - Solver

Evaluation







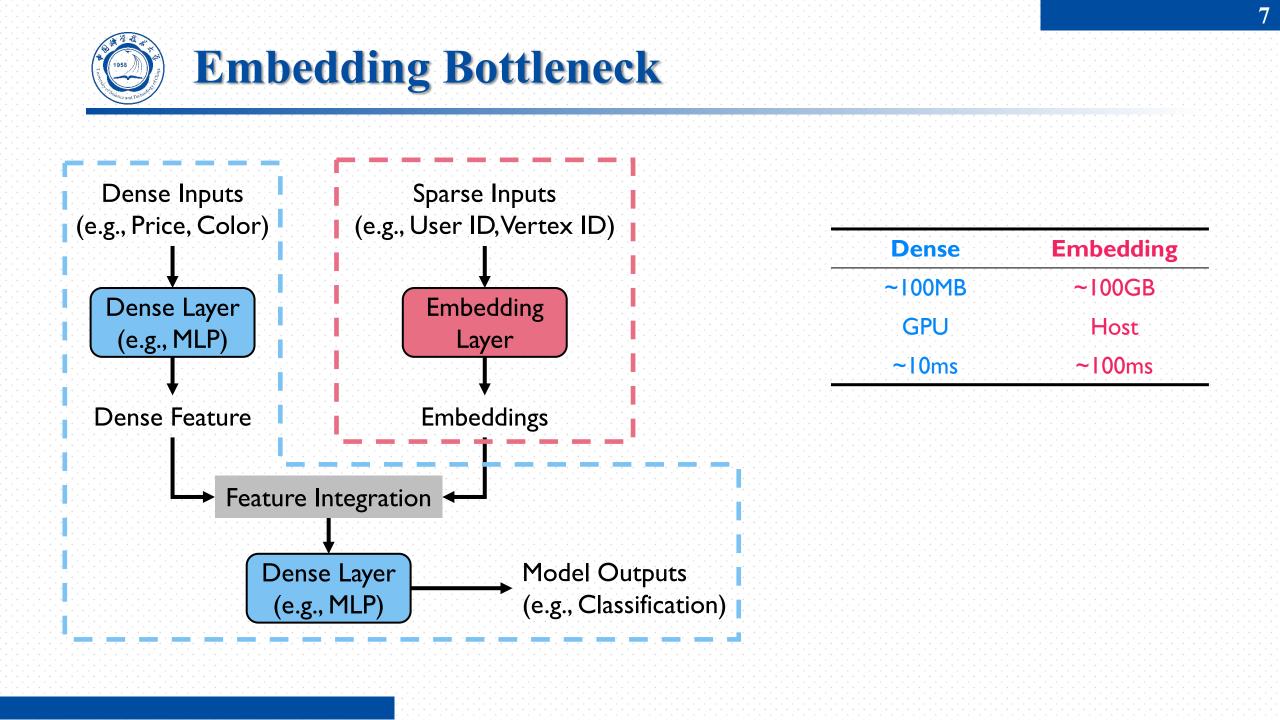
> Introduction

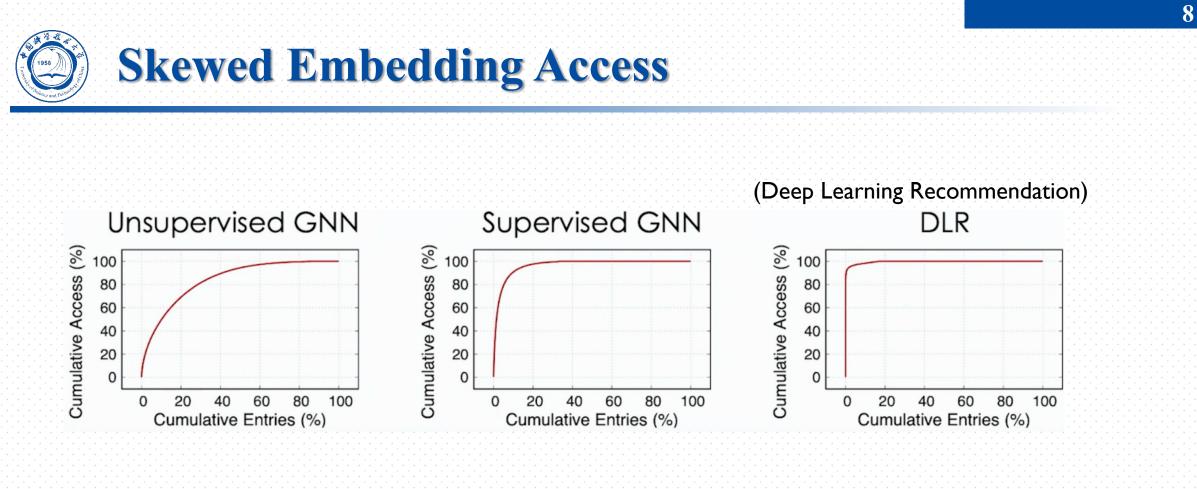
Background and Motivation

➢ UGache

- Extractor
- Solver

Evaluation



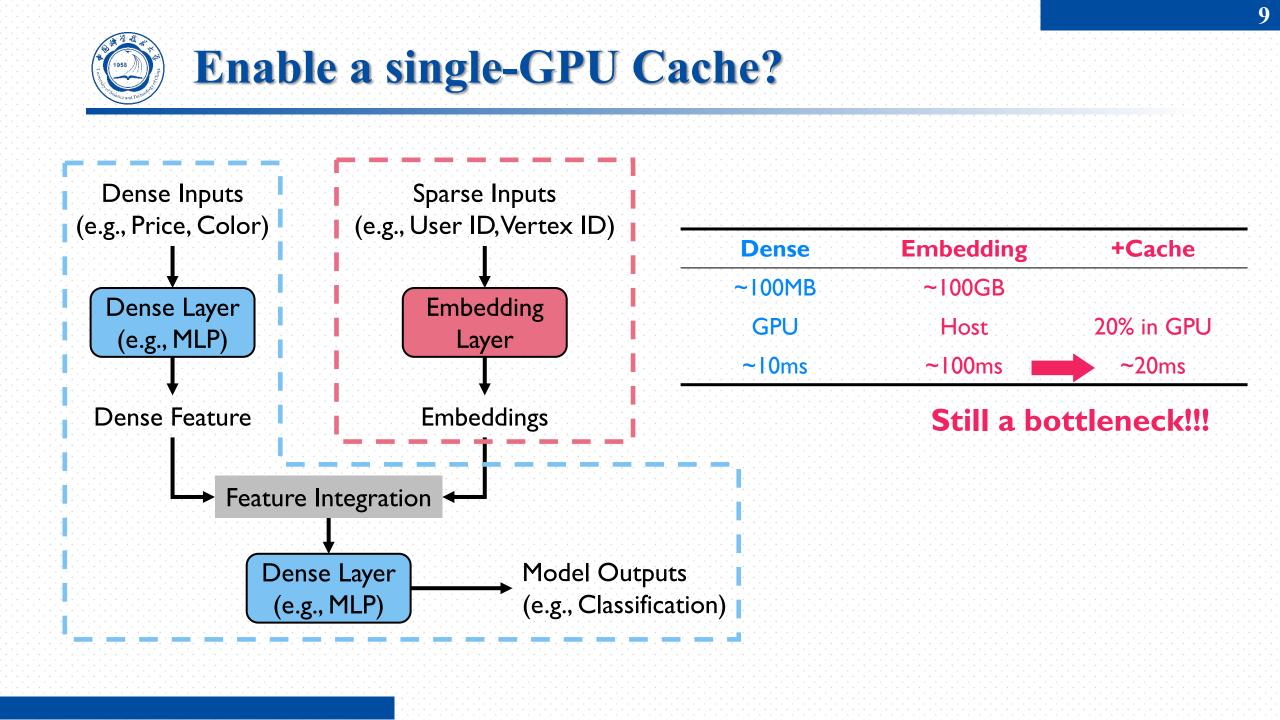


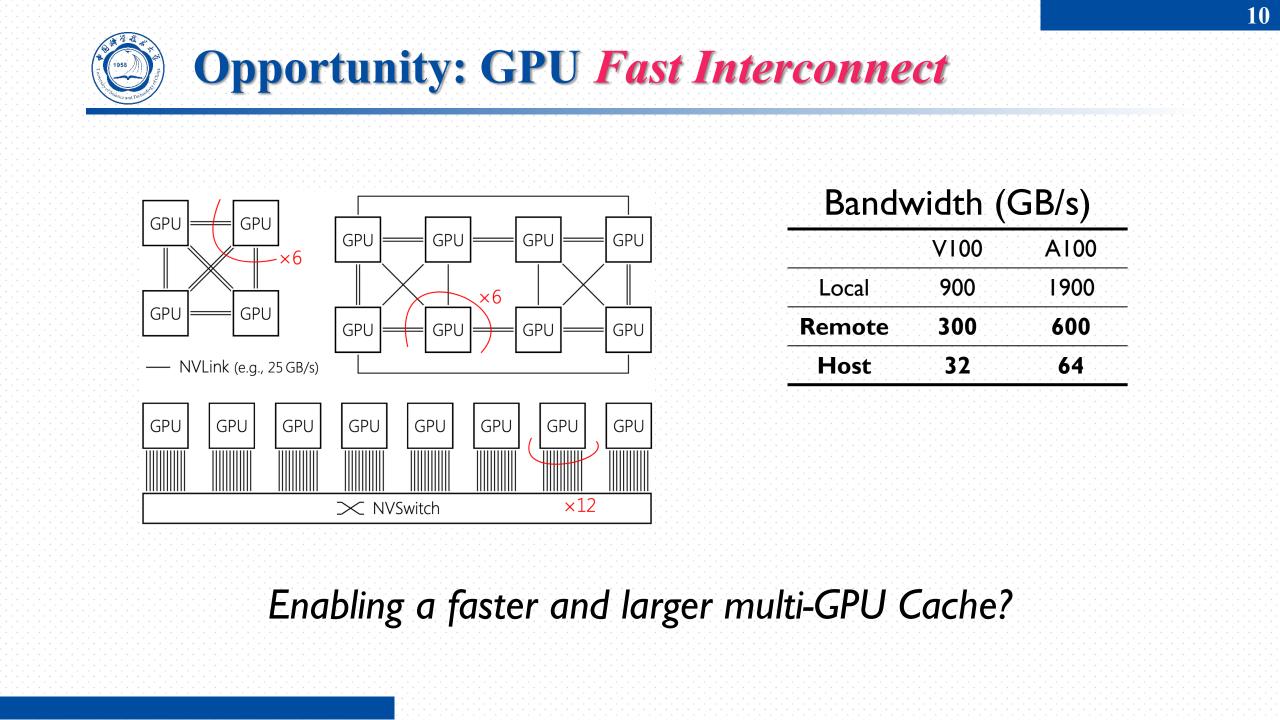
Source of skewness:

