
Tianjin Key Laboratory of Advanced Networking

智能与计算学部
College of Intelligence and Computing

读最好的论文 做最有价值的科研
Best papers, innovative ideas, valuable works.

1

ReCycle: Resilient Training of Large DNNs

using Pipeline Adaptation

汇报人：黄文豪、陈奕池、王衍杰

天津大学智能与计算学部

目

录

Introduction1

Design3

Evaluation4

Motivation2

Conclusion5

3

Training background

Introduction

 Large scale training

◼ Llama-3 was trained on 15 trillion tokens, using two clusters of 24K GPUs

 Hybrid-parallelism training

◼ TP within a multi-GPU server

◼ PP across multi-GPU servers

◼ DP across pipelines

4

 High cost of faults

◼ Microsoft's training cluster fails about every 45 minutes

◼ Meta encountered over 100 hardware failures during OPT-175B training,

losing 178,000 GPU hours

 Fault handling

◼ Error Detection

◼ Checkpoint

◼ Fault tolerant training

Fault during training

Introduction

5

 Fault-tolerant training

◼ Bamboo (NSDI 23): redundant computation----- low throughput

◼ Oobleck (SOSP 23): re-configure parallel scheme----- suspend overhead

Related Works

Introduction

6Motivation

Motivation

Reroute: No need to re-shuffle model
parameters.

1. Peer nodes have the same
parameters in data parallelism

2. Bubbles in the pipeline
parallelism

The warm-up and cool-down phases
contain bubbles due to the sequential
dispatch of micro-batches.

7Motivation

Motivation

Reroute: No need to re-shuffle model
parameters in case of a fault.

1. Peer nodes have the same
parameters in data parallelism

2. Bubbles in the pipeline
parallelism

The warm-up and cool-down phases
contain bubbles due to the sequential
dispatch of micro-batches.

ReCycle: uninterrupted training with re-routing
for bubbles and without re-shuffling.

8

Design 1：Adaptive Pipelining

Design

9

Design 1：Adaptive Pipelining

Design

pipeline parallelism has
3 × (𝑃𝑃 − 1) × 𝐷𝑃 bubbles

High Overhead:
Originally 27 time steps, an error

added 9 extra time steps

10

Design： Efficient bubble filling

Design

1. Decoupled BackProp: Filling Unused Bubbles

2. Staggered Optimizer: Accessing More Bubbles

11

Design 2： Decoupled BackProp

Design

 Backward

1. Backward computes input gradients and weights gradients

2. Layer i only depends on the input gradients from layer i+1

3. Weights gradients can be deferred until the end

12

Design 2： Decoupled BackProp

Design

 Method

 Prioritize executing BInput in

bubbles

✓ Advantage：extra time steps 9 -> 2

✓ Disadvantage：Increases memory

pressure

 Memory pressure mitigation

 Avoid decoupling Backward

unless necessary

13

Design 3： Staggered Optimizer

Synchronous optimizer
->

warm-up bubbles

Asynchronous optimizer
->

Reduce warm-up bubbles

Design

14

 System

◼ Profiler

◼ Planner

◼ Executor

◼ Coordinator

System Overview

Design

15

 Intuition

◼ distribute across different peers

◼ distribute to peers with more bubbles

 dynamic programming

◼ 𝐹 failures

◼ 𝑃𝑃 pipeline stages

◼ 𝐴[𝑖] = x, x failures in stage 𝑖

◼ 𝑂[𝑖][𝑓], handling 𝑓 failures overhead

Planner: Failure Normalization

Design

DP

additional time slots by heuristic

16

 Intuition

◼ distribute across different peers

◼ distribute to peers with more bubbles

 dynamic programming

◼ 𝐹 failures

◼ 𝑃𝑃 pipeline stages

◼ 𝐴[𝑖] = x, x failures in stage 𝑖

◼ 𝑂[𝑖][𝑓], handling 𝑓 failures overhead

Planner: Failure Normalization

Design

additional time slots by heuristic

dynamic programming

Result： interrupted

dynamic programming

Result： uninterrupted

17

 MILP

◼ Tcoom : communication latency

◼ TF , TBinput , TBweight : execution latency

◼ operation (i, j, k, c, ks), 𝐜 𝛜{F , Binput , Bweight}

a micro-batch ID 14, rerouted from 𝑊2_3 to 𝑊1_3: i = 3, j = 14, k = 2, ks = 1.

