
Harvesting Memory-bound CPU
Stall Cycles in Software with MSH

Zhihong Luo, Sam Son, and Sylvia Ratnasamy, UC Berkeley

Scott Shenker, UC Berkeley & ICSI

Presented by Luofan Chen and Jiyang Wang

2024–10-22

2

Cores waiting for memory access to finish
Example: Cache misses

Memory-bound stalls

3

Cores waiting for memory access to finish

Example: Cache misses

Memory-bound stalls happens frequently in datacenter workloads

A top-down analysis on sphinx and masstree

Memory-bound stalls

sphinx

masstree 25%

Retiring

Bad speculation

Frontend Bound

Core Bound

Memory Bound

31%

4

Prefetching: An async operation to fetch data to cache
Stream prefetchers & prefetch insertion via static analysis

Hardware implemented in CPU

-fprefetch-loop-arrays by GCC

Reducing / Harvesting memory stalls

for (size_t i = 0; i < size; i++) {

_mm_prefetch((char*)&arr[i + 8], _MM_HINT_T0);

arr[i] *= 2.0;

}
Memory access in a stream manner

Prefetch next array element for later access

Have limited capability , unable to handle complex access patterns

5

Have limited capability , unable to handle complex access patterns

Prefetching: An async operation to fetch data to cache
Stream prefetchers & prefetch insertion via static analysis

Hardware implemented in CPU

-fprefetch-loop-arrays by GCC

Reducing / Harvesting memory stalls

• Runahead prefetchers
• Processor speculatively pre-process instructions during memory access stalls
• Developers manually modify source code to emulate hardware behavior

Hardware complexity, source code modification…

Both require prefetching end sufficiently ahead of load instruction

6

Prefetching: An async operation to fetch data to cache

SMT (simultaneous multithreading)

Latency overhead

Can largely increase the primary latency

Reducing / Harvesting memory stalls

Primary (Latency critical)

Scavenger (Best effort)

7

Prefetching: An async operation to fetch data to cache

SMT (simultaneous multithreading)

Latency overhead

Can largely increase the primary latency

Lack of configurability

Can only decide to turn it on/off

Reducing / Harvesting memory stalls

Primary (Latency critical)

Scavenger (Best effort)

Sc
av

en
ge

r

Primary

SMT on

8

Are there better ways to harvest memory stalls using software?

SMT leads to unsatisfactory harvesting performance

Prefetching: An async operation to fetch data to cache

SMT (simultaneous multithreading)
Latency overhead

Can largely increase the primary latency

Lack of configurability

Can only decide to turn it on/off

Incomplete harvesting

2-wide SMT do not have sufficient concurrency

When concurrent threads frequently incur stalls

Reducing / Harvesting memory stalls

Primary (Latency critical)

Scavenger (Best effort)

9

Profile-Guided Optimizations

Intel’s PEBS and LBR can profile memory stalls with negligible overhead

Opportunities

Run (unoptimized) prog Profile perf counters Instrument the program

Transparently detecting memory stalls

Save regs Yield Restore regsPrimary

Scavenger

Lightweight, no system call, no change to VM mappings

Set IP/SP regs

Light-weight coroutines

10

MSH overview

• Transparent

• No rewriting efforts, applicable to any code

• Efficient

• Efficiently utilize stall cycles for scavengers

• Latency-aware
• Incur minimal latency overhead

• Control over primary latency and scavenger throughput

• Full harvesting

• Fully harvest stalls by interleaving scavenger executions

Profiling

Program Analysis

Binary
Instrumentation

Primary Scavenger

MSH Runtime

Bounded latency

Merits of SMT

Overcome SMT’s drawbacks

Primary yields

Scavenger yields

offline

11

Identify possible yield locations
load instructions with:

Significant portion of memory stalls

L3 cache miss likelihood

Yielding on primary

Substantial stall cycles

Less impact of primary latency

 Instrument with prefetch & yield before selected load instructions

Scavenger

Load instruction

Primary

Prefetch Yield

When does scavenger yield back to primary?