- Preferences in user choice
- Power-law in graph

Skewness remains *relatively constant*

over an extended period





Cache Policy

- How to **place** embeddings

Towards Fast and Large Multi-GPU Cache

11

• Extraction Mechanism

- How to **fetch** embeddings

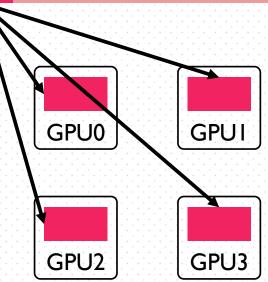
• Replication cache

- Port single GPU solution

- Independently cache hot entry

- 😕 Ignore fast interconnect

- ²>99% overlap in cache hit requests

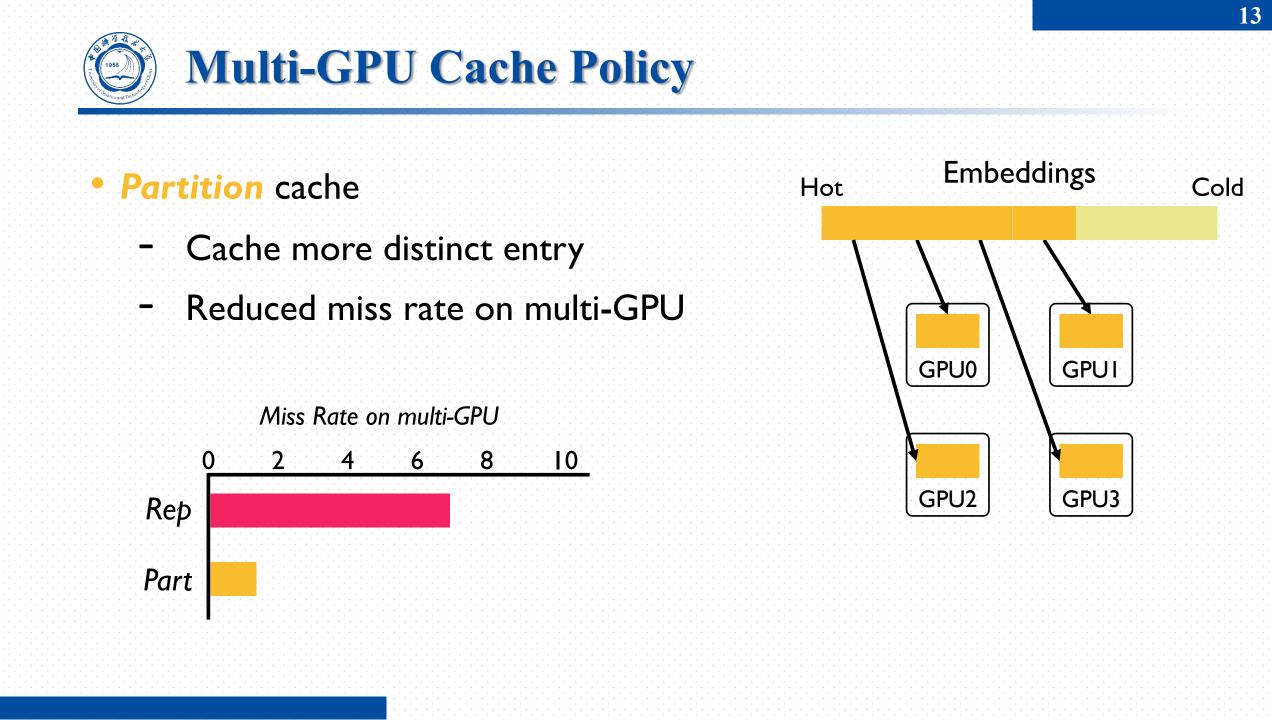


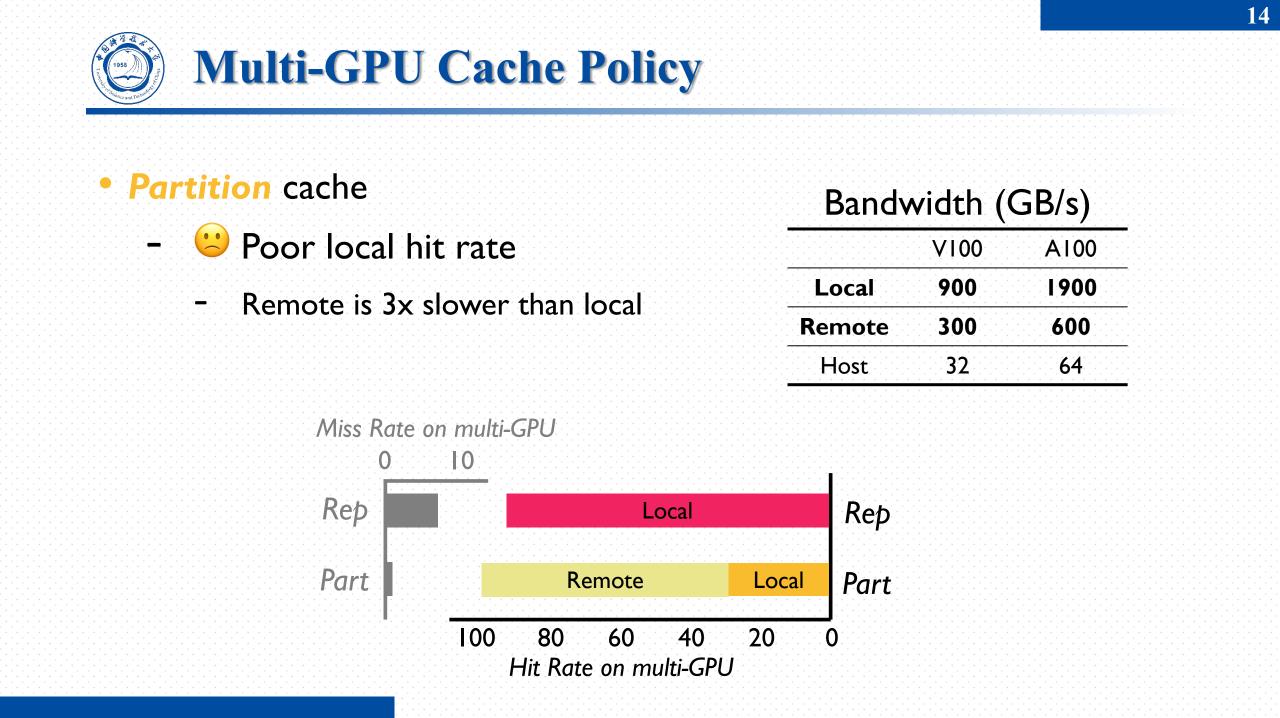
Embeddings

Hot

12

Cold

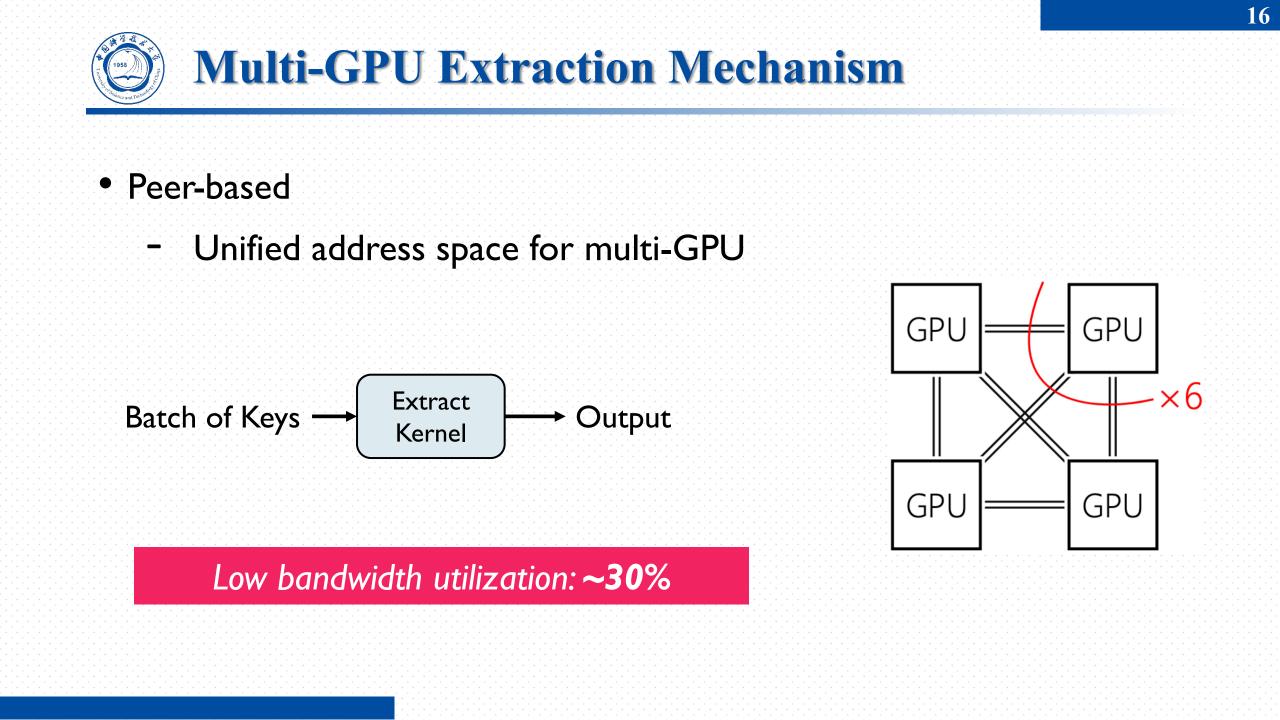


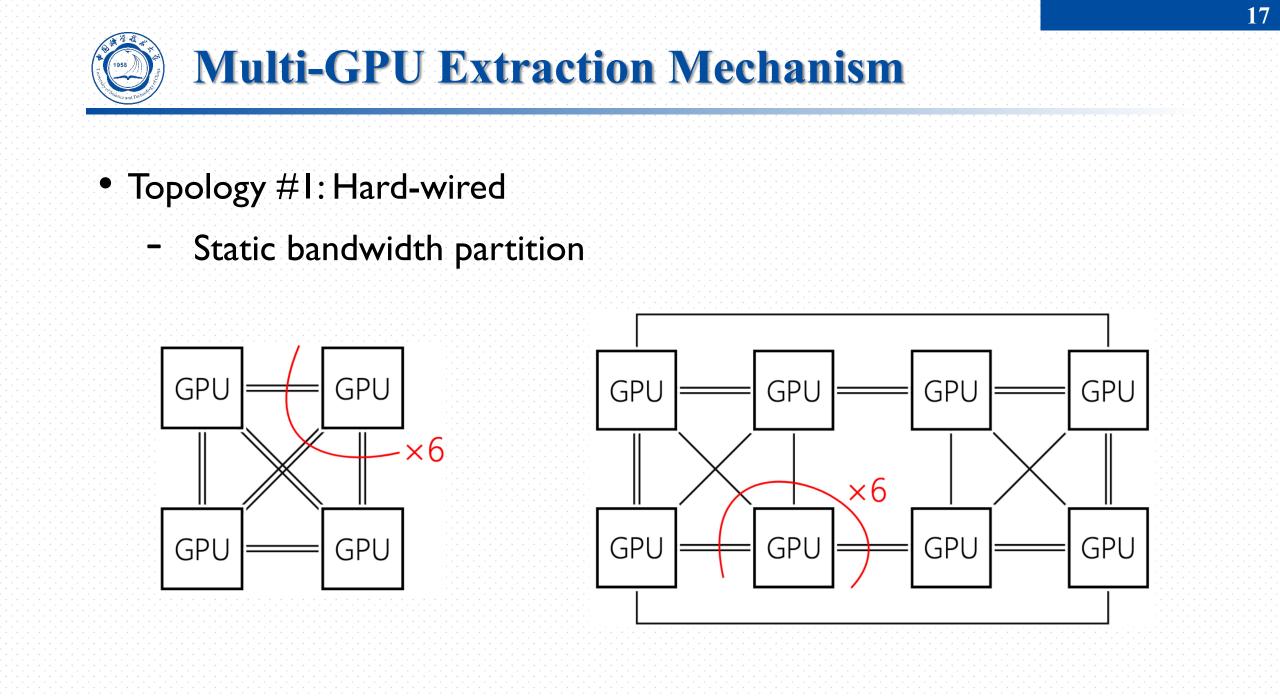


Multi-GPU Cache Challenges

• #I: Cache Policy

- Reduce miss rate while preserve local hit rate

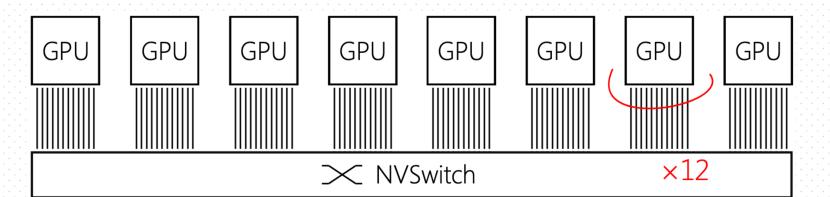


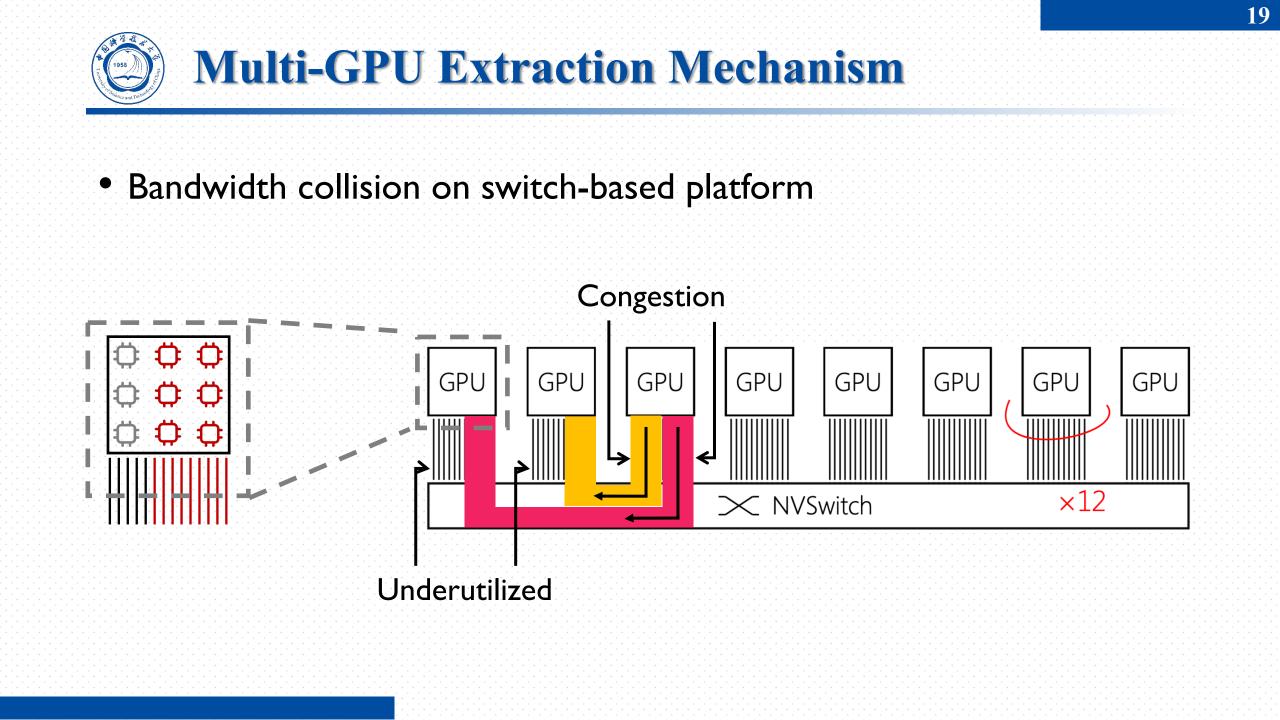


18

Topology #2: Switch-based

- Dynamically allocates bandwidth





• #I: Cache Policy

- Reduce miss rate while preserve local hit rate
- #2: Extraction Mechanism
 - Avoid congestion and improve bandwidth utilization

