
 Yao Fu1 Leyang Xue1 Yeqi Huang1 Andrei-Octavian Brabete1 Dmitrii Ustiugov2
Yuvraj Patel1 Luo Mai1

1University of Edinburgh 2NTU Singapore

Presented by Mingxuan Liu, PhD student at Northwestern Polytechnical University
in 2024 Fall Reading Group Meeting at USTC

2024-11-4 1

Here I am
• Mingxuan Liu (刘明轩)

• 1.5-year PhD student, Supervisor: Prof. Jianhua Gu (谷建华)and Dr. Tianhai Zhao (赵天海)

• School of Computer, Northwestern Polytechnical University (NPU) since 2015
• NPU HPC Center & Cloud Computing Lab (1 PhD Student + around 8 Master students)

• Cluster 1: 10 CPU nodes + 3 GPU nodes each equipped wtih 3 V100-32GB, connected with 100 Gbps
Infiniband/RoCEv2

• Cluster 2: 4 CPU nodes with 100Gbps/200Gbps DPU 2/3, connected with 100 Gbps P4 Programmable Switch
• Cluster 3: 5 CPU nodes + 4 GPU nodes, connected with 10 Gbps RoCEv2

• Research Interests:
• Operating System, LSM-tree Storage, Container/Serverless, RDMA-based Disaggregated Memory, Rust

for Linux, Programmable Network (SmartNIC/P4-Switch), AI / LLM (Recently, since July, 2024)
• However, too fragmented to be in-depth! Prof. Cheng Li helped me gather and consolidate.

• PhD thesis proposal: Research on Serverless Remote Elastic Auto-Scaling System Based on
Programmable RDMA Network (Specifically for AI / LLM scenarios)

2024-11-4 2

☹

☺

☺

Outline
• ServerlessLLM: Low-Latency Serverless Inference for Large Language Models
• Background
• Motivations

• (Common) Challenges in Serverless LLM
• Existing Solutions
• Design Intuitions (to optimize on Existing Solutions)
• (Special) Challenges in Optimization beyond Existing Solutions

• Designs
• Multi-Tier Checkpoint Loading
• Live Migration of LLM Inference
• Startup-Time-Optimized Model Scheduling

• Evaluation
• Test on one GPU Server with 8 A8000 GPUs
• Test on GPU Cluster, each GPU Server with 4 A40 GPUs

• Discussion & Summary

2024-11-4 3

Outline

2024-11-4 4

• Background
• Motivations

• (Common) Challenges in Serverless LLM
• Existing Solutions
• Design Intuitions (to optimize on Existing Solutions)
• (Special) Challenges in Optimization beyond Existing Solutions

• Designs
• Multi-Tier Checkpoint Loading
• Live Migration of LLM Inference
• Startup-Time-Optimized Model Scheduling

• Evaluation
• Test on one GPU Server with 8 A8000 GPUs
• Test on GPU Cluster, each GPU Server with 4 A40 GPUs

• Discussion & Summary

Background: LLM Serverless inference

We need a Pay-as-you-go Model Serving
Platform.

2024-11-4 5

• Open-source models ↑
• Fine-tuned models ↑
• Custom LLM services ↑

Booming demand for serving custom LLMs Serverless as a cost-effective solution

Huge interests from industry and academia

Hundreds competing to develop next-
gen AI Serving Platform

Traditional Choices for Model Serving

Buy a GPU server Too expensive

Rent a GPU server Underutilized

Use LLM-Service API Usage limit & Cannot custom

Example: Different LLMs on Amazon Bedrock[3]

2024-11-4 6

Background
• Suppose you are a boss of cloud provider, how to use limited

resources to better meet user SLAs?
• Who is the user? vs The users of traditional LLM serving systems

• Companies that want to start a business using LLM
• People who want to host their private LLM serving system in the cloud

• What behaviors will users have?
• Push their models into object storage
• Run some models to serving for the business

2024-11-4 7

What happens when the above users deploy hundreds of models,
while thousands of requests arrive?

Background: System components in Serverless clusters

• Existing Serverless inference systems: Ray Serve, KServe (Kubernetes)

GPU GPU

DRAM / SSD

GPU Server

Model
Repository

Download

Load Load

Inference Process

2024-11-4 8

Controller

LLM

KV cache

EOS?
Return

New
token

Input
tokens

No

Request Router

Model Loading
Scheduler

Route

Allocate
Cold Start!

