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Multi-dimensional Prallelism

Partition data across 
workers and 

replicate model

Data Parallel (DP)

Partition 
operators in the 

model

Tensor Parallel (TP)

Partition model 
into stages

Pipeline Parallel (PP)

Synchronization Overhead Communication Overhead Pipeline Bubbles
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Dynamic Resource Changes

Elasticity:  

◼Dynamically scale the number of GPUs allocated to a job based on available resources or by 

leveraging spot instances.

Redeployment: 

◼ Schedulers can reassign jobs to a new set of GPUs for operational efficiency or resource 

management.

Failure recovery:

◼ Long-running jobs may lose GPU resources due to failures from hardware faults, network 

outages, or software errors.

Training workloads may running days or weeks, the scheduler may 
change GPU allocation at runtime.



4

Dynamic Resource Changes

Current DL system do not allow DL job scheduler change GPU resource at runtime (?)

Lack of device-independence: DL jobs are tightly coupled to GPUs at deployment time, 

preventing schedulers from changing the allocation.

Changing with multi-dimensional parallelism: when GPU resources change, current 

parallelization strategy may no longer be optimal

changing DL job resources dynamically, with the support of 
multi-dimensional parallelism
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Challenge

Convergence Performance

Training dataset
Some data may be used twice

Hyper parameters
Global batch size change

Parallelization configuration

Reconfiguration cost
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Existing Work

Consistency Multi-dimension Dynamics Overhead
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Design Overview

State for a DL job including model parameters and dataset

This paper propose a state management library

Externalizes and abstract state from DL job Transform state when GPU changes 

Design Goal

◼ensuring the consistency of the training result

◼ supporting arbitrary reconfiguration of jobs with multi-dimensional

◼maintaining a low reconfiguration overhead parallelism
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Design Overview

Tenplex manage state (model,dataset) as parallelizable tensor collection (PTC)
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PTC Overview 

Observation: Any multi-dimensional parallelization strategy can be expressed as as a slicing

of state tensors, followed by as partitioning of these tensors across GPU devices.

Define with three functions

Slicing (σ)：Split tensors into sub-tensors, directed by TP.

Partitioning (Φ): Group sub-tensors into collections that can be assigned to device, directed 

by PP and DP.

Allocation (α): Map sub-tensor collections to GPU devices.

These three  simple functions are sufficient to express any 
multi-dimensional parallelization strategies.

T is the tensor collections (including 

dataset tensor and model tensor)
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PTC Overview 

Slicing (σ), Partitioning (Φ), Allocation (α). Deploy a job with DP=2, TP=2
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Reconfiguration plan

Reconfiguration plan: A sequence of operations can turn state of PTC into PTC’

Split: Slice current sub-tensors according to new slicing function σ’

Re-partition: Move the split tensors from previous GPU to new GPU

Merge: Combine sub-tensors were previously split but now on the same GPU.

Decide how to reconfigure by computing a delta 
between current PTC and new PTC’

We can compute a reconfiguration 
plan which exchange minimal set of 

sub-tensors between GPUs
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Reconfiguration plan

Split: Slice current sub-tensors according to new slicing function σ’

Re-partition: Move the split tensors from previous GPU to new GPU

Merge: Combine sub-tensors were previously split but now on the same GPU.

From TP=2 to TP=3,PP=2
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Reconfiguration plan

σ and σ' record how the original tensor 

was sliced, making it straightforward to 

create the corresponding split function.

1. Traverse all sub-tensors

2. generate the split function based on 

σ and σ'.
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Reconfiguration plan

1. Traverse all sub-collections in PTC’.

2. Traverse all sub-tensor in a sub-

collections

3. Retrieve its original tensor T and 

how this tensor was sliced with 

SPLIT

4. For each slicing, add move by 

compare its r and r’

5. Merge splited tensor.
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Reconfiguration plan

1. Traverse all sub-collections in PTC’.

2. Traverse all sub-tensor in a sub-

collections

3. Retrieve its original tensor T and 

how this tensor was sliced with 

SPLIT

4. For each slicing, add move by 

compare its r and r’

5. Merge splited tensor.
A very straightforward algorithm that simply leverages its abstraction.
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Expanding to new parallelism strategies

Expert parallelism (EP): Modify the partition function Φ and allocation function α, without 

changing the slicing σ function, as EP does not split tensors.

Sequence parallelism(SP): Use the slicing function σ to partition the dataset along the 

sequence dimension.
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Tenplex Architecture

Tensor Store: Maintain model and 
dataset describe by PTC in a in-

memory file system.