> Introduction

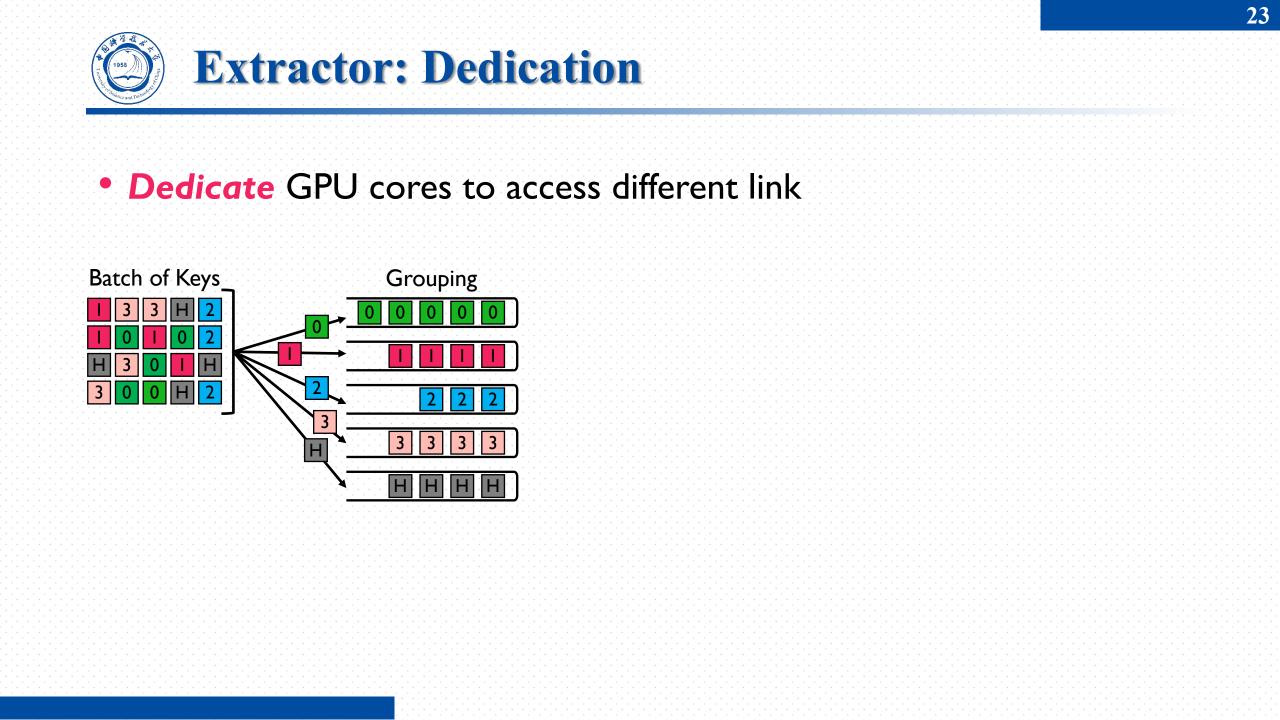
Background and Motivation

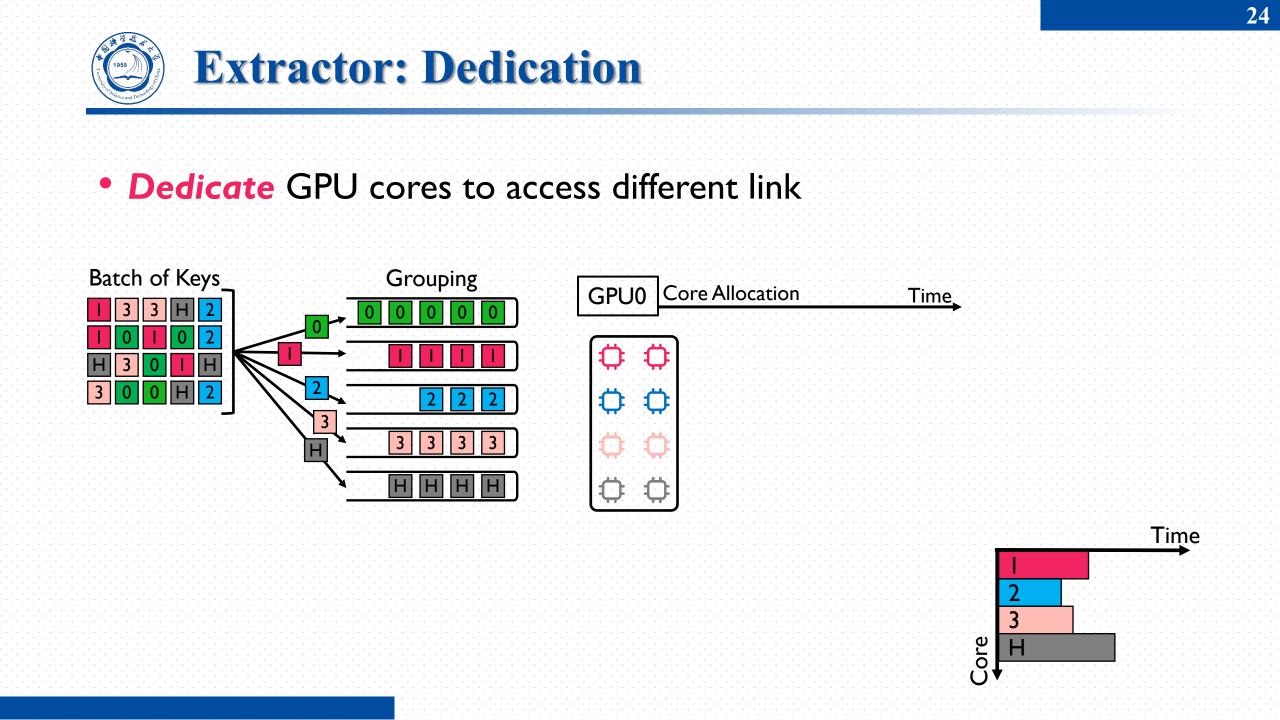
21

- ➢ UGache
 - Extractor
 - Solver

Evaluation

• A static embedding cache unifying multi-GPU Offline Online • Extractor (online) **EMBDL** Applications - Serve embedding extraction (e.g., DLR, GNN) - Solver (offline) DL Frameworks lookup (e.g., TensorFlow, DGL) - Provide cache policy lookup Solver Filler **Extractor** \triangleright **EMTs** Cache UGache GPU GPU GPU