Inference
Request

How often? Microsoft Azure trace[2]:
• 25% functions has 60% cold start
• 40% functions has 25% cold start

What is the optimization goal?
• Time-To-First-Token (TTFT)
Time to return the first token
• Time-Per-Output-Token (TPOT)
Time between each token response

Yes

A unique
feature of
Serverless

Background: LLM Inference Serving Design Goals

• LLM Inference Cluster Performance Optimization Goal: Maximize the Token Generation Rate
• Constraints (X, Y, M are defined according to the scenario):

• TTFT < X seconds
• During the decode phase, at least M tokens must be returned within a window of Y seconds.

2024-11-4 9

Request Router
LLM Serving Instance

(Single-node multi-GPU / Multi-node multi-GPU)Local Request Queue

LLM Requests

GPU Cluster

LLM
Request

Requests Dispatching Requests Queuing
Prefill

Return Token 1
Return
Token 2

Return
Token 3

Token N
EOF

Decode
Time-To-First-Token (TTFT)

......

Outline

2024-11-4 10

• Background
• Motivations

• (Common) Challenges in Serverless LLM
• Existing Solutions
• Design Intuitions (to optimize on Existing Solutions)
• (Special) Challenges in Optimization beyond Existing Solutions

• Designs
• Multi-Tier Checkpoint Loading
• Live Migration of LLM Inference
• Startup-Time-Optimized Model Scheduling

• Evaluation
• Test on one GPU Server with 8 A8000 GPUs
• Test on GPU Cluster, each GPU Server with 4 A40 GPUs

• Discussion & Summary

Motivation
• (Common) Challenges in Serverless LLM
• Existing Solutions
• Design Intuitions (to optimize on Existing Solutions)
• (Special) Challenges in Optimization beyond Existing Solutions

2024-11-4 11

Common Challenges Existing Solutions Design Intuitions Special Challenges

Challenges within Serverless LLM

2024-11-4 12

Common Challenges Existing Solutions Design Intuitions Special Challenges

Download Load Generate 1st token End-to-end

LLaMA-2-7B 10.8 4.8 0.8 20.1

LLaMA-2-13B 21.0 9.5 0.9 34.5

LLaMA-2-70B 111.9 48.0 8.3 173.7

Measured latency (s) of each cold-start step

20X

78%-92% of total TTFT (Time To First Token) latency

Measurement setup: 10Gbps network, A5000 with PCIe 4.0, NVMe SSD

☺
☹

Challenges within Serverless LLM
Cold-start latency !
• (Remote -> Local) LLM ckpts are large, prolonging downloads.

• Example: LLaMA-2-70B (130GB), from S3 takes 26s+ using a fast commodity 5GB/s network
• Grok-1 -> 600 GB, DBRX -> 250GB, and Mixtral-8x22B -> 280GB

• (Local Storage -> GPU) Loading LLM ckpts incurs a lengthy process (even though
PCIe-4.0 NVMe SSD).

• Average 30.27s (Pytorch) / 16.95s (Safetensors) between 10 different models
• Example 1: OPT-30B model into 4 GPUs requires 34s using PyTorch
• Example 2: Loading LLaMA-2-70B into 8 GPUs takes 84s using PyTorch

• The goal of LLM serving system: TTFT (Time To First Token) < 100ms !

2024-11-4 13

Common Challenges Existing Solutions Design Intuitions Special Challenges

Existing Solutions
• Over-subscribing GPUs -> Expensive (＞5X oversubscription)

• Maintains warm GPU instances to bypass model download and loading
• AWS Serverless Inference, Infless@ASPLOS’22[4] -> only test for small models
• Weakness: smaller models (ResNet, BERT...) is ok, LLM is so EXPENSIVE!

• Caching checkpoints in host memory -> Limited capacity (600 GB Grok-1?)
• Clockwork@OSDI20[5], DeepPlan@EuroSys23[6] -> only test for small models
• Weakness: smaller models (up to a few GBs) is ok, LLM significantly cache misses

• Deploying additional storage servers -> Expensive ($16/H for 200 Gb capacity)
• Weakness 1: Slow. Still 20s+ model downloading, even connected to local commodity storage

servers equipped with a 100 Gbps NIC
• Weakness 2: Cost.