State Transformer: Apply 
transformation from PTC to PTC’, 

according to new configuration
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Tenplex Architecture

1. Save checkpoint to Tensor Store

2. Get new Parallelization configuration as PTC’

3. Create reconfiguration plan using Alg.1

4. Apply split, re-partition, and merge with the 

help with local or remote Tensor Store

5. DL system restore job from the Tensor Store

State Transformer: Apply 
transformation from PTC to PTC’, 

according to new configuration
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Tenplex Architecture

Model State: 

◼Expose python slice-like API for State Transformer to modify sub-tensors: range=[:,2:4]

◼Expose load/store API for DL system to move model in and out DL system.

Dataset State:

◼Expose data sample access API to State Transformer

◼Expose data access API for DL system

◼Overlap training and dataset fetching, because dataset is immutable and consumed sequentially

Tensor Store: Maintain model and dataset describe by PTC in a in-memory file system.
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Tenplex Architecture

Integration with existing training jobs

◼ Job schedulers: Notice tenplex when GPU resource changed.

• E.g., K8s, Pollux, Ray, Sia

◼Model paralleizers: Decide parallelization configuration according to available resource.

• E.g.，Alpa, Megatron-LM

◼DL systems: Allow Tenplex to externalize DL job state through APIs for load/store model

• E.g., Pytorch, JAX

◼Training programs: Use Tenplex’s API to access dataset and replace saving/loading 

checkpoint with Tenplex’s API



Evaluation
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 Two Clusters:

1. (4×NVIDIA RTX A6000) × 4

2. (4×NVIDIA V100) × 8  

 Baselines:

◼ Torch Distributed Elastic v2.0

◼ DeepSpeed v0.6 with Magatron-LM v23.06

◼ Tenplex-DP

◼ Tenplex-Central

 Models:

◼BERT-Large(340M),

◼GPT-3 (1.3B, 2.7B, 6.7B)

◼ResNet-50 (25M)

 Datasets:

◼OpenWebText

◼Wikipedia

◼ImageNet



Evaluation
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 Elastic multi-dimensional parallelism:

Pausing when elastic only with DP

(TP,PP,DP) 16GPU 8GPU 14GPU

Tenplex (2,4,2) (2,4,1) (2,2,1)

Others (2,4,2) (2,4,1) Pausing
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 Job redeployment:

◼ Redeploy a DL job from one set of 8 GPUs to another 8 GPUs.

Performs all state repartitioning 
at a central node

• Tenplex can migrate state directly 
between workers.

• Prevent network BW of single 
worker from becoming a bottleneck



Evaluation
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 Reconfiguration overhead:

1-> Scales up from 8 to 16 GPUs.                       2 -> Scales down from 16 to 8 GPUs.

• Scales up: 24% less time than DeepSpeed

and 10% less time than Singularity. 

• Scales down: 64% less time than 

DeepSpeed and 43% less than Singularity.

Data of Singularity directly from original paper

Performe better when 16 to 8 because it can 
benefit from minimal set data movement

Relies on failure mechanism to notifying reconfiguration

Full GPU state transform
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 Impact of parallelization type:

◼ For DP: change from (𝑻, 𝑷, 𝑫) = (𝟒, 𝟐, 𝟏) to (𝟒, 𝟐, 𝟐)

◼ For PP: change from (𝑻, 𝑷, 𝑫) = (𝟒, 𝟐, 𝟏) to (𝟒, 𝟒, 𝟏)

◼ For TP: change from (𝑻, 𝑷, 𝑫) = (𝟒, 𝟐, 𝟏) to (𝟖, 𝟐, 𝟏)

• Tenplex takes shorter time because of a distributed peer-to-peer state reconfiguration

• PP does not involve splitting and 

merging sub-tensors.

• Network is not a bottleneck here



Evaluation
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 Impact of cluster size for reconfiguration:

◼ Keep model size fixed but change GPU resources in the cluster.

◼ GPT-3-1.3B in 32-GPU testbed (V100)

• DP: time increases linearly because the number of replicas increases.

• PP: model size is constant, network BW increases with GPU count

• TP: similar to PP, but must split and merge sub-tensors

* We compare Tenplex with the baseline Tenplex-Central, as it is the only baseline that supports full multi-dimensional parallelism???



Evaluation
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 Impact of convergency:

◼ Convergency is unaffected

◼ But way? No design?



Concusion
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 Tenplex abstracts the training state in multi-dimensional parallelization with PTC, enabling multi-

dimensional transformations.

 Pros

 A simple abstraction to describe 1. Describing state distribution in multi-dimensional 

parallelism 2. Managing state transitions

 Decouples state management from DL system, allowing it to run as an external library

 Cons

 Does not account for the time needed to find optimal multi-dimensional parallelism

 Propose minor challenges without relevant design solutions

 Evaluation is not convincing

 Is it applicable to model inference?
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