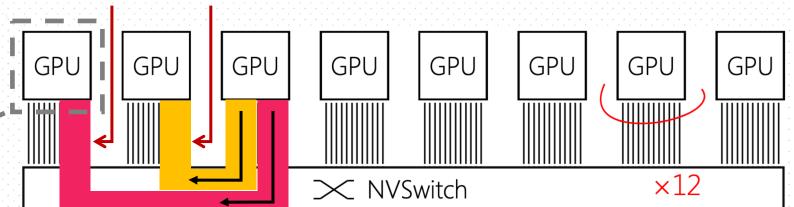
Self controlled collision avoiding

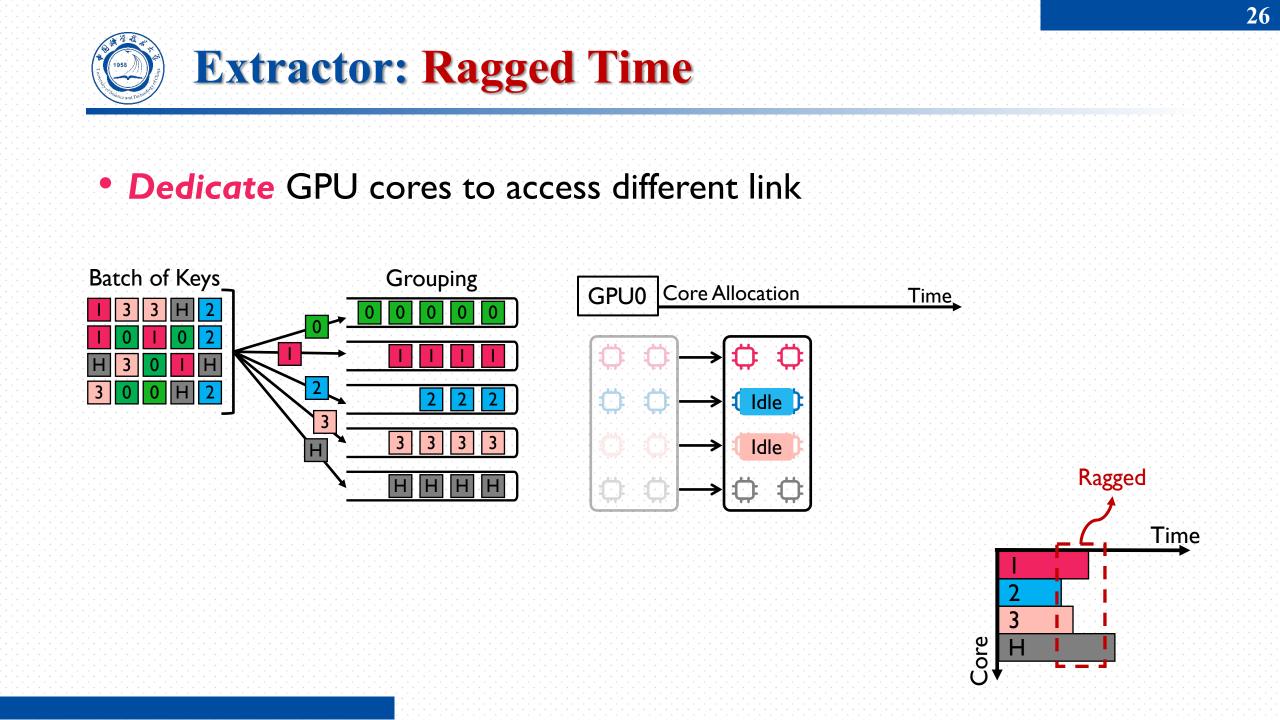
1

1

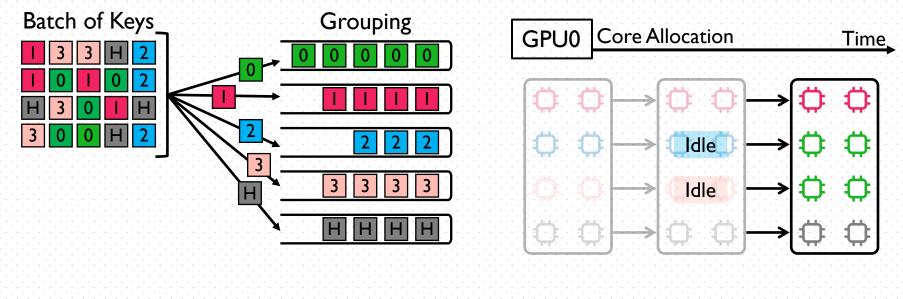
• No explicit coordination required

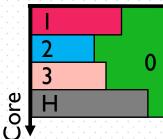
Self Controlled



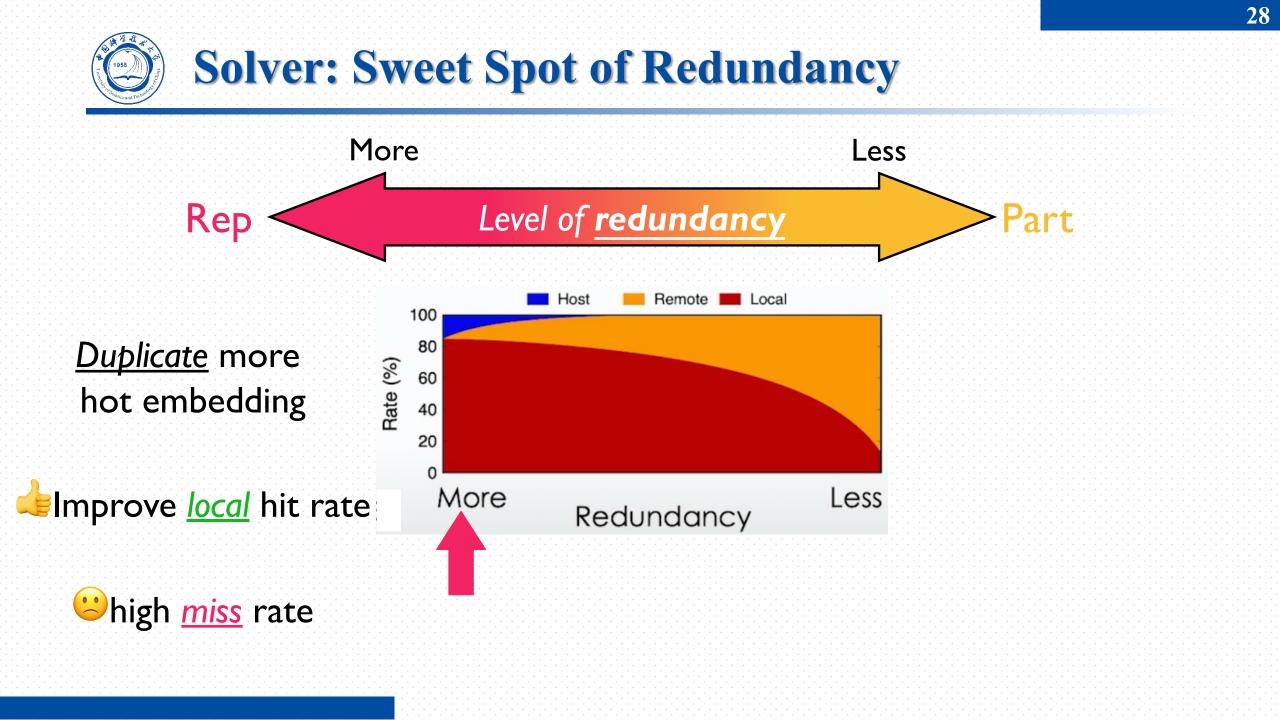