◼ 𝐒
i, j, k
ks 𝛜 {0, 1}

◼ σ𝐤𝐬 𝐒
i, j, k
ks = 1

◼ 𝐎 𝐢,𝐣,𝐤,𝐜,𝐤𝐬 → ư𝐢, ư𝐣 ሗ,𝐤, ư𝐜 ሗ,𝐤𝐬 𝛜 {0, 1}

◼ 𝑬i, j, k, c
𝒌𝒔 : ending time of operation (i, j, k, c, ks)

Planner: Adaptive Schedule Generation

Design

18

 MILP

◼ Tcoom

◼ TF , TBinput , TBweight

◼ operation (i, j, k, c, ks)

◼ 𝐒
i, j, k
ks 𝛜 {0, 1}

◼ σ𝐤𝐬 𝐒
i, j, k
ks = 1

◼ 𝐎 𝐢,𝐣,𝐤,𝐜,𝐤𝐬 → ư𝐢, ư𝐣 ሗ,𝐤, ư𝐜 ሗ,𝐤𝐬 𝛜 {0, 1}

◼ 𝑬i, j, k, c
𝒌𝒔

Planner: Adaptive Schedule Generation

Design

19

 MILP

◼ AB , ABweight : activation

◼ ABinput , ABweight : gradients

◼ operation (i, j, k, c, ks)

◼ 𝐎 𝐢,𝐣,𝐤,𝐜,𝐤𝐬 → ư𝐢, ư𝐣 ሗ,𝐤, ư𝐜 ሗ,𝐤𝐬 𝛜 {0, 1}

Planner: Adaptive Schedule Generation

Design

20

 Rerouting: communication operators

◼ ReRouteAct

◼ ReRouteGrad

 Decoupling BackProp: pipeline instructions

◼ InputBackwardPass

◼ WeightBackwardPass

 Rerouting: communication operators

◼ optimizer in pipeline stage

Implementation on DeepSpeed

Design

21

 Cluster Setup

◼ 4 Standard_NC96ads_A100_v4 (8 A100 GPUs, 96 vCPUs, and 880 GB

memory each) in Azure, 600 GB/s NVLink intra-node, 640 Gbps internode

 Baselines

◼ Bamboo, Oobleck

 Workloads

◼ GPT-3: Medium (350M), 3.35B, and 6.7B

◼ (PP, DP): (2, 16), (4, 8), and (8, 4)

◼ WikiText

◼ Train 6 hours

Experimental Setup

Evaluation

22

◼ Bamboo: redundant computations and additional model state copies

◼ Oobleck: imbalanced pipelines and higher reconfiguration latency（re-shuffle）

Training Throughput Under Failures

Evaluation

23

◼ 1.64× improvement over Bamboo，1.46× improvement over Oobleck

Training Throughput Under Failures

Evaluation

24

ReCycle Scalability

Evaluation

 Simulator

◼ simulate maximum discrepancy is 5.98%

◼ variations from minor fluctuations by NCCL collectives

25

ReCycle Scalability

Evaluation

 Large scale simulation

◼ At a failure rate of 1%-5%,the performance of ReCycle is comparable to

that of Fault-Scaled

◼ At a failure rate of 10%, the performance of ReCycle degrades by 0.5% to

11.5%

256 GPUs 512 GPUs 1024 GPUs 1536 GPUs

26

ReCycle Performance Breakdown

Evaluation

◼ Adaptive Pipelining: additional work

◼ Decoupled BackProp: effectively utilizing bubble, improve 63% to 118%

◼ Staggered Optimizer: reduce warm-up bubbles, improve 7% to 11%

27

ReCycle Performance Breakdown

Evaluation

◼ By decoupling BackProp and delaying Bweight computation, nearly full

utilization of GPU memory is achieved

28

Planner Overhead

Evaluation

◼ With 25% GPU failure, the Planner finds optimal scheduling with a delay

of less than 0.1% of the total training time

29

Conclusion

 Pros：

◼ Technical Advantages: Continuous training using data parallelism

◼ Technical Advantages: Combined optimization of bubbles

◼ Paper Advantages: The images clearly express the core design

 Cons：

◼ Dynamic programming will probably interrupt training

◼ Fine-grained scheduling of bubbles is difficult, and the paper does not

explain how to achieve it

◼ Existing pipeline parallelism techniques have already optimized the bubbles

Conclusion

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29

