
Tianjin Key Laboratory of Advanced Networking

智能与计算学部
College of Intelligence and Computing

读最好的论文 做最有价值的科研
Best papers, innovative ideas, valuable works.

1

Tenplex: Dynamic Parallelism for Deep Learning

using Parallelizable Tensor Collections

汇报人：段兆麟 张宇杭 王艺涵

天津大学智能与计算学部

2

Multi-dimensional Prallelism

Partition data across
workers and

replicate model

Data Parallel (DP)

Partition
operators in the

model

Tensor Parallel (TP)

Partition model
into stages

Pipeline Parallel (PP)

Synchronization Overhead Communication Overhead Pipeline Bubbles

3

Dynamic Resource Changes

Elasticity:

◼Dynamically scale the number of GPUs allocated to a job based on available resources or by

leveraging spot instances.

Redeployment:

◼ Schedulers can reassign jobs to a new set of GPUs for operational efficiency or resource

management.

Failure recovery:

◼ Long-running jobs may lose GPU resources due to failures from hardware faults, network

outages, or software errors.

Training workloads may running days or weeks, the scheduler may
change GPU allocation at runtime.

4

Dynamic Resource Changes

Current DL system do not allow DL job scheduler change GPU resource at runtime (?)

Lack of device-independence: DL jobs are tightly coupled to GPUs at deployment time,

preventing schedulers from changing the allocation.

Changing with multi-dimensional parallelism: when GPU resources change, current

parallelization strategy may no longer be optimal

changing DL job resources dynamically, with the support of
multi-dimensional parallelism

5

Challenge

Convergence Performance

Training dataset
Some data may be used twice

Hyper parameters
Global batch size change

Parallelization configuration

Reconfiguration cost

6

Existing Work

Consistency Multi-dimension Dynamics Overhead

7

Design Overview

State for a DL job including model parameters and dataset

This paper propose a state management library

Externalizes and abstract state from DL job Transform state when GPU changes

Design Goal

◼ensuring the consistency of the training result

◼ supporting arbitrary reconfiguration of jobs with multi-dimensional

◼maintaining a low reconfiguration overhead parallelism

8

Design Overview

Tenplex manage state (model,dataset) as parallelizable tensor collection (PTC)

9

PTC Overview

Observation: Any multi-dimensional parallelization strategy can be expressed as as a slicing

of state tensors, followed by as partitioning of these tensors across GPU devices.

Define with three functions

Slicing (σ)：Split tensors into sub-tensors, directed by TP.

Partitioning (Φ): Group sub-tensors into collections that can be assigned to device, directed

by PP and DP.

Allocation (α): Map sub-tensor collections to GPU devices.

These three simple functions are sufficient to express any
multi-dimensional parallelization strategies.

T is the tensor collections (including

dataset tensor and model tensor)

10

PTC Overview

Slicing (σ), Partitioning (Φ), Allocation (α). Deploy a job with DP=2, TP=2

11

Reconfiguration plan

Reconfiguration plan: A sequence of operations can turn state of PTC into PTC’

Split: Slice current sub-tensors according to new slicing function σ’

Re-partition: Move the split tensors from previous GPU to new GPU

Merge: Combine sub-tensors were previously split but now on the same GPU.

Decide how to reconfigure by computing a delta
between current PTC and new PTC’

We can compute a reconfiguration
plan which exchange minimal set of

sub-tensors between GPUs

12

Reconfiguration plan

Split: Slice current sub-tensors according to new slicing function σ’

Re-partition: Move the split tensors from previous GPU to new GPU

Merge: Combine sub-tensors were previously split but now on the same GPU.

From TP=2 to TP=3,PP=2

13

Reconfiguration plan

σ and σ' record how the original tensor

was sliced, making it straightforward to

create the corresponding split function.

1. Traverse all sub-tensors

2. generate the split function based on

σ and σ'.

14

Reconfiguration plan

1. Traverse all sub-collections in PTC’.

2. Traverse all sub-tensor in a sub-

collections

3. Retrieve its original tensor T and

how this tensor was sliced with

SPLIT

4. For each slicing, add move by

compare its r and r’

5. Merge splited tensor.

15

Reconfiguration plan

1. Traverse all sub-collections in PTC’.

2. Traverse all sub-tensor in a sub-

collections

3. Retrieve its original tensor T and

how this tensor was sliced with

SPLIT

4. For each slicing, add move by

compare its r and r’

5. Merge splited tensor.
A very straightforward algorithm that simply leverages its abstraction.

16

Expanding to new parallelism strategies

Expert parallelism (EP): Modify the partition function Φ and allocation function α, without

changing the slicing σ function, as EP does not split tensors.

Sequence parallelism(SP): Use the slicing function σ to partition the dataset along the

sequence dimension.

17

Tenplex Architecture

Tensor Store: Maintain model and
dataset describe by PTC in a in-

memory file system.