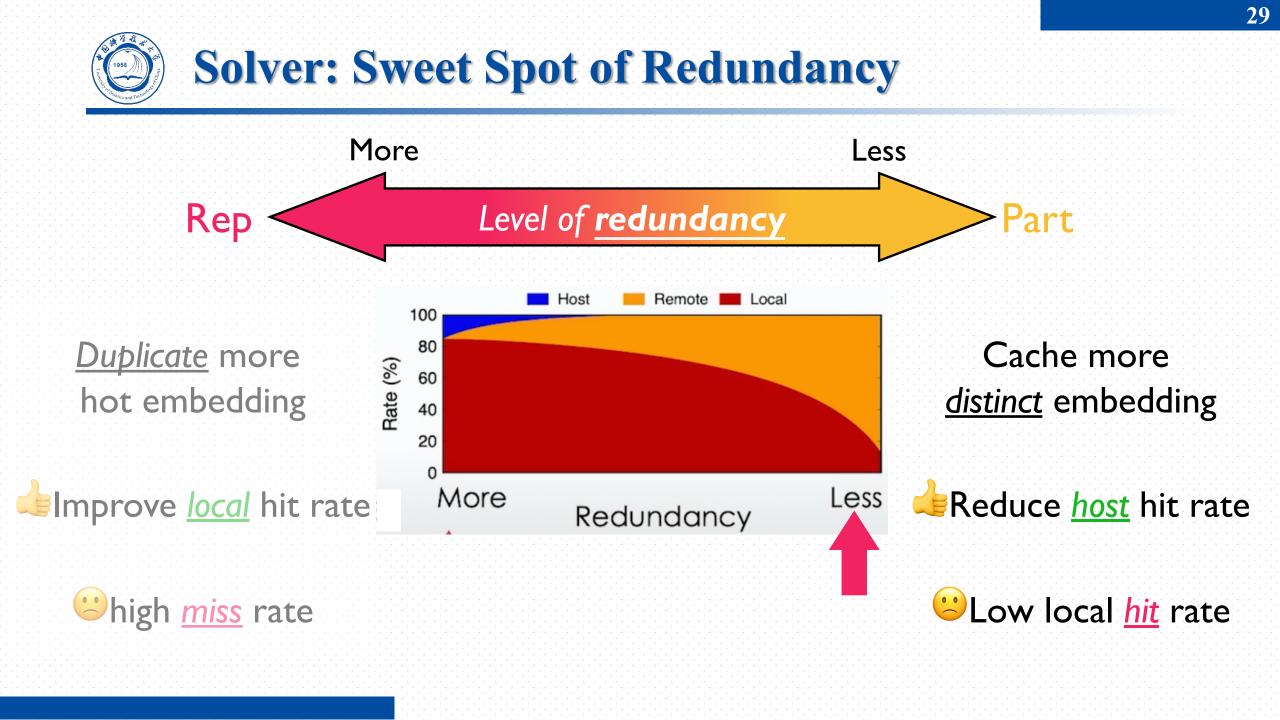
• **Dedicate** GPU cores to access different link

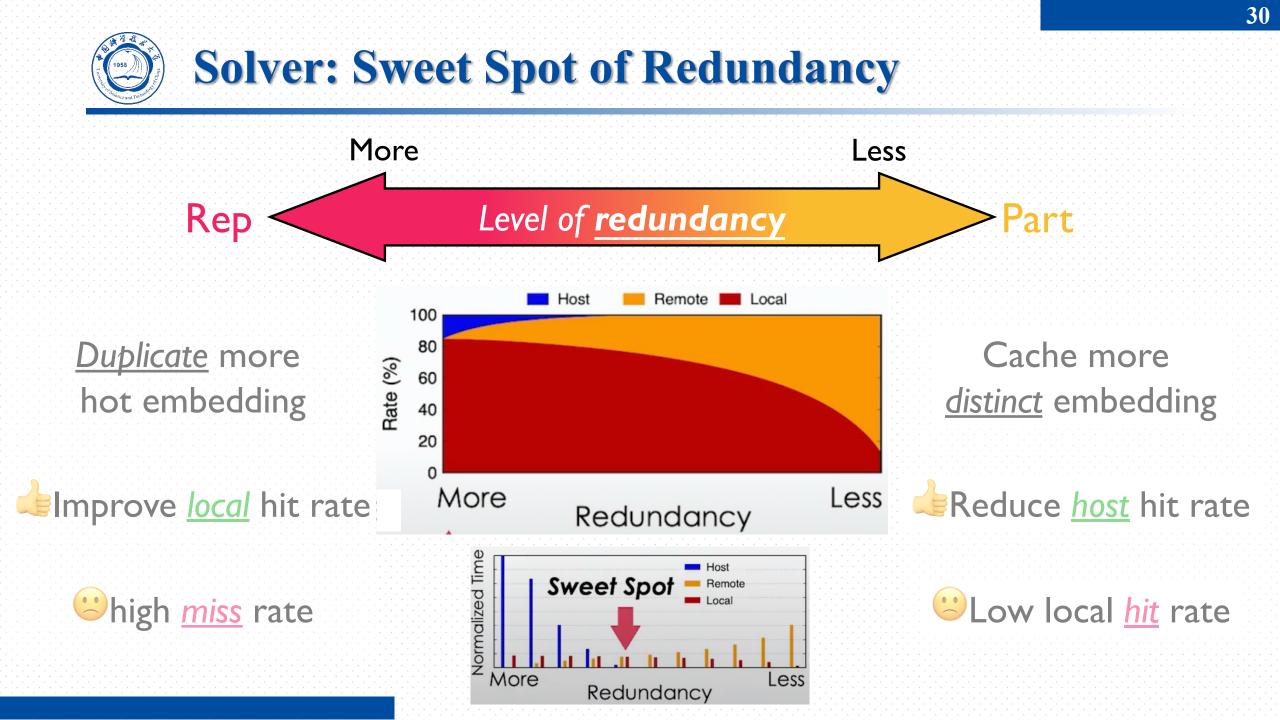


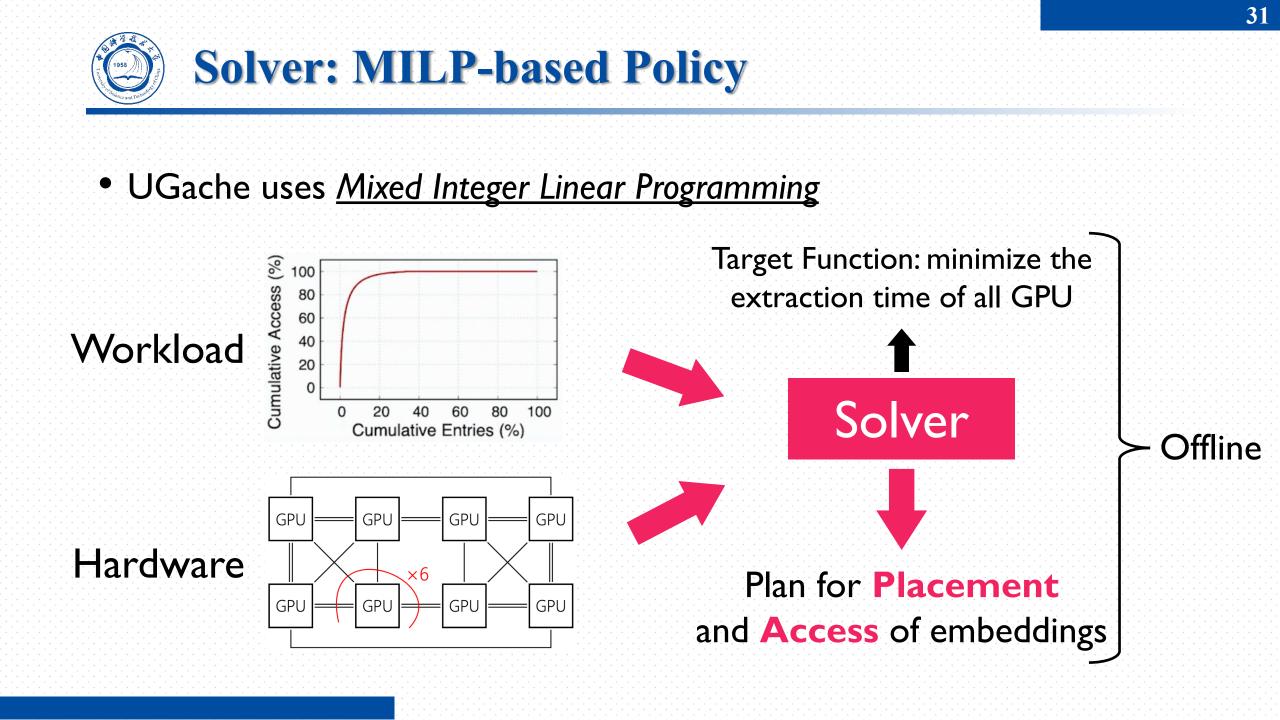


Time









High solving cost of MILP: O(2^E)

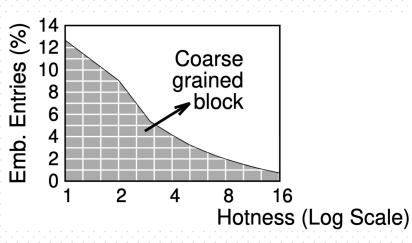
- Entry-level decision: E is billion scale