• AWS ElasticCache servers to support 70B Model, Cost doubled
• cache.c7gn.16xlarge servers (210 GB Mem with 200 Gbps Network) $16.3/h (= one 8-GPU g5.48xlarge server)

Existing Solutions only efficient for conventional smaller models (up to a few GBs is ok!)

2024-11-4 14

Common Challenges Existing Solutions Design Intuitions Special Challenges

Design Intuitions (to optimize on Existing Solutions)

• Facing GPU Cluster with Multi-Tier Storage:
• Observation 1: Capacity. A significant

portion of the host memory and storage
devices in GPU servers remains
underutilized.

• Observation 2: Bandwidth. An 8-GPU
server utilizing PCIe 5.0 technology can
achieve:

• an aggregated bandwidth of 512 GB/s
between the host memory and GPUs.

• around 60 GB/s from NVMe SSDs (RAID 0)
to host memory.

• However, this bandwidth is not fully utilized.

2024-11-4 15

GPU Server 1 GPU Server 2

SRAM / HBM

DRAM

SSD

SRAM / HBM

DRAM

SSD

Model Repository

The design approach: Support effective local
checkpoint storage on GPU servers

Common Challenges Existing Solutions Design Intuitions Special Challenges

Challenges/Optimization beyond Existing Solutions
• How can we fully harness the bandwidth (at each level of the Storage Hierarchy) on GPU servers?
• How to use Locality-Principle (!!) to select servers to

• avoid downloading time? SSD caching is better
• minimize loading time? DRAM caching is the best

GPU GPU

DRAM / SSD

GPU Server

Inference Process

2024-11-4 16

CPU

DRAM

CPU

DRAM

GPUGPU GPUGPUNIC NIC

NVMe
SSD

NVMe
SSD

GPU Server

Model
Loading

Scheduler
？

Challenge 1: Storage hierarchy is complex
Fully harness the bandwidth at each level of the Storage Hierarchy

Challenge 2: Locality-driven inference
 Schedule requests onto GPU servers with locally stored checkpoints

(DRAM is the best)

Challenge 3:
Which server?
 Carefully consider the
checkpoint’s locality in

the entire cluster

Common Challenges Existing Solutions Design Intuitions Special Challenges

☺ ☺☹ ☹

☹ ☹

• Goal: Reduce cold-start latency -> minimize model loading time
• For Challenge 1: Support complex multi-tiered storage hierarchy (Capacity & BW)

• PyTorch/TensorFlow/ONNX Runtime are primarily designed to enhance the training and
debugging, not optimized for read performance.

• Safetensors can enhance loading performance, but still fail to fully leverage the capabilities
of a multi-tiered storage hierarchy.

• => Need to fully harness bandwidth on GPU server. How to do?
• For Challenge 2: Strong (More Effifient) locality-driven inference

• ClockWork@OSDI20[5] depend on accurate predictions of model inference time.
• Shepherd@NSDI23[7] preempt (!!) current inferences, causing redundant computations.

• => Workload is interactive and unpredictable durations & preemption-based
locality-driven inference lead to redundant computations. How to do?

• For Challenge 3: Scheduling models for optimized startup time
• => Need accurately estimate the startup times considering the cluster’s

checkpoint locality. How to do?

2024-11-4 17

Common Challenges Existing Solutions Design Intuitions Special Challenges

Challenges/Optimization beyond Existing Solutions

Outline

2024-11-4 18

• Background
• Motivations

• (Common) Challenges in Serverless LLM
• Existing Solutions
• Design Intuitions (to optimize on Existing Solutions)
• (Special) Challenges in Optimization beyond Existing Solutions

• Designs
• Multi-Tier Checkpoint Loading
• Live Migration of LLM Inference
• Startup-Time-Optimized Model Scheduling

• Evaluation
• Test on one GPU Server with 8 A8000 GPUs
• Test on GPU Cluster, each GPU Server with 4 A40 GPUs

• Discussion & Summary

Design 1: Why a new checkpoint design?

2024-11-4 19

Training scenario
• Persist many, load few

Cold-start scenario
• Persist once, load many

Existing focus

Mismatch!

