
UGACHE: A Unified GPU Cache for 
Embedding-based Deep Learning

Xiaoniu Song1,2, Yiwen Zhang1, Rong Chen1,2 and Haibo Chen1

1Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University，
2Shanghai Artificial Intelligence Laboratory

SOSP 23



2

Outline

Ø Introduction

ØBackground and Motivation

ØUGache

- Extractor

- Solver

ØEvaluation



3

Embedding in Deep Learning

• Dense Inputs: continuous value

• Sparse Inputs: list of IDs (e.g., User ID, Vertex ID)

Poor support in 
traditional DL



4

Embedding in Deep Learning

Model Outputs 
(e.g., Classification)

Dense Layer
(e.g., MLP)

Embedding
Layer

Dense Inputs
(e.g., Price, Color)

Sparse Inputs
(e.g., User ID, Vertex ID)

Dense Feature Embeddings

Feature Integration

Dense Layer
(e.g., MLP)



5

Embedding in Deep Learning

Model Outputs 
(e.g., Classification)

Dense Layer
(e.g., MLP)

Embedding
Layer

Dense Inputs
(e.g., Price, Color)

Sparse Inputs
(e.g., User ID, Vertex ID)

Dense Feature Embeddings

Feature Integration

Dense Layer
(e.g., MLP)

Embedding
Tables

128 dims

………

Embeddings

Embedding Extract

ID
 L

is
t



6

Outline

Ø Introduction

ØBackground and Motivation

ØUGache

- Extractor

- Solver

ØEvaluation



7

Embedding Bottleneck

Model Outputs 
(e.g., Classification)

Dense Layer
(e.g., MLP)

Embedding
Layer

Dense Inputs
(e.g., Price, Color)

Sparse Inputs
(e.g., User ID, Vertex ID)

Dense Feature Embeddings

Feature Integration

Dense Layer
(e.g., MLP)

Dense Embedding

~100MB ~100GB

GPU Host

~10ms ~100ms



8

Skewed Embedding Access

Source of skewness:
- Preferences in user choice
- Power-law in graph

(Deep Learning Recommendation)

Skewness remains relatively constant
over an extended period



9

Enable a single-GPU Cache?

Model Outputs 
(e.g., Classification)

Dense Layer
(e.g., MLP)

Embedding
Layer

Dense Inputs
(e.g., Price, Color)

Sparse Inputs
(e.g., User ID, Vertex ID)

Dense Feature Embeddings

Feature Integration

Dense Layer
(e.g., MLP)

Dense Embedding +Cache

~100MB ~100GB

GPU Host 20% in GPU

~10ms ~100ms ~20ms

Still a bottleneck!!!



10

Opportunity: GPU Fast Interconnect

V100 A100

Local 900 1900

Remote 300 600

Host 32 64

Bandwidth (GB/s)

Enabling a faster and larger multi-GPU Cache?



11

Towards Fast and Large Multi-GPU Cache

• Cache Policy
- How to place embeddings

• Extraction Mechanism
- How to fetch embeddings



12

Multi-GPU Cache Policy

• Replication cache

- Port single GPU solution

- Independently cache hot entry

- 🙁Ignore fast interconnect

- 🙁>99% overlap in cache hit requests

GPU0 GPU1

GPU2 GPU3

EmbeddingsHot Cold



13

Multi-GPU Cache Policy

• Partition cache

- Cache more distinct entry 

- Reduced miss rate on multi-GPU

GPU0 GPU1

GPU2 GPU3

EmbeddingsHot Cold

0 2 4 6 8 10

Rep

Part

Miss Rate on multi-GPU



14

Remote

Multi-GPU Cache Policy

• Partition cache

- 🙁 Poor local hit rate
- Remote is 3x slower than local

V100 A100

Local 900 1900

Remote 300 600

Host 32 64

Bandwidth (GB/s)