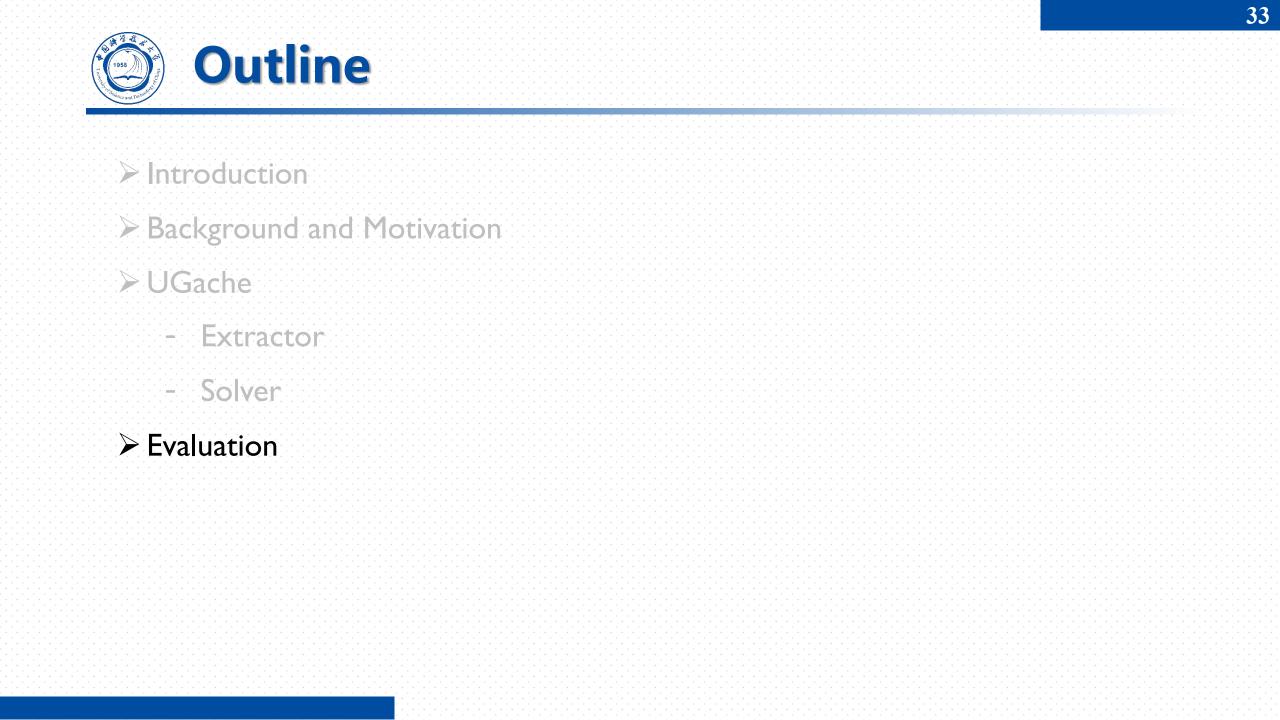
• Batch similar embeddings

- Billion to kilo: solve in 10s

• Hybrid batch granularity

- Preserve accuracy: >95%

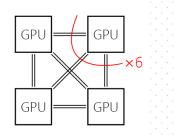




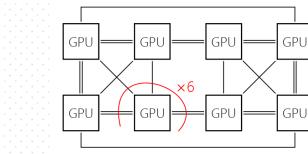
Evaluation Setup: Testbeds

• 3 servers with different topologies

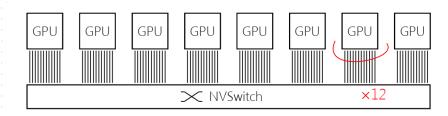
Server	GPU	Total CPU	Host memory
A	4 *VI00 (I6 GB)	40 cores	384 GB
В	8 *VI00 (32 GB)	48 cores	724 GB
C	8 * A I 00 (80 GB)	56 cores	I TB



Server A



Server B



Server C

Models

- GNN (GCN and GraphSAGE, Supervised)
- GNN (GraphSAGE, Unsupervised)
- DLR: DLRM and DCN
- Datasets

GNN training

Dataset	#Vertex	#Edge	Dim.	VolumeG	VolumeE
PA	IIIM	3.2 B	128	12.8 GB	53 GB
CF	65.6 M	3.6 B	256	I4 GB	62 GB
MAG	232 M	3.2 B	768	13.8 GB	349 GB

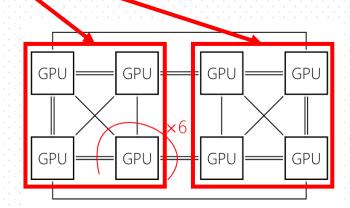
DLR inference

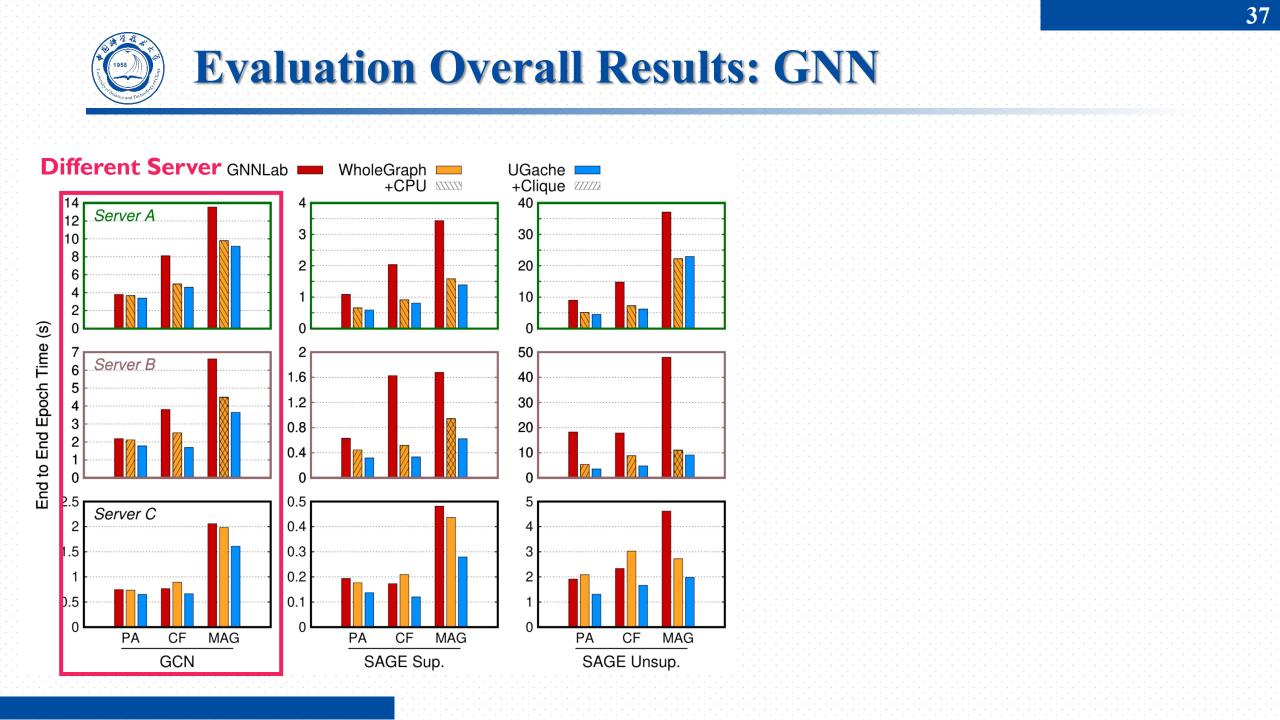
Dataset	#Entry	#Table	Dim.	Skewness	VolumeE
CR	882 M	26	128	N/A	420.9 GB
SYN-A	800 M	100	128	I.2	381.5 GB
SYN-B	800 M	100	128	I.4	381.5 GB

