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Training background

Introduction

 Large scale training 

◼ Llama-3 was trained on 15 trillion tokens, using two clusters of 24K GPUs

 Hybrid-parallelism training 

◼ TP within a multi-GPU server

◼ PP across multi-GPU servers

◼ DP across pipelines
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 High cost of faults

◼ Microsoft's training cluster fails about every 45 minutes

◼ Meta encountered over 100 hardware failures during OPT-175B training, 

losing 178,000 GPU hours

 Fault handling

◼ Error Detection

◼ Checkpoint

◼ Fault tolerant training

Fault during training

Introduction
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 Fault-tolerant training

◼ Bamboo (NSDI 23): redundant computation----- low throughput

◼ Oobleck (SOSP 23): re-configure parallel scheme----- suspend overhead

Related Works

Introduction
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Motivation

Reroute: No need to re-shuffle model 
parameters.

1. Peer nodes have the same 
parameters in data parallelism 

2. Bubbles in the pipeline 
parallelism

The warm-up and cool-down phases 
contain bubbles due to the sequential 
dispatch of micro-batches.
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Motivation

Reroute: No need to re-shuffle model 
parameters in case of a fault.

1. Peer nodes have the same 
parameters in data parallelism 

2. Bubbles in the pipeline 
parallelism

The warm-up and cool-down phases 
contain bubbles due to the sequential 
dispatch of micro-batches.

ReCycle: uninterrupted training with re-routing 
for bubbles and without re-shuffling.
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Design 1：Adaptive Pipelining

Design
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Design 1：Adaptive Pipelining

Design

pipeline parallelism has 
3 × (𝑃𝑃 − 1) × 𝐷𝑃 bubbles

High Overhead:
Originally 27 time steps, an error 

added 9 extra time steps
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Design： Efficient bubble filling

Design

1. Decoupled BackProp: Filling Unused Bubbles

2. Staggered Optimizer: Accessing More Bubbles
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Design 2： Decoupled BackProp

Design

 Backward

1. Backward computes input gradients and weights gradients

2. Layer i only depends on the input gradients from layer i+1

3. Weights gradients can be deferred until the end
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Design 2： Decoupled BackProp

Design

 Method

 Prioritize executing BInput in 

bubbles

✓ Advantage：extra time steps 9 -> 2

✓ Disadvantage：Increases memory 

pressure

 Memory pressure mitigation

 Avoid decoupling Backward 

unless necessary
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Design 3： Staggered Optimizer

Synchronous  optimizer 
-> 

warm-up bubbles

Asynchronous  optimizer 
-> 

Reduce warm-up bubbles 

Design



14

 System

◼ Profiler

◼ Planner

◼ Executor

◼ Coordinator

System Overview

Design
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 Intuition

◼ distribute across different peers 

◼ distribute to peers with more bubbles

 dynamic programming

◼ 𝐹 failures

◼ 𝑃𝑃 pipeline stages

◼ 𝐴[𝑖] = x, x failures in stage 𝑖

◼ 𝑂[𝑖][𝑓], handling 𝑓 failures overhead

Planner:  Failure Normalization

Design

DP

additional time slots by heuristic
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 Intuition

◼ distribute across different peers 

◼ distribute to peers with more bubbles

 dynamic programming

◼ 𝐹 failures

◼ 𝑃𝑃 pipeline stages

◼ 𝐴[𝑖] = x, x failures in stage 𝑖

◼ 𝑂[𝑖][𝑓], handling 𝑓 failures overhead

Planner:  Failure Normalization

Design

additional time slots by heuristic

dynamic programming

Result： interrupted 

dynamic programming

Result： uninterrupted 
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 MILP

◼ Tcoom : communication latency

◼ TF , TBinput , TBweight : execution latency 

◼ operation (i, j, k, c, ks),  𝐜 𝛜{F , Binput , Bweight}

a micro-batch ID 14, rerouted from 𝑊2_3 to 𝑊1_3: i = 3, j = 14, k = 2, ks = 1.

