

ReCycle: Resilient Training of Large DNNs using Pipeline Adaptation

Swapnil Gandhi gandhis@stanford.edu Stanford University

Athinagoras Skiadopoulos askiad@stanford.edu Stanford University Mark Zhao myzhao@cs.stanford.edu Stanford University

Christos Kozyrakis kozyraki@stanford.edu Stanford University

Training background

- □ Large scale training
 - Llama-3 was trained on 15 trillion tokens, using two clusters of 24K GPUs
- □ Hybrid-parallelism training
 - TP within a multi-GPU server
 - PP across multi-GPU servers
 - **DP** across pipelines

Fault during training

□ High cost of faults

- Microsoft's training cluster fails about every 45 minutes
- Meta encountered over 100 hardware failures during OPT-175B training, losing 178,000 GPU hours

□ Fault handling

- Error Detection
- Checkpoint
- Fault tolerant training

Related Works

□ Fault-tolerant training

Bamboo (NSDI 23): redundant computation----- low throughput

Oobleck (SOSP 23): re-configure parallel scheme----- suspend overhead

Motivation

1. Peer nodes have the same parameters in data parallelism

2. Bubbles in the pipeline parallelism

The warm-up and cool-down phases contain bubbles due to the sequential dispatch of micro-batches.

Motivation

2. Bubbles in the pipeline parallelism

Evaluation Conclusion

8

(a) Fault-Free 1F1B Schedule

(b) Adaptive Schedule when $W_{1,2}$ fails.

Evaluation Conclusio

Design Evaluation Conclusion

Design: Efficient bubble filling

- 1. Decoupled BackProp: Filling Unused Bubbles
- 2. Staggered Optimizer: Accessing More Bubbles

Design 2: Decoupled BackProp

- □ Backward
 - 1. Backward computes input gradients and weights gradients
 - 2. Layer i only depends on the input gradients from layer i+1
 - 3. Weights gradients can be deferred until the end

Figure 4. Forward and Backward pass for an operator.

Design 2: Decoupled BackProp

□ Method

- Prioritize executing B_{Input} in bubbles
 - ✓ Advantage: extra time steps 9 -> 2
 - Disadvantage: Increases memory pressure
- Memory pressure mitigation
 - Avoid decoupling Backward unless necessary

- Forward, Backward, Decoupled-Backward of data parallel pipeline 0 for micro-batch x
- Forward, Backward, Decoupled-Backward of data parallel pipeline 1 for micro-batch y
- Forward, Backward, Decoupled-Backward of data parallel pipeline 2 for micro-batch z

Bubbles in 1F1B

- Extra Bubbles in Adaptive Pipeline due to sync. all-reduce
- Extra Bubbles in Adaptive
- Pipeline due to work imbalance

Failed Stage

Evaluation Conclusion

Design 3: Staggered Optimizer

Data Parallel Pipeline 1

Data Parallel Pipeline 2

warm-up bubbles

Data Parallel Pipeline 0

Data Parallel Pipeline 1

... 10 -1

Iteration 2 **Data Parallel Pipeline 2** Stage 0 • Stage 1 Ŧ Stage 2 Stage 3

> 6 0 ··· 38 ··· 33 ··· 38 ··· 38 ··· 38 ··· 38 ··· 38 ··· 38 ··· 38 ··· 41 ··· 4 Asynchronous optimizer **Reduce warm-up bubbles**

Planner: Failure Normalization

Intuition

- distribute across different peers
- distribute to peers with more bubbles

Design

Evaluation

- □ dynamic programming
 - F failures
 - PP pipeline stages
 - A[i] = x, x failures in stage i
 - O[i][f], handling f failures overhead