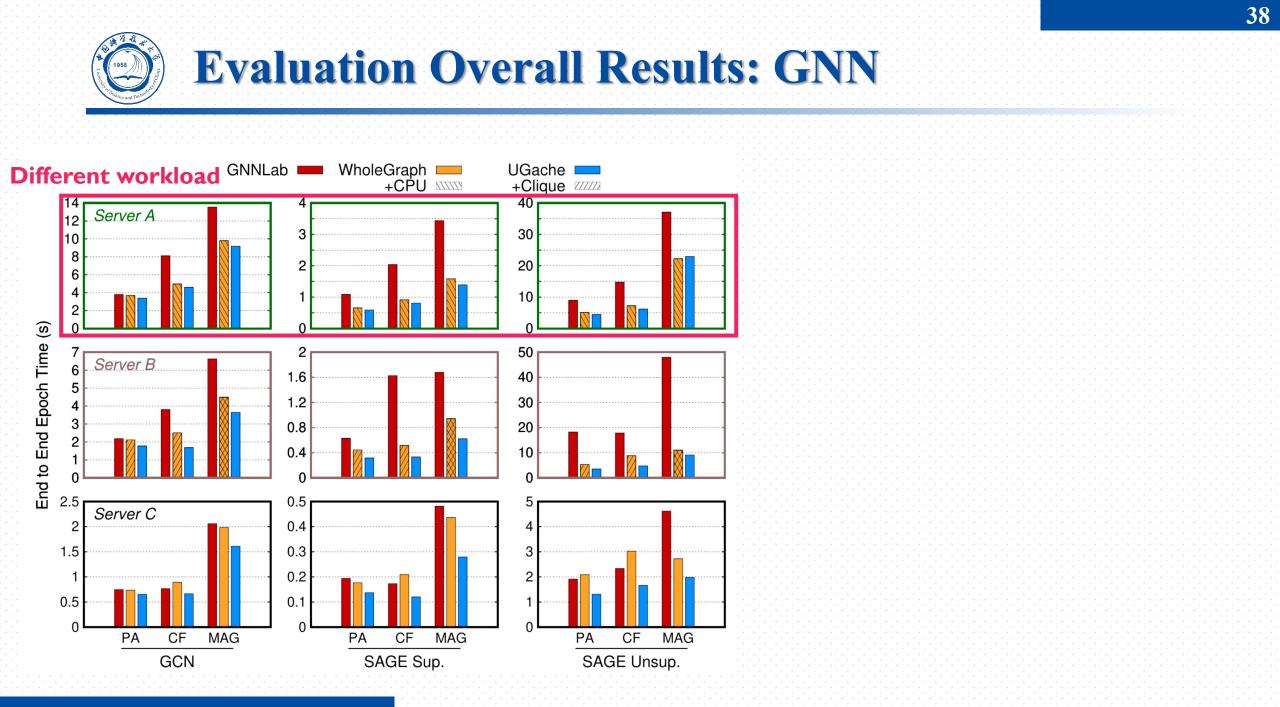
Evaluation Setup: Baselines

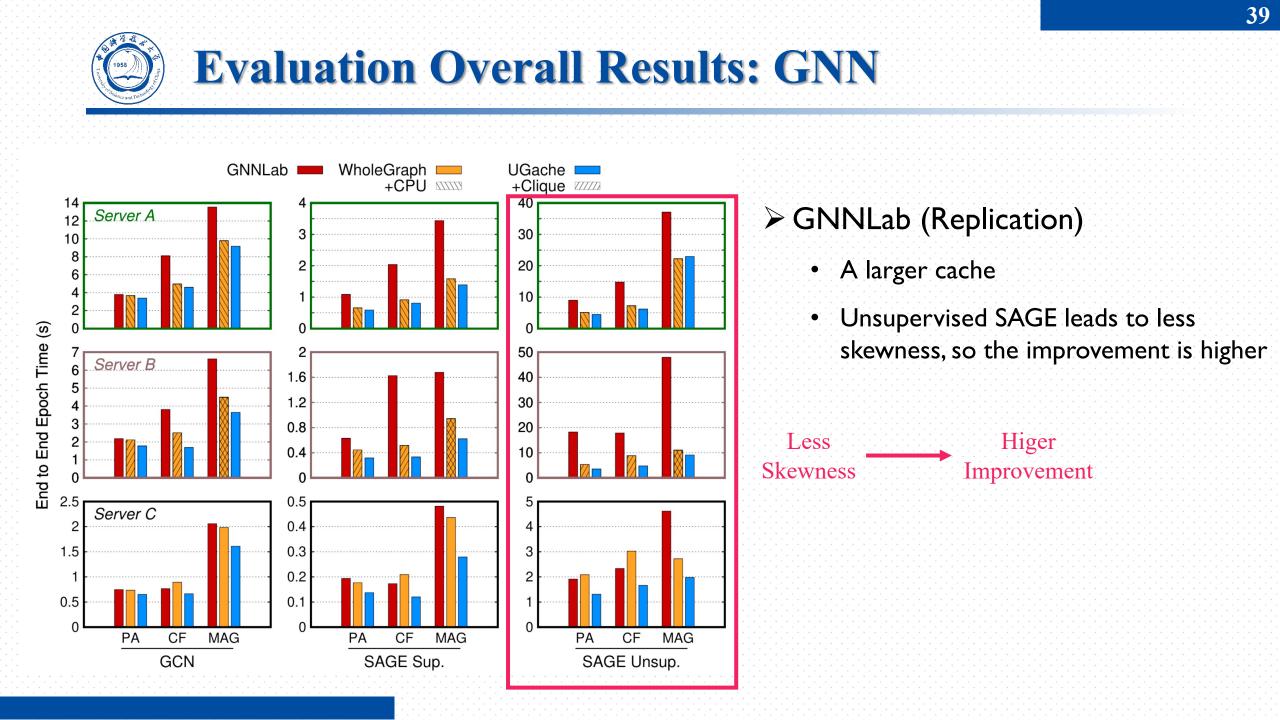
• GNN training

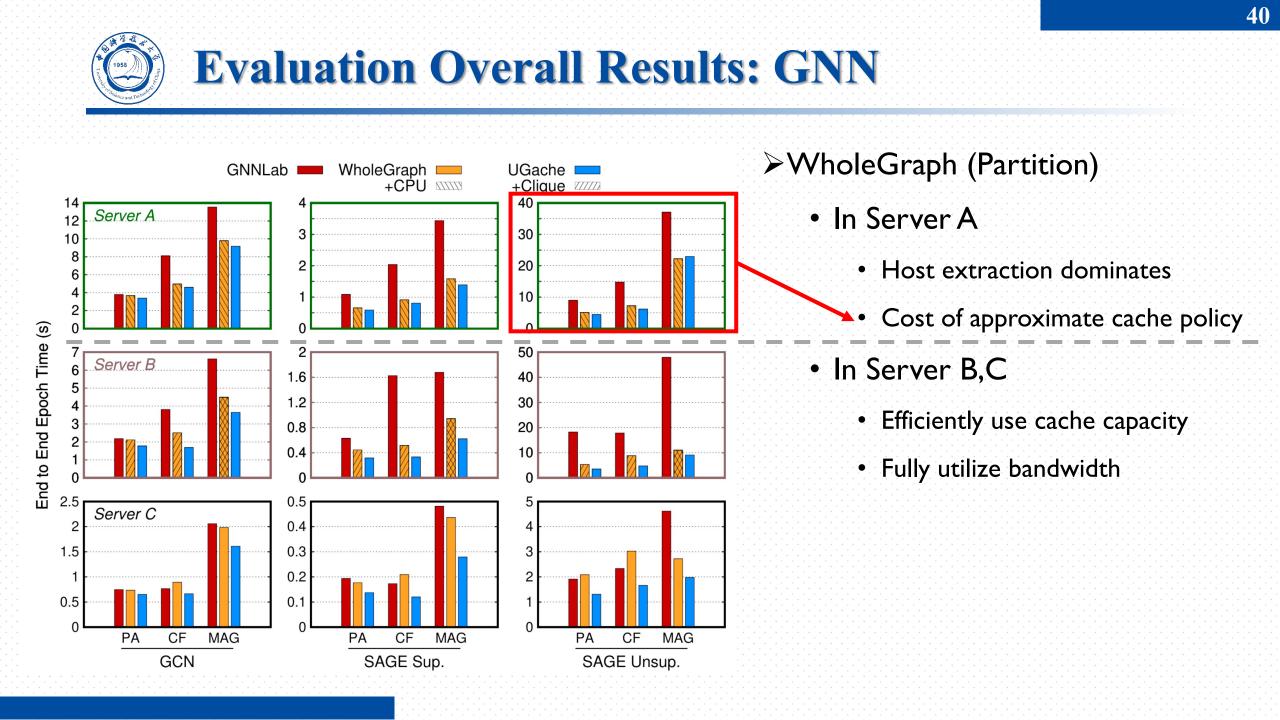
- GNNLab: [EuroSys'22], replication approach
- $Part_{U}$: extended from WholeGraph [SC'22], partition approach
 - Store cold embeddings in CPU (+cpu)
 - Separate Server B's 8 GPUs into two fully connect cliques (+clique)
- Rep_{U} : Part_{U} with replication approach
- DLR inference
 - HPS: [RecSys'22], replication approach
 - Use LRU to update cache dynamically
 - SOK: by NVIDIA, partition approach
 - Conduct message-based embedding extraction



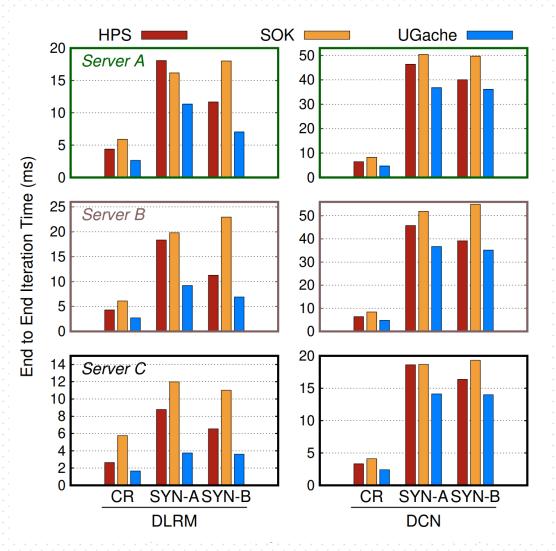








Evaluation Overall Results: DLR



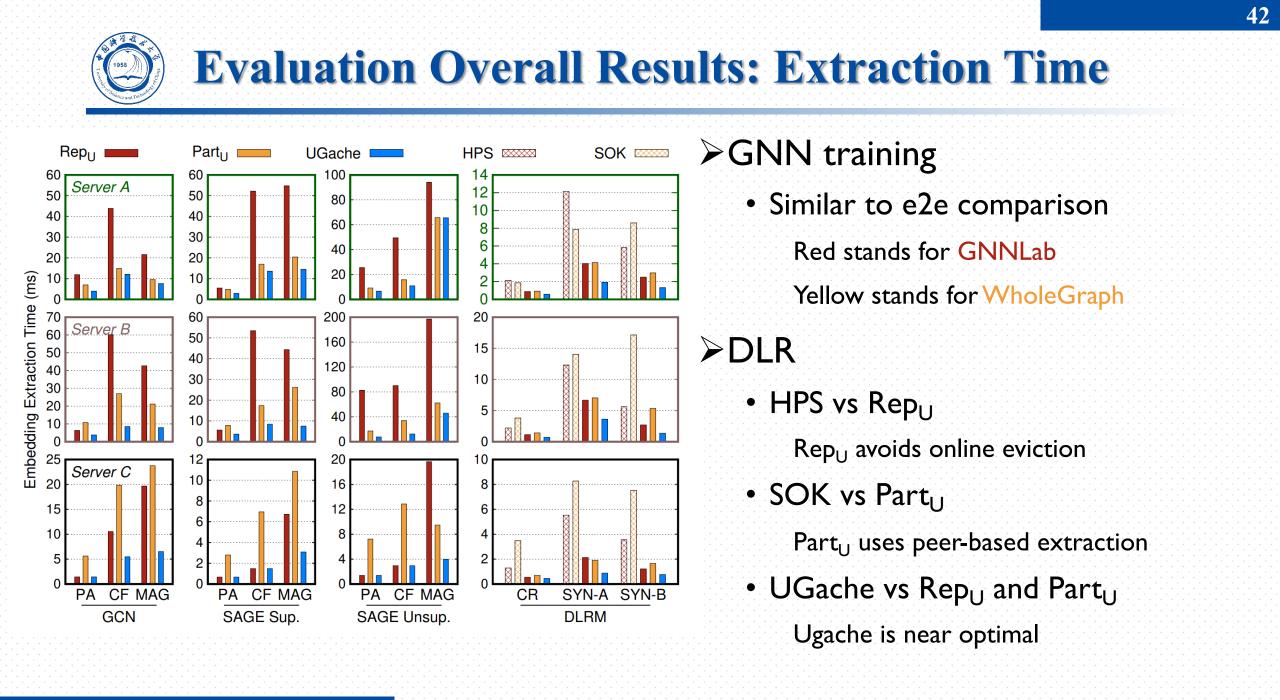
➤VS HPS (Replication)