0 10

Rep

Part

Miss Rate on multi-GPU

100 80 60 40 20 0

Local

Local

Hit Rate on multi-GPU

Rep

Part



15

Multi-GPU Cache Challenges

• #1: Cache Policy

- Reduce miss rate while preserve local hit rate



16

Multi-GPU Extraction Mechanism

• Peer-based

- Unified address space for multi-GPU

Batch of Keys Extract
Kernel Output

Low bandwidth utilization: ~30%



17

Multi-GPU Extraction Mechanism

• Topology #1: Hard-wired

- Static bandwidth partition



18

Multi-GPU Extraction Mechanism

• Topology #2: Switch-based

- Dynamically allocates bandwidth



19

Multi-GPU Extraction Mechanism

• Bandwidth collision on switch-based platform

Underutilized

Congestion



20

Multi-GPU Cache Challenges

• #1: Cache Policy

- Reduce miss rate while preserve local hit rate

• #2: Extraction Mechanism

- Avoid congestion and improve bandwidth utilization



21

Outline

Ø Introduction

ØBackground and Motivation

ØUGache

- Extractor

- Solver

ØEvaluation



22

UGache

• A static embedding cache unifying multi-GPU

• Extractor (online)

- Serve embedding extraction

- Solver (offline)

- Provide cache policy

Solver Extractor



23

Extractor: Dedication

• Dedicate GPU cores to access different link

1 3 3 H 2
1 0 1 0 2
H 3 0 1 H
3 0 0 H 2

HHHH

00000

1111

222

3333

0
1

2

3

H

GroupingBatch of Keys



24

Extractor: Dedication

• Dedicate GPU cores to access different link

1 3 3 H 2
1 0 1 0 2
H 3 0 1 H
3 0 0 H 2

HHHH

00000

1111

222

3333

GPU0 Core Allocation Time

C
or

e

Time
1
2
3
H

0
1

2

3

H

GroupingBatch of Keys



25

Extractor: Dedication

• Self controlled collision avoiding

• No explicit coordination required
Self Controlled



26

C
or

e

Time
1
2
3
H

Extractor: Ragged Time

• Dedicate GPU cores to access different link

1 3 3 H 2
1 0 1 0 2
H 3 0 1 H
3 0 0 H 2

HHHH

00000

1111

222

3333

GPU0 Core Allocation Time
0

1

2

3

H

Grouping

Idle

Idle
Ragged

Batch of Keys



27

Extractor: Local Padding

• Dedicate GPU cores to access different link

1 3 3 H 2
1 0 1 0 2
H 3 0 1 H
3 0 0 H 2

HHHH

00000

1111

222

3333

GPU0 Core Allocation Time

0

C
or

e

Time
1
2
3
H

0
1

2

3

H

Grouping

Idle

Idle

Batch of Keys



28

Solver: Sweet Spot of Redundancy

Level of redundancy

More Less

Rep Part

Duplicate more 
hot embedding

👍Improve local hit rate

🙁high miss rate



29

Solver: Sweet Spot of Redundancy

Level of redundancy

More Less

Rep Part

Duplicate more 
hot embedding

👍Improve local hit rate

🙁high miss rate

Cache more 
distinct embedding

👍Reduce host hit rate

🙁Low local hit rate



30

Solver: Sweet Spot of Redundancy

Level of redundancy

More Less

Rep Part

Duplicate more 
hot embedding

👍Improve local hit rate

🙁high miss rate

Cache more 
distinct embedding

👍Reduce host hit rate

🙁Low local hit rate



31

Solver: MILP-based Policy

• UGache uses Mixed Integer Linear Programming

Workload

Hardware

Solver

Plan for Placement
and Access of embeddings

Offline

Target Function: minimize the 
extraction time of all GPU 



32

Solver: Cost Reducing

• High solving cost of MILP: O(2E)

- Entry-level decision: E is billion scale

• Batch similar embeddings

- Billion to kilo: solve in 10s

• Hybrid batch granularity

- Preserve accuracy: >95%



33

Outline

Ø Introduction

ØBackground and Motivation

ØUGache

- Extractor

- Solver

ØEvaluation



34

Evaluation Setup: Testbeds

• 3 servers with different topologies

Server GPU Total CPU Host memory

A 4 * V100 (16 GB) 40 cores 384 GB

B 8 * V100 (32 GB) 48 cores 724 GB

C 8 * A100 (80 GB) 56 cores 1 TB

Server A Server B Server C



35

Evaluation Setup: Applications and Datasets

• Models
• GNN (GCN and GraphSAGE, Supervised)
• GNN (GraphSAGE, Unsupervised)
• DLR: DLRM and DCN