PyTorch:
• 34s to load a 40B model.
• 84s to load a 70B model.

Design 1: Cold-start-friendly checkpoint loading

Model

2024-11-4 20

Loading-optimised checkpoint

class Model(nn.Module):
...

Model
execution files

<Name, GPU id, offset, size>
...

Tensor
index file

101001101Partition 0

Partition 1

Tensor
binary files

Inference Process

GPU Memory

Model Manager

GPU Memory

multi-tier
loading

subsystem

Tensor address

Initialize model

Tensor offset

GPU memory
base address

Decouple model initialization
& checkpoint loading

• Overlapping

• Independent

Avoid blocking GPUs

• GPU-side sequential read

• Direct I/O

Core Design

GPU Server

Chunk-based data management

Design 1: Multi-tier Loading Subsystem

Design and benefits:
• Multi-tier pipeline
• IO threads
• Direct I/O

• open("example.ckpt", O_DIRECT)

• Pinned Memory
• cudaMallocHost

Local SSDs

GPU Server with Model Manager

Remote storage
2024-11-4 21

Model loading scheduler

GPU memory GPU memory

Chunk-based pinned memory pool

GPU Queue

SSD Queue

NIC Queue

IO threads IO threads

IO threads

IO threads

via Direct I/O

Remote -> SSD SSD -> DRAM DRAM->GPU

Timeline

Fully harness the
bandwidth at each level
of the Storage Hierarchy
• Chunking & Overlaping

√ Solved Challenge 1

Design 2: Locality-driven Inference - Migration is Better

• Example: There are Server 1 and Server 2, suppose there is a request to load Model B, how to do?

2024-11-4 22

Server 1

Infer A

Infer A

Infer A

Load A

Load A

Recompute A Infer A

Infer A

Load B Infer B

Load B Infer B

Long interruption time

Live migration

Load B

Policy 1: Availability-driven policy

Policy 2: Preemption-driven policy

Policy 3: Live-migration supported locality-driven policy

Timeline
Request to start up model B

Performance

A Latency: √

B Latency: ×

A Latency: ×
B Latency: √

A Latency: √

B Latency: √

Server 2

Model B

Model B

Model A

Model A

GPU

DRAM

SSD

GPU

DRAM

SSD

S1

S2

S1

S2

S1

S2

Locality-driven
Inference

Design 2: Live Migration of LLM Inference
Challenges:
• Large KV Cache (up tp 10s GBs)
• Strict time-per-output-token (TPOT, 50ms)

• Token is smaller than KV cache
• (8B vs. 100s KB)

• Observation: Prefill is faster than decoding
(Compute KV Cache is faster than generate
tokens)

2024-11-4 23

Sent current
1000 tokens

Destination
ServerStart

End

Source
Server

Sent current
100 tokens

Generate 100
new tokens

Generate 10
new tokens

Load Model

Compute KV Cache
for 1000 tokens

Compute KV Cache
for 100 tokens

Sent current
10 tokens

Low interrupt time

input tokens + generated
tokens

Inferencing

Replace preemption policy
with migration-based locality-
driven inference
• Overlaping & Only migrate tokens

√ Solved Challenge 2

Design 3: ServerlessLLM Model Loading Scheduler

2024-11-4 24

Controller

Reliable Key-Value Store

Request Router

ServerlessLLM Model Loading Scheduler

Model Loading
Time Estimator

Model Migration
Time Estimator

Server Task Queue

Model Loading Task Queues

Server 1

Server 2

Model B

Model B

Model A

Model A

GPU

DRAM

SSD

GPU

DRAM

SSD

Server 3

Model B

Model AGPU

DRAM

SSD

Notify to load Model
① Trigger Scheduler to select Server for the user-

selected Model

② Notify the Server to load the Model (, then IO
threads in server execute tasks from Server
Task Queue)

③ Notify Request Router start to route requests

Monitoring server metrics
④ Collecting server metrics (GPU/DRAM/SSD

metrics, local request queue metrics...)

