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Embedding in Deep Learning

• Dense Inputs: continuous value

• Sparse Inputs: list of IDs (e.g., User ID, Vertex ID)

Poor support in 
traditional DL
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Embedding Bottleneck
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Skewed Embedding Access

Source of skewness:
- Preferences in user choice
- Power-law in graph

(Deep Learning Recommendation)

Skewness remains relatively constant
over an extended period
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Enable a single-GPU Cache?
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Opportunity: GPU Fast Interconnect

V100 A100

Local 900 1900

Remote 300 600

Host 32 64

Bandwidth (GB/s)

Enabling a faster and larger multi-GPU Cache?
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Towards Fast and Large Multi-GPU Cache

• Cache Policy
- How to place embeddings

• Extraction Mechanism
- How to fetch embeddings
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Multi-GPU Cache Policy

• Replication cache

- Port single GPU solution

- Independently cache hot entry

- 🙁Ignore fast interconnect

- 🙁>99% overlap in cache hit requests

GPU0 GPU1

GPU2 GPU3

EmbeddingsHot Cold
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Multi-GPU Cache Policy

• Partition cache

- Cache more distinct entry 

- Reduced miss rate on multi-GPU

GPU0 GPU1

GPU2 GPU3

EmbeddingsHot Cold
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Remote

Multi-GPU Cache Policy

• Partition cache

- 🙁 Poor local hit rate
- Remote is 3x slower than local
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Multi-GPU Cache Challenges

• #1: Cache Policy

- Reduce miss rate while preserve local hit rate
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Multi-GPU Extraction Mechanism

• Peer-based

- Unified address space for multi-GPU

Batch of Keys Extract
Kernel Output

Low bandwidth utilization: ~30%
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Multi-GPU Extraction Mechanism

• Topology #1: Hard-wired

- Static bandwidth partition
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Multi-GPU Extraction Mechanism

• Topology #2: Switch-based

- Dynamically allocates bandwidth
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Multi-GPU Extraction Mechanism

• Bandwidth collision on switch-based platform

Underutilized

Congestion
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Multi-GPU Cache Challenges

• #1: Cache Policy

- Reduce miss rate while preserve local hit rate

• #2: Extraction Mechanism

- Avoid congestion and improve bandwidth utilization
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UGache

• A static embedding cache unifying multi-GPU

• Extractor (online)

- Serve embedding extraction

- Solver (offline)

- Provide cache policy

Solver Extractor
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Extractor: Dedication

• Dedicate GPU cores to access different link
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Extractor: Dedication
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Extractor: Dedication

• Self controlled collision avoiding

• No explicit coordination required
Self Controlled
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• Dedicate GPU cores to access different link
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Extractor: Local Padding

• Dedicate GPU cores to access different link
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Solver: Sweet Spot of Redundancy

Level of redundancy
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Rep Part
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🙁high miss rate
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Solver: MILP-based Policy

• UGache uses Mixed Integer Linear Programming

Workload

Hardware

Solver

Plan for Placement
and Access of embeddings

Offline

Target Function: minimize the 
extraction time of all GPU 
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Solver: Cost Reducing

• High solving cost of MILP: O(2E)

- Entry-level decision: E is billion scale

• Batch similar embeddings

- Billion to kilo: solve in 10s

• Hybrid batch granularity

- Preserve accuracy: >95%
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Evaluation Setup: Testbeds

• 3 servers with different topologies

Server GPU Total CPU Host memory

A 4 * V100 (16 GB) 40 cores 384 GB

B 8 * V100 (32 GB) 48 cores 724 GB

C 8 * A100 (80 GB) 56 cores 1 TB

Server A Server B Server C
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Evaluation Setup: Applications and Datasets

• Models
• GNN (GCN and GraphSAGE, Supervised)
• GNN (GraphSAGE, Unsupervised)
• DLR: DLRM and DCN