additional time slots by heuristic

Algorithm 1 Failure Normalization 1: $DP \leftarrow$ Number of data-parallel pipelines. Concl 2: $PP \leftarrow$ Number of pipeline stages. 3: $MB \leftarrow$ Number of microbatches per pipeline. 4: $F \leftarrow$ Total number of failures. 5: $O \leftarrow \text{an PP} \times (F+1)$ array ▶ Rerouting Overheads 6: $A \leftarrow an PP \times (F+1) array$ Assignments 7: 8: procedure FAILURE REORDERING(DP, PP, MB, F) for $i \in \{0, ..., PP - 1\}$ do 9: for $f \in \{0, ..., F\}$ do 10: if i == 0 then 11: O[i][f] = COST(f)12: A[i][f] = [f]13: else 14: $x = \arg\min_{x \le f} \left(O[i-1][f-x] \right)$ 15: DP + COST(x)16: O[i][f] = O[i-1][f-x] + COST(x)17: A[i][f] = concat(A[i-1][f-x], x)18: end if 19: end for 20: end for 21: 22: return A[PP - 1][F]23: end procedure 24: 25: procedure cost(f)if f > 0 then 26: return min $(0, MB \times f \times 3 - (DP - f) \times (PP - 1) \times 3)$ 27: end if 28: return 0 29: 30: end procedure

Planner: Adaptive Schedule Generation

- T_{coom}: communication latency
- T_F, T_{Binput}, T_{Bweight} : execution latency
- operation (i, j, k, c, ks), c ∈{F, Binput, Bweight}

a micro-batch ID 14, rerouted from *W*2_3 to *W*1_3: i = 3, j = 14, k = 2, ks = 1.

- S^{ks}_{i, j, k} ∈ {0, 1}
- $\sum_{ks} S_{i, j, k}^{ks} = 1$
- $\bullet 0_{(i,j,k,c,ks) \rightarrow (\hat{i},\hat{j},\hat{k},\hat{c},\hat{ks})} \in \{0, 1\}$

• $E_{i, j, k, c}^{ks}$: ending time of operation (i, j, k, c, ks)

Planner: Adaptive Schedule Generation

- T_{coom}
- T_F, T_{Binput}, T_{Bweight}
- operation (i, j, k, c, ks)
- S^{ks}_{i, j, k} ∈ {0, 1}
- $\blacksquare \sum_{ks} S_{i, j, k}^{ks} = 1$
- $\bullet 0_{(i,j,k,c,ks) \rightarrow (\hat{i},\hat{j},\hat{k},\hat{c},\hat{k}s)} \in \{0, 1\}$

Cross-Stage Dependencies.

$$E_{i,j,k,F}^{k_s} \ge S_{i,j,k}^{k_s} \times \left(\sum_{\hat{k}} (E_{i-1,j,k,F}^{\hat{k}} \times S_{i-1,j,k}^{\hat{k}}) + T_{comm} + T_F\right)$$
(2)

Same-Stage Dependencies.

$$E_{i,j,k,B_{Weight}}^{k_s} \ge S_{i,j,k}^{k_s} \times (E_{i,j,k,B_{Input}}^{k_s} + T_{B_{Weight}})$$
(4)

No Overlapping Computations.

$$E_{\underline{i,j',k',c'}}^{k'_{s}} \ge E_{\underline{i,j,k,c}}^{k'_{s}} + T_{c'} - (5)$$

$$\infty (1 - S_{\underline{i,j,k}}^{k'_{s}} \times S_{\underline{i,j',k'}}^{k'_{s}} + O_{(\underline{i,j,k,c,k'_{s}}) \to (\underline{i,j',k',c',k'_{s}})})$$

Planner: Adaptive Schedule Generation

- A_B, A_{Bweight}: activation
- A_{Binput}, A_{Bweight}: gradients
- operation (i, j, k, c, ks)
- $\bullet 0_{(i,j,k,c,ks) \rightarrow (\hat{i},\hat{j},\hat{k},\hat{c},\hat{k}s)} \epsilon \{0, 1\}$

$$\Delta M_{i,j,k,c}^{k_s} = \begin{cases} A_B & , \text{ if } c = F \text{ and } S_{i,j,k}^{k_s} = 1 \\ A_B - A_{B_{Input}} & , \text{ if } c = B_{Input} \text{ and } S_{i,j,k}^{k_s} = 1 \\ -A_{B_{Weight}} & , \text{ if } c = B_{Weight} \text{ and } S_{i,j,k}^{k_s} = 1 \\ 0 & , \text{ otherwise} \end{cases}$$