◼ 𝐒
i, j, k
ks 𝛜 {0, 1}

◼ σ𝐤𝐬 𝐒
i, j, k
ks = 1

◼ 𝐎 𝐢,𝐣,𝐤,𝐜,𝐤𝐬 → ư𝐢, ư𝐣 ሗ,𝐤, ư𝐜 ሗ,𝐤𝐬 𝛜 {0, 1}

◼ 𝑬i, j, k, c
𝒌𝒔 : ending time of operation (i, j, k, c, ks)

Planner: Adaptive Schedule Generation

Design
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 MILP

◼ Tcoom

◼ TF , TBinput , TBweight

◼ operation (i, j, k, c, ks) 

◼ 𝐒
i, j, k
ks 𝛜 {0, 1}

◼ σ𝐤𝐬 𝐒
i, j, k
ks = 1

◼ 𝐎 𝐢,𝐣,𝐤,𝐜,𝐤𝐬 → ư𝐢, ư𝐣 ሗ,𝐤, ư𝐜 ሗ,𝐤𝐬 𝛜 {0, 1}

◼ 𝑬i, j, k, c
𝒌𝒔

Planner: Adaptive Schedule Generation

Design



19

 MILP

◼ AB , ABweight : activation

◼ ABinput , ABweight : gradients

◼ operation (i, j, k, c, ks) 

◼ 𝐎 𝐢,𝐣,𝐤,𝐜,𝐤𝐬 → ư𝐢, ư𝐣 ሗ,𝐤, ư𝐜 ሗ,𝐤𝐬 𝛜 {0, 1}

Planner: Adaptive Schedule Generation

Design
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 Rerouting: communication operators

◼ ReRouteAct

◼ ReRouteGrad

 Decoupling BackProp: pipeline instructions 

◼ InputBackwardPass

◼ WeightBackwardPass

 Rerouting: communication operators

◼ optimizer in pipeline stage 

Implementation on DeepSpeed

Design
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 Cluster Setup

◼ 4 Standard_NC96ads_A100_v4 (8 A100 GPUs, 96 vCPUs, and 880 GB 

memory each) in Azure, 600 GB/s NVLink intra-node, 640 Gbps internode

 Baselines

◼ Bamboo, Oobleck

 Workloads

◼ GPT-3: Medium (350M), 3.35B, and 6.7B

◼ (PP, DP): (2, 16), (4, 8), and (8, 4)

◼ WikiText

◼ Train 6 hours

Experimental Setup

Evaluation



22

◼ Bamboo: redundant computations and additional model state copies

◼ Oobleck: imbalanced pipelines and higher reconfiguration latency（re-shuffle）

Training Throughput Under Failures

Evaluation
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◼ 1.64× improvement over Bamboo，1.46× improvement over Oobleck

Training Throughput Under Failures

Evaluation
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ReCycle Scalability

Evaluation

 Simulator

◼ simulate maximum discrepancy is 5.98%

◼ variations from minor fluctuations by NCCL collectives
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ReCycle Scalability

Evaluation

 Large scale simulation 

◼ At a failure rate of 1%-5%,the performance of ReCycle is comparable to 

that of Fault-Scaled

◼ At a failure rate of 10%, the performance of ReCycle degrades by 0.5% to 

11.5%

256 GPUs 512 GPUs 1024 GPUs 1536 GPUs
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ReCycle Performance Breakdown

Evaluation

◼ Adaptive Pipelining: additional work

◼ Decoupled BackProp: effectively utilizing bubble, improve 63% to 118%

◼ Staggered Optimizer: reduce warm-up bubbles, improve 7% to 11%
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ReCycle Performance Breakdown

Evaluation

◼ By decoupling BackProp and delaying  Bweight computation, nearly full 

utilization of GPU memory is achieved
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Planner Overhead

Evaluation

◼ With 25% GPU failure, the Planner finds optimal scheduling with a delay 

of less than 0.1% of the total training time
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Conclusion

 Pros：

◼ Technical Advantages: Continuous training using data parallelism

◼ Technical Advantages: Combined optimization of bubbles

◼ Paper Advantages: The images clearly express the core design

 Cons：

◼ Dynamic programming will probably interrupt training

◼ Fine-grained scheduling of bubbles is difficult, and the paper does not 

explain how to achieve it 

◼ Existing pipeline parallelism techniques have already optimized the bubbles

Conclusion
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