⑤ PUT GPU metrics to KVS

⑥ PUT DRAM/SSD metrics to KVS

Estimators get metrics
⑦ Estimators GET server metrics

⑧ Estimators GET real-time output tokens

①

②

③

④

⑤ ⑥⑦

⑧

Inference
Request

Inference
Request

Design 3: Startup-Time-Optimized Model Scheduling

OPTION 1: load from SSD
T(Startup) = T(SSD Load Model B)

2024-11-4 25

Server 1

Server 2

Model A

Model A

GPU

DRAM

SSD

GPU

DRAM

SSD

B

B

Model B

Model B

OPTION 2: load from DRAM, migrate A away
T(Startup) = T(DRAM Load Model A) +
 T(Migrate Model A) +
 T(DRAM Load Model B)

From NVMe SSD From Fast Pinned Memory

• Example: There are Server 1 and Server 2, suppose there is a request to load Model B, how to do
with with migration-based locality-driven inference?

>>
Model Loading
Time Estimator

Model Migration
Time Estimator

)put_tokensnum_of_out ,put_tokens(num_of_in f Model) T(Migrate 

bindwidth_Storage
)Size(Model Model) Load T(Storage 

Accurately estimate the
startup times
• Monitoring & Two estimator

√ Solved Challenge 3

Outline

2024-11-4 26

• Background
• Motivations

• (Common) Challenges in Serverless LLM
• Existing Solutions
• Design Intuitions (to optimize on Existing Solutions)
• (Special) Challenges in Optimization beyond Existing Solutions

• Designs
• Multi-Tier Checkpoint Loading
• Live Migration of LLM Inference
• Startup-Time-Optimized Model Scheduling

• Evaluation
• Test on one GPU Server with 8 A8000 GPUs
• Test on GPU Cluster, each GPU Server with 4 A40 GPUs

• Discussion & Summary

Evaluation: Setup
• Test bed (i): one GPU server

• 8 NVIDIA A5000 GPUs (24 GB), 1TB DDR4 memory, 2 AMD EPYC 7453 CPUs
• 2 PCIe 4.0 NVMe 4TB SSDs (in RAID 0), 2 SATA 3.0 4TB SSDs (in RAID 0)
• 1 Remote MinIO with 1Gbps network

• Test bed (ii): 4 GPU servers connected with 10 Gbps Ethernet, each server:
• 4 A40 GPUs (48 GB), 512 GB DDR4 memory, 2 Intel Xeon Silver 4314 CPUs
• 1 PCIe 4.0 NVMe 2TB SSD

• Models:
• OPTs (2.7B, 6.7B, 13B, 30B and 66B), LLaMAs (7B, 13B, 70B), Falcon (7B, 40B)
• For cluster evaluation on test bed (ii):

• replicate OPT-6.7B/OPT-13B/OPT-30B models for 32/16/8 instances respectively that are
treated as different models, thus total 32+16+8=56 type of models.

• replicate each model and distribute them across nodes’ SSDs using round-robin
placement until the total cluster-wide storage limit is reached.

2024-11-4 27

Evaluation: Setup
• Datasets:

• GSM8K - contains problems created by human problem writers
• ShareGPT - contains multilanguage chat from GPT4

• Workloads: (for cluster evaluation on test bed (ii))

• Real-world Trace: AzureFunctionsInvocationTrace2021@SOSP21[8]

• This is a trace of function invocations for two weeks starting on 2021-01-31, containing
invocation arrival and departure (or compeletion) times, with the folloiwng schema:

• app: application id (encrypted)
• func: function id (encrypted), and unique only within an application
• end_timestamp: function invocation end timestamp in millisecond
• duration: duration of function invocation in millisecond

• Use Gamma distribution (CV=8) to generate the desired RPS

2024-11-4 28

Evaluation 1-1: ServerlessLLM Checkpoint Loading
• Test bed (i): a GPU server with 8 NVIDIA A5000 GPUs (24 GB)
• Load all types of models in FP16 from RAID0-NVMe (Thpt = 12 GB/s).

2024-11-4 29

• The average loading time of ServerlessLLM: 3.85s
• Smallest model (OPT-2.7B): 6X and 3.6X faster than PyTorch and Safetensors, respectively.
• Largest model (LLaMA-2-70B): 8.2X and 4.7X faster than PyTorch and Safetensors, respectively.
• The loading performance is agnostic to the type of the model. OPT-13B and LLaMA-2-13B is similar.