• Datasets

Dataset #Vertex #Edge Dim. VolumeG VolumeE
PA 111 M 3.2 B 128 12.8 GB 53 GB

CF 65.6 M 3.6 B 256 14 GB 62 GB
MAG 232 M 3.2 B 768 13.8 GB 349 GB

Dataset #Entry #Table Dim. Skewness VolumeE
CR 882 M 26 128 N/A 420.9 GB

SYN-A 800 M 100 128 1.2 381.5 GB
SYN-B 800 M 100 128 1.4 381.5 GB

GNN training DLR inference
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Evaluation Setup: Baselines

• GNN training

• GNNLab: [EuroSys’22], replication approach

• PartU: extended from WholeGraph [SC’22], partition approach

• Store cold embeddings in CPU (+cpu)

• Separate Server B’s 8 GPUs into two fully connect cliques (+clique)

• RepU: PartU with replication approach

• DLR inference

• HPS: [RecSys’22], replication approach

• Use LRU to update cache dynamically

• SOK: by NVIDIA, partition approach

• Conduct message-based embedding extraction
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Evaluation Overall Results: GNN

Different Server
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Evaluation Overall Results: GNN

Different workload
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Evaluation Overall Results: GNN

Less 
Skewness

Higer
Improvement

ØGNNLab (Replication)

• A larger cache

• Unsupervised SAGE leads to less 
skewness, so the improvement is higher
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Evaluation Overall Results: GNN

ØWholeGraph (Partition)

• In Server A

• Host extraction dominates

• Cost of approximate cache policy

• In Server B,C

• Efficiently use cache capacity

• Fully utilize bandwidth
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Evaluation Overall Results: DLR

ØVS HPS (Replication)
• Static cache policy is faster than LRU

ØVS SOK (Partition)
• Peer-based embedding extraction is 

faster than message-based embedding 
extraction
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Evaluation Overall Results: Extraction Time

ØGNN training
• Similar to e2e comparison

Red stands for GNNLab

Yellow stands for WholeGraph

ØDLR
• HPS vs RepU

RepU avoids online eviction

• SOK vs PartU

PartU uses peer-based extraction

• UGache vs RepU and PartU

Ugache is near optimal
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Performance Breakdown: Cache Ratio
dataset: PA (high skew)

dataset: CF (low skew)

GraphSAGE sup. on 8xA100

ØSmall cache ratio
• RepU is inefficient

• PartU and +Policy are close

• Hottest data should be cached

• UGache further improves

• Factored extraction mechanism

ØIncreased cache ratio
• +Policy outperforms PartU

• Balance local and global hit rate

ØDataset influence
• Divergence point is affected by skewness
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Evaluation: Bandwidth Utilization

Utilization of PCIe

Utilization of NVLink

ØSetting
• Remove local hits

• Only remote and host

ØFEM improves utilization
• Avoid congestion

ØIn GCN + CF
• Small dataset, high cache ratio

• Not much non-local access

• Slight improvement
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Evaluation: Cache Access Distribution

Hit rate of local GPU, remote GPU and host, 
in PA (top, high skew) and CF (bottom, low skew)

ØHit Rate 
• Low cache ratio (2%)

• RepU frequently access host

• PartU and UGache are similar

• Cache hottest entries first

• Increased cache ratio (8%)
• RepU still needs host access

• PartU doesn’t change much

• UGache improves local hit rate

• Slightly lower global hit rate
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Evaluation: Cache Policy

Extraction time of local GPU, remote GPU and host, 
in PA (top, high skew) and CF (bottom, low skew)

ØExtraction time
• RepU: Suffers from host access

• PartU: Avoids host access in small 
cache and remote hits take a long 
time

ØUGache
• Balances global and local hits

• Scales well in low skew CF
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Summary

• A study of multi-GPU embedding cache

• UGache:

- Factored extraction mechanism

- MILP-based Cache policy with low-cost solving