State Transformer: Apply
transformation from PTC to PTC’,

according to new configuration

18

Tenplex Architecture

1. Save checkpoint to Tensor Store

2. Get new Parallelization configuration as PTC’

3. Create reconfiguration plan using Alg.1

4. Apply split, re-partition, and merge with the

help with local or remote Tensor Store

5. DL system restore job from the Tensor Store

State Transformer: Apply
transformation from PTC to PTC’,

according to new configuration

19

Tenplex Architecture

Model State:

◼Expose python slice-like API for State Transformer to modify sub-tensors: range=[:,2:4]

◼Expose load/store API for DL system to move model in and out DL system.

Dataset State:

◼Expose data sample access API to State Transformer

◼Expose data access API for DL system

◼Overlap training and dataset fetching, because dataset is immutable and consumed sequentially

Tensor Store: Maintain model and dataset describe by PTC in a in-memory file system.

20

Tenplex Architecture

Integration with existing training jobs

◼ Job schedulers: Notice tenplex when GPU resource changed.

• E.g., K8s, Pollux, Ray, Sia

◼Model paralleizers: Decide parallelization configuration according to available resource.

• E.g.，Alpa, Megatron-LM

◼DL systems: Allow Tenplex to externalize DL job state through APIs for load/store model

• E.g., Pytorch, JAX

◼Training programs: Use Tenplex’s API to access dataset and replace saving/loading

checkpoint with Tenplex’s API

Evaluation

21

 Two Clusters:

1. (4×NVIDIA RTX A6000) × 4

2. (4×NVIDIA V100) × 8

 Baselines:

◼ Torch Distributed Elastic v2.0

◼ DeepSpeed v0.6 with Magatron-LM v23.06

◼ Tenplex-DP

◼ Tenplex-Central

 Models:

◼BERT-Large(340M),

◼GPT-3 (1.3B, 2.7B, 6.7B)

◼ResNet-50 (25M)

 Datasets:

◼OpenWebText

◼Wikipedia

◼ImageNet

Evaluation

22

 Elastic multi-dimensional parallelism:

Pausing when elastic only with DP

(TP,PP,DP) 16GPU 8GPU 14GPU

Tenplex (2,4,2) (2,4,1) (2,2,1)

Others (2,4,2) (2,4,1) Pausing

Evaluation

23

 Job redeployment:

◼ Redeploy a DL job from one set of 8 GPUs to another 8 GPUs.

Performs all state repartitioning
at a central node

• Tenplex can migrate state directly
between workers.

• Prevent network BW of single
worker from becoming a bottleneck

Evaluation

24

 Reconfiguration overhead:

1-> Scales up from 8 to 16 GPUs. 2 -> Scales down from 16 to 8 GPUs.

• Scales up: 24% less time than DeepSpeed

and 10% less time than Singularity.

• Scales down: 64% less time than

DeepSpeed and 43% less than Singularity.

Data of Singularity directly from original paper

Performe better when 16 to 8 because it can
benefit from minimal set data movement

Relies on failure mechanism to notifying reconfiguration

Full GPU state transform

Evaluation

25

 Impact of parallelization type:

◼ For DP: change from (𝑻, 𝑷, 𝑫) = (𝟒, 𝟐, 𝟏) to (𝟒, 𝟐, 𝟐)

◼ For PP: change from (𝑻, 𝑷, 𝑫) = (𝟒, 𝟐, 𝟏) to (𝟒, 𝟒, 𝟏)

◼ For TP: change from (𝑻, 𝑷, 𝑫) = (𝟒, 𝟐, 𝟏) to (𝟖, 𝟐, 𝟏)

• Tenplex takes shorter time because of a distributed peer-to-peer state reconfiguration

• PP does not involve splitting and

merging sub-tensors.

• Network is not a bottleneck here

Evaluation

26

 Impact of cluster size for reconfiguration:

◼ Keep model size fixed but change GPU resources in the cluster.

◼ GPT-3-1.3B in 32-GPU testbed (V100)

• DP: time increases linearly because the number of replicas increases.

• PP: model size is constant, network BW increases with GPU count

• TP: similar to PP, but must split and merge sub-tensors

* We compare Tenplex with the baseline Tenplex-Central, as it is the only baseline that supports full multi-dimensional parallelism???

Evaluation

27

 Impact of convergency:

◼ Convergency is unaffected

◼ But way? No design?

Concusion

28

 Tenplex abstracts the training state in multi-dimensional parallelization with PTC, enabling multi-

dimensional transformations.

 Pros

 A simple abstraction to describe 1. Describing state distribution in multi-dimensional

parallelism 2. Managing state transitions

 Decouples state management from DL system, allowing it to run as an external library

 Cons

 Does not account for the time needed to find optimal multi-dimensional parallelism

 Propose minor challenges without relevant design solutions

 Evaluation is not convincing

 Is it applicable to model inference?

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28