Size(OPT-66B FP16) = 132 GB
Theoretical time = 132/12 = 11s

Size(LLaMA-2-70B FP16) = 140 GB
Theoretical time = 140/12 = 11.67s

Each model replicated 20 copies
Randomly selected one for loading, repeating 20 times

2024-11-4 30

Evaluation 1-2: ServerlessLLM Checkpoint Loading
• Test bed (i): a GPU server with 8 NVIDIA A5000 GPUs (24 GB), loading LLaMA-2-7B from different storage media

12 GB/s

100 MB/s

Bandwidth

• Baseline 1: Thpt of storage device. Use FIO with asynchronous 4M direct sequential read (depth = 32).
• Baseline 2: Thpt of MinIO. Use the official MinIO benchmark.
• ServerlessLLM harnesses different storage mediums and saturating entire bandwidth.

2024-11-4 31

Evaluation 1-3: ServerlessLLM Checkpoint Loading
• Test bed (i): a GPU server with 8 NVIDIA A5000 GPUs (24 GB) and RAID0-NVMe (Thpt = 12 GB/s)
• Run ServerlessLLM in a container, limit 4 CPU cores, Chunk size = 16MB, Pinned mem size = ?

• Bulk reading improves 1.2x throughput, mitigating the throughput degradation from reading small tensors
(on average one-third of the tensors in the model are less than 1MB).

• Direct IO improves 2.1x throughput, bypassing cache and data copy in the kernel.
• Multi-thread improves 2.3x throughput, as multiple channels within the SSD can be concurrently accessed.
• Pinned memory provides a further 1.4x throughput, bypassing the CPU with GPU DMA.
• Pipeline provides a final 1.5x improvement in throughput, helping to avoid synchronization for all data on

each storage tier.

Evaluation 2-1: ServerlessLLM Model Scheduler

• Test bed (ii): 4 GPU servers connected with 10 Gbps Ethernet, scheduling OPT-6.7B model

2024-11-4 32

Baseline 1: Serverless scheduler (w/o any optimization for loading
& randomly chooses any GPU available) -> Available-driven

Baseline 2: Shepherd rely on preemption (while ServerlessLLM
will rely on live migration) + ServerlessLLM’s loading time
estimation strategy -> Locality-driven (Any optimization for
loading? not metioned)

• (a)/(b)/(d): No migration or preemption, similar with Shepherd

• (e): Shepherd 2X higher P99 latency due to preemption.
• 114 migrations/40 preemptions of 513 total requests

• (c): Shepherd 1.27X higher P99 latency due to preemption.
• 53 migrations/9 preemptions of 925 total requests
• 2X times read from SSD than ServerlessLLM

• (f): Shepherd 1.5X higher P99 latency due to preemption.
• 64 migrations/166 preemptions of 925 total requests
• GPU occupancy reaches 100% for all three

Evaluation 2-2: ServerlessLLM Model Scheduler

• Test bed (ii): 4 GPU servers connected with 10 Gbps Ethernet, scheduling OPT-13B/30B model (RPS
= ?, not metioned)

2024-11-4 33

• locality-aware scheduling is more important for
larger models as caching them in host memory

• (a)/(b)/(c): Serverless Scheduler, 35-40% times
wasting in loading from SSD

• (d) For the OPT-30B ShareGPT, the model size is 66
GB. Hence, only two models can be stored in the
GPU memory (4 A40 48GB GPUs, 4×48=192GB)

• Even in this extreme case, ServerlessLLM still
achieves 35% and 45% lower P99 latency
compared to Serverless and Shepherd

Evaluation 3: Entire ServerlessLLM in Action

• For cluster evaluation on test bed (ii)
• Baseline:

• Ray Serve (Version 2.7.0) (Always download from Reomte Storage) + Safetensors
• Ray Serve w/ Cache (adopt a local SSD cache utilizing the LRU policy to avoid costly model

downloads) + Safetensors
• KServe (Version 0.10.2), the SOTA serverless inference system designed for Kubernetes clusters

• For best performance:
• Ray Serve and Ray Serve w/ Cache are both storing model checkpoints on local SSDs before testing
• Assuming exclusive 10 Gbps network to estimate download latency
• Set the maximum concurrency to one (only one request is processed at a time)
• Launch parallel LLM inference clients to generate various workloads
• Each request has a timeout threshold of 300 seconds

2024-11-4 34

Evaluation 3-1: Loading-optimized checkpoints
• Test bed (ii): 4 servers connected with 10 Gbps Ethernet, processing the request

loading OPT-6.7B/13B/30B.