• Datasets

Dataset #Vertex #Edge Dim. VolumeG VolumeE
PA 111 M 3.2 B 128 12.8 GB 53 GB

CF 65.6 M 3.6 B 256 14 GB 62 GB
MAG 232 M 3.2 B 768 13.8 GB 349 GB

Dataset #Entry #Table Dim. Skewness VolumeE
CR 882 M 26 128 N/A 420.9 GB

SYN-A 800 M 100 128 1.2 381.5 GB
SYN-B 800 M 100 128 1.4 381.5 GB

GNN training DLR inference



36

Evaluation Setup: Baselines

• GNN training

• GNNLab: [EuroSys’22], replication approach

• PartU: extended from WholeGraph [SC’22], partition approach

• Store cold embeddings in CPU (+cpu)

• Separate Server B’s 8 GPUs into two fully connect cliques (+clique)

• RepU: PartU with replication approach

• DLR inference

• HPS: [RecSys’22], replication approach

• Use LRU to update cache dynamically

• SOK: by NVIDIA, partition approach

• Conduct message-based embedding extraction



37

Evaluation Overall Results: GNN

Different Server



38

Evaluation Overall Results: GNN

Different workload



39

Evaluation Overall Results: GNN

Less 
Skewness

Higer
Improvement

ØGNNLab (Replication)

• A larger cache

• Unsupervised SAGE leads to less 
skewness, so the improvement is higher



40

Evaluation Overall Results: GNN

ØWholeGraph (Partition)

• In Server A

• Host extraction dominates

• Cost of approximate cache policy

• In Server B,C

• Efficiently use cache capacity

• Fully utilize bandwidth



41

Evaluation Overall Results: DLR

ØVS HPS (Replication)
• Static cache policy is faster than LRU

ØVS SOK (Partition)
• Peer-based embedding extraction is 

faster than message-based embedding 
extraction



42

Evaluation Overall Results: Extraction Time

ØGNN training
• Similar to e2e comparison

Red stands for GNNLab

Yellow stands for WholeGraph

ØDLR
• HPS vs RepU

RepU avoids online eviction

• SOK vs PartU

PartU uses peer-based extraction

• UGache vs RepU and PartU

Ugache is near optimal



43

Performance Breakdown: Cache Ratio
dataset: PA (high skew)

dataset: CF (low skew)

GraphSAGE sup. on 8xA100

ØSmall cache ratio
• RepU is inefficient

• PartU and +Policy are close

• Hottest data should be cached

• UGache further improves

• Factored extraction mechanism

ØIncreased cache ratio
• +Policy outperforms PartU

• Balance local and global hit rate

ØDataset influence
• Divergence point is affected by skewness



44

Evaluation: Bandwidth Utilization

Utilization of PCIe

Utilization of NVLink

ØSetting
• Remove local hits

• Only remote and host

ØFEM improves utilization
• Avoid congestion

ØIn GCN + CF
• Small dataset, high cache ratio

• Not much non-local access

• Slight improvement



45

Evaluation: Cache Access Distribution

Hit rate of local GPU, remote GPU and host, 
in PA (top, high skew) and CF (bottom, low skew)

ØHit Rate 
• Low cache ratio (2%)

• RepU frequently access host

• PartU and UGache are similar

• Cache hottest entries first

• Increased cache ratio (8%)
• RepU still needs host access

• PartU doesn’t change much

• UGache improves local hit rate

• Slightly lower global hit rate



46

Evaluation: Cache Policy

Extraction time of local GPU, remote GPU and host, 
in PA (top, high skew) and CF (bottom, low skew)

ØExtraction time
• RepU: Suffers from host access

• PartU: Avoids host access in small 
cache and remote hits take a long 
time

ØUGache
• Balances global and local hits

• Scales well in low skew CF



47

Summary

• A study of multi-GPU embedding cache

• UGache:

- Factored extraction mechanism

- MILP-based Cache policy with low-cost solving