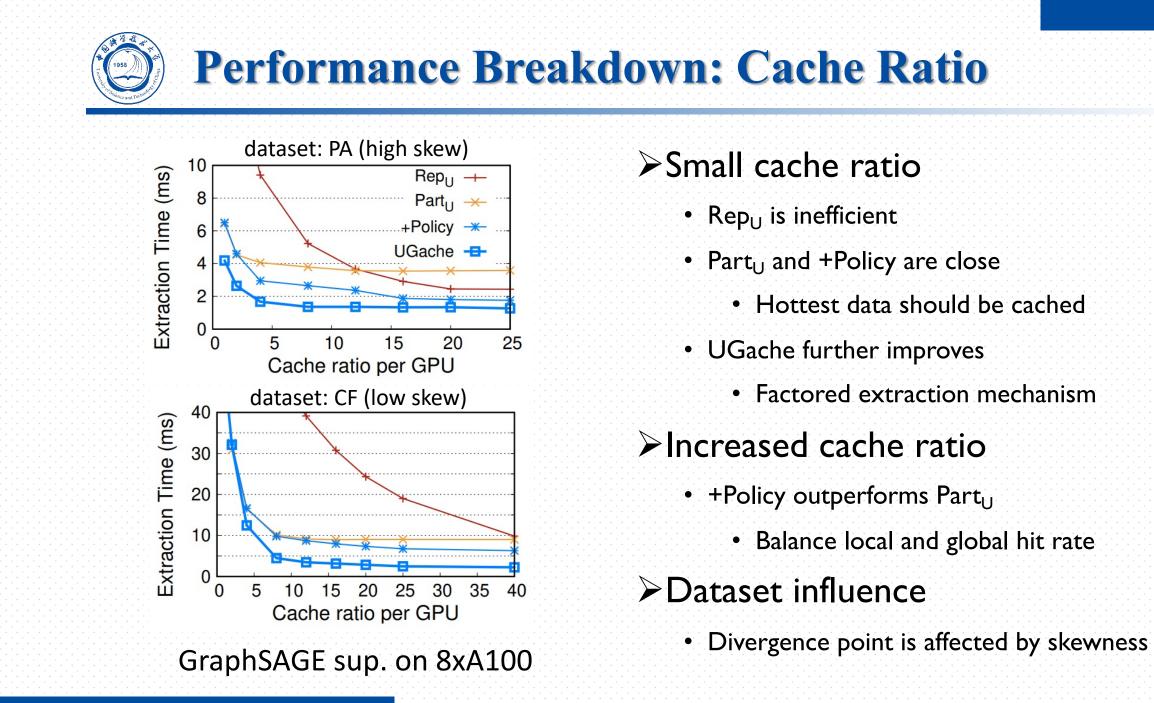
• Static cache policy is faster than LRU

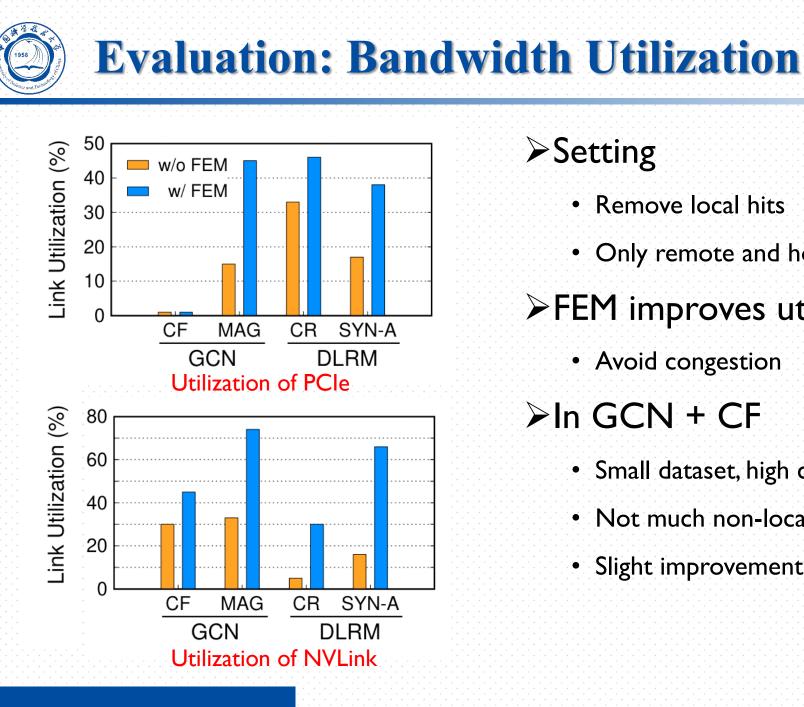
41

➤VS SOK (Partition)

 Peer-based embedding extraction is faster than message-based embedding extraction







Remove local hits Only remote and host >FEM improves utilization

44

Avoid congestion

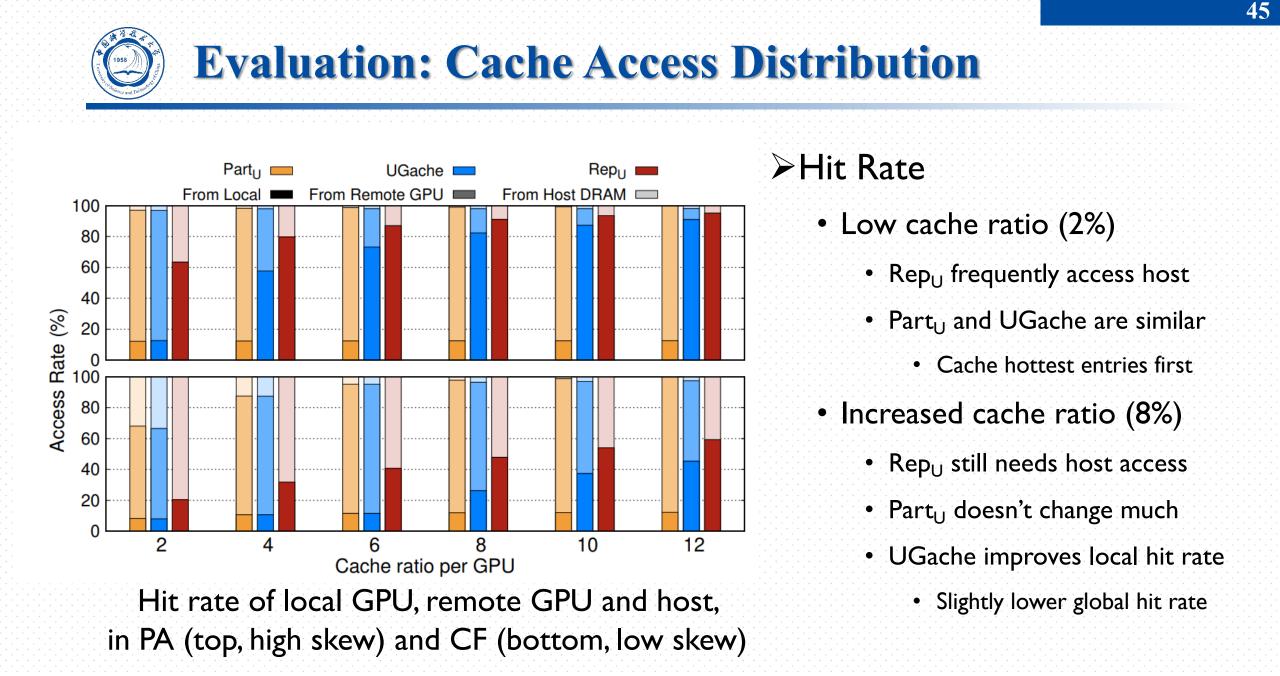
➢In GCN + CF

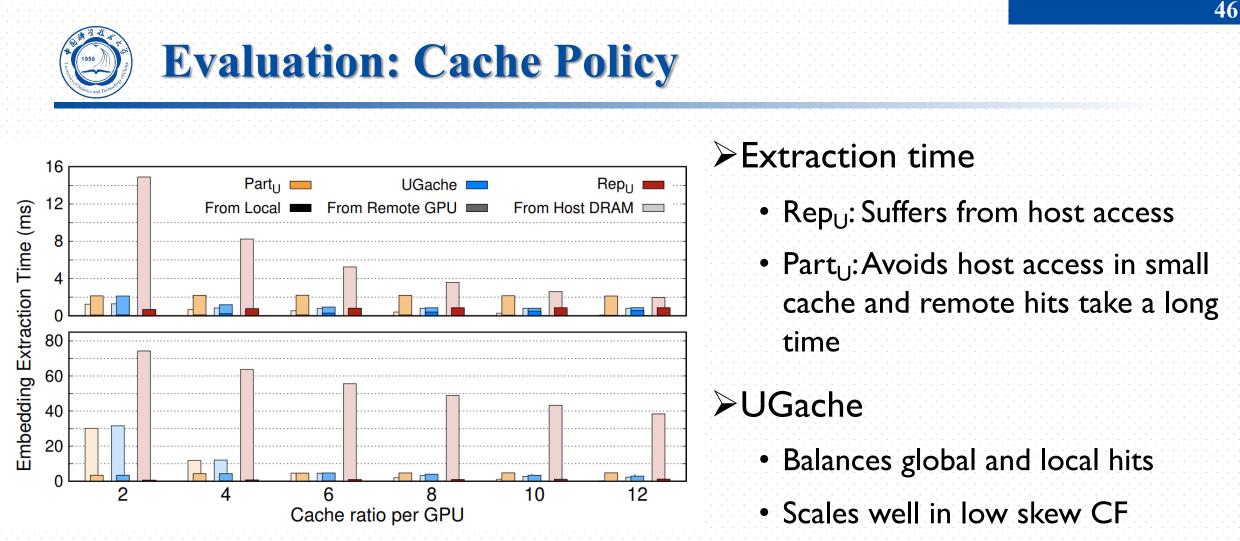
➢ Setting

• Small dataset, high cache ratio

Not much non-local access

Slight improvement





Extraction time of local GPU, remote GPU and host, in PA (top, high skew) and CF (bottom, low skew)

• A study of multi-GPU embedding cache

- UGache:
 - Factored extraction mechanism
 - MILP-based Cache policy with low-cost solving