2024-11-4 35

• GSM8K: ServerlessLLM can fulfill 89% of requests within a 300-second timeout with OPT-30B,
whereas Ray Serve with Cache manages only 26%.

• ShareGPT: When utilizing OPT-30B, ServerlessLLM begins to confront GPU limitations (with all
GPUs occupied and migration unable find more resources), leading to an increased latency of
89.9s.

The average latency per
start-up (loading) in a
complete serverless
workload (Azure Trace)

Evaluation 3-2: Live Migration & Loading Scheduler
• Test bed (ii): 4 servers connected with 10 Gbps Ethernet
• Replicate OPT-6.7B/13B/30B models for 32/16/8, simulating 56 different models

2024-11-4 36

• GSM8K: ServerlessLLM consistently maintains low latency, approximately 1 second
• ShareGPT: ServerlessLLM maintains performance improvements up to 212X. At an RPS of 1.4,

ServerlessLLM’s latency begins to rise. Despite live migration and optimized server scheduling,
the limited GPU resources eventually impact performance.

Evaluation 3-3: Resource Utilization

2024-11-4 37

• ServerlessLLM scales well with elastic resources.
• As the number of models grows, the performance gap widens, showcasing ServerlessLLM’s

potential suitability for largescale serverless platforms.

• Test bed (ii): 4 servers connected with 10 Gbps Ethernet
• Replicate OPT-6.7B/13B/30B models for 32/16/8, simulating 56 different models.

(RPS = ?, not metioned)

Outline

2024-11-4 38

• Background
• Motivations

• (Common) Challenges in Serverless LLM
• Existing Solutions
• Design Intuitions (to optimize on Existing Solutions)
• (Special) Challenges in Optimization beyond Existing Solutions

• Designs
• Multi-Tier Checkpoint Loading
• Live Migration of LLM Inference
• Startup-Time-Optimized Model Scheduling

• Evaluation
• Test on one GPU Server with 8 A8000 GPUs
• Test on GPU Cluster, each GPU Server with 4 A40 GPUs

• Discussion & Summary

Discussion & Summary
• Pros

• Solve the challenge of two hottest areas: Serverless and LLMs.
• Low Latency and Efficient Resource Utilization
• Scalability and Cost Efficiency

• Cons
• Treat Ray Serve as a serverless platform (as a baseline for evaluation). Maybe

Ray Serve over k8s is more comfortable.
• Not discuss the impact of the size of the KV Cache in Live-Migration scenario
• It would be better to provide a Scheduler algorithm.
• Assume the case where the model can be completely put into the GPU

memory of a Node. What about larger models? How to parallelize models in
the Serverless scenario?

• The Implementation section is missing.

2024-11-4 39

Reference
[1] Fu, Yao, et al. "{ServerlessLLM}:{Low-Latency} Serverless Inference for Large Language Models." 18th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 24). 2024.
[2] Shahrad, Mohammad, et al. "Serverless in the wild: Characterizing and optimizing the serverless workload
at a large cloud provider." 2020 USENIX annual technical conference (USENIX ATC 20). 2020.
[3] Brandon Carroll, "Getting started with different LLMs on Amazon Bedrock",
https://community.aws/content/2fVW67K1gRKNVzP5xyZ4ADIcFEf/getting-started-with-different-llms-on-
amazon-bedrock?lang=en
[4] Yang, Yanan, et al. "INFless: a native serverless system for low-latency, high-throughput inference."
Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems. 2022.
[5] Gujarati, Arpan, et al. "Serving {DNNs} like clockwork: Performance predictability from the bottom up." 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). 2020.
[6] Jeong, Jinwoo, Seungsu Baek, and Jeongseob Ahn. "Fast and efficient model serving using multi-GPUs with
direct-host-access." Proceedings of the Eighteenth European Conference on Computer Systems. 2023.
[7] Zhang, Hong, et al. "{SHEPHERD}: Serving {DNNs} in the wild." 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). 2023.
[8] Zhang, Yanqi, et al. "Faster and cheaper serverless computing on harvested resources." Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles. 2021.

2024-11-4 40

2024-11-4 41