Memory Constraint.

$$M_{Limit} \geq \Delta M_{i,j',k',c'}^{k'_s} + \sum_{j,k,c} \Delta M_{i,j,k,c}^{k'_s} \times O_{(i,j,k,c,k'_s) \to (i,j',k',c',k'_s)}$$
(6)

Implementation on DeepSpeed

- **□** Rerouting: communication operators
 - ReRouteAct
 - ReRouteGrad
- Decoupling BackProp: pipeline instructions
 - InputBackwardPass
 - WeightBackwardPass
- **□** Rerouting: communication operators
 - optimizer in pipeline stage

Experimental Setup

□ Cluster Setup

4 Standard_NC96ads_A100_v4 (8 A100 GPUs, 96 vCPUs, and 880 GB memory each) in Azure, 600 GB/s NVLink intra-node, 640 Gbps internode

Baselines

- Bamboo, Oobleck
- Workloads
 - GPT-3: Medium (350M), 3.35B, and 6.7B
 - (PP, DP): (2, 16), (4, 8), and (8, 4)
 - WikiText
 - **Train 6 hours**

Training Throughput Under Failures

- Bamboo: redundant computations and additional model state copies
- Oobleck: imbalanced pipelines and higher reconfiguration latency (re-shuffle)

Table 1. Training throughput (samples/sec) with increasing failure frequency, higher is better. Bamboo ran out of memory for GPT-3 3.35B and 6.7B.

Systems	GPT-3 Medium			GPT-3 3.35B			GPT-3 6.7B		
Failure Frequency	6h	2 h	30m	6h	2h	30m	6h	2h	30m
Fault-Free DeepSpeed [60]		27.58			14.87			5.33	
Bamboo [67]	19.47	18.98	15.24	OOM	OOM	OOM	OOM	OOM	OOM
Oobleck [29]	27.26	25.37	19.47	14.55	13.44	9.78	4.98	4.65	2.78
ReCycle	27.27	25.42	22.27	14.59	14.17	12.63	5.17	4.85	3.53

Training Throughput Under Failures

1.64× improvement over Bamboo, 1.46× improvement over Oobleck

Figure 9. Training throughput (samples/sec), higher is better, for the GPT-3 Medium and GPT-3 6.7B models over the GCP trace. In 9b and 9c, the dashed lines represent the average training throughput achieved by each system within the 6h period.

ReCycle Scalability

□ Simulator

- simulate maximum discrepancy is 5.98%
- variations from minor fluctuations by NCCL collectives

Table 2. Gap between real-world and simulated throughputacross various models and failure rates.

Models	Fault-Free	6h	2h	30m	
GPT-3 Medium	-0.87%	+5.98%	-1.93%	-1.48%	
GPT-3 3.35B	-0.13%	-1.58%	+2.12%	-1.90%	
GPT-3 6.7B	+3.94%	+2.71%	-1.86%	-0.85%	

ReCycle Scalability

□ Large scale simulation

- At a failure rate of 1%-5%, the performance of ReCycle is comparable to that of Fault-Scaled
- At a failure rate of 10%, the performance of ReCycle degrades by 0.5% to

ReCycle Performance Breakdown

- Adaptive Pipelining: additional work
- Decoupled BackProp: effectively utilizing bubble, improve 63% to 118%
- Staggered Optimizer: reduce warm-up bubbles, improve 7% to 11%

ReCycle Performance Breakdown

By decoupling BackProp and delaying B_{weight} computation, nearly full utilization of GPU memory is achieved

Planner Overhead

With 25% GPU failure, the Planner finds optimal scheduling with a delay of less than 0.1% of the total training time

Conclusion

Pros:

- Technical Advantages: Continuous training using data parallelism
- Technical Advantages: Combined optimization of bubbles
- Paper Advantages: The images clearly express the core design

Cons:

- Dynamic programming will probably interrupt training
- Fine-grained scheduling of bubbles is difficult, and the paper does not explain how to achieve it
- **Existing pipeline parallelism techniques have already optimized the bubbles**