12

Yielding on scavenger

Scavenger

Load Primary

YieldPrev yield

Prefetch

Yield

Primary yields: Identified the same way as primary
Normally go back to primary, to another scavenger if too close

Load

13

Yielding on scavenger

Still stall
Scavenger

Load Primary

YieldPrev yield

Prefetch

Yield

Prefetch Latency

Prefetch done

Yield to another scavenger if two yields are too close to each other
Y

Scavenger

Yield to another scavenger

Y Y Y Y Y

Primary yields: Identified the same way as primary
Normally go back to primary, to another scavenger if too close

14

Yielding on scavenger

Scavenger

Load PrimaryPrefetch Latency
Prefetch done

Yield

Long latency in primary

Insert addition yields (Scavenger yields) when two yields in scavenger are far away

Yield Yield

Prev yield

Too long

Scavenger yields

Scavenger

Prefetch

Yield

Primary yields: Identified the same way as primary

15

Yielding on scavenger

bb.1

bb.2

bb.3

bb.4 bb.5
Time: 10

Time: 20

hotness: 90%

hotness: 10%

hotness: 90%

hotness: 10%

yield yieldTime: 10

Input = 0 Output = 10

Input = 0 Output = 20

Input = 11*

*: 10 * 90% + 20 * 10% = 11

Output = 21

Latency bound: 20

Primary yields: Identified the same way as primary

Scavenger yields: Used to bound the primary latency

Via data flow anaysis

16

Yielding on scavenger

bb.1

bb.2

bb.3

bb.4 bb.5
Time: 10

Time: 20

hotness: 90%

hotness: 10%

hotness: 90%

hotness: 10%

yield yieldTime: 10

Input = 0 Output = 10

Input = 0 Output = 20

Input = 2*

*: 20 * 10% = 2

Output = 12

Latency bound: 20

Scavenger
Yield

Primary yields: identified the same way as primary

Scavenger yields: Used to bound the primary latency

Via data flow anaysis

17

Instrumentation flow

Summary: Yields

Scavenger

Primary

load Yield to primary Yield to another scavenger Scavenge yield

18

Instrumentation flow

Identify (primary) yields in primary and scavenger

Summary: Yields

Scavenger

Primary

load Yield to primary Yield to another scavenger Scavenge yield

19

Instrumentation flow

Identify (primary) yields in primary and scavenger

Instrument primary yields in primary and scavenger

Summary: Yields

Scavenger

Primary

load Yield to primary Yield to another scavenger Scavenge yield

20

Instrumentation flow

Identify (primary) yields in primary and scavenger

Instrument primary yields in primary and scavenger

Perform control flow analysis and instrument scavenge yield

Summary: Yields

Scavenger

Primary

load Yield to primary Yield to another scavenger Scavenge yield

21

𝑇௬௜௘௟ௗ = 𝑻𝒓𝒆𝒈𝒔𝒂𝒗𝒆/𝒓𝒆𝒔𝒕𝒐𝒓𝒆 + 𝑇௖௢௡௧௥௢௟_௣௔௦௦௜௡௚

Optimizing yield cost

Consumes most of the time

• Preserve only registers that are “live” at yield location
• Through register liveness analysis

• Exploit per-loop register saving/restoration

Write reg Save Yield Restore Save Yield Restore Read reg

Unnecessary save / restore

22

𝑇௬௜௘௟ௗ = 𝑻𝒓𝒆𝒈𝒔𝒂𝒗𝒆/𝒓𝒆𝒔𝒕𝒐𝒓𝒆 + 𝑇௖௢௡௧௥௢௟_௣௔௦௦௜௡௚

Optimizing yield cost

Consumes most of the time

• Preserve only registers that are “live” at yield location
• Through register liveness analysis

• Exploit per-loop register saving/restoration
• General idea: Save / Restore at declare / use site of the register

Write reg Save Yield Yield Restore Read reg

Reg declaration Reg usage

23

Optimizing yield cost

• Preserve only registers that are “live” at yield location

• Exploit per-loop register saving/restoration
• General idea: Save / Restore at declare / use site of the register

Write R3, R4

Write R1, R2

Yield

Read R1, R3

Read R2, R4

Preheader

Loop Body

Dedicated exit

Declare R3, R4

Declare R1, R2

Use R1, R3

Use R2, R4

24

Optimizing yield cost

• Preserve only registers that are “live” at yield location

• Exploit per-loop register saving/restoration
• General idea: Save / Restore at declare / use site of the register

Write R3, R4

Write R1, R2
Save R1

Yield
Restore R1
Read R1, R3

Read R2, R4

Preheader

Loop Body

Dedicated exit

Declare R3, R4

Declare R1, R2

Use R1, R3

Use R2, R4

25

Optimizing yield cost

• Preserve only registers that are “live” at yield location

• Exploit per-loop register saving/restoration
• General idea: Save / Restore at declare / use site of the register

Write R3, R4

Write R1, R2
Save R1, R2

Yield
Restore R1
Read R1, R3

Restore R2

Read R2, R4

Preheader

Loop Body

Dedicated exit

Declare R3, R4

Declare R1, R2

Use R1, R3

Use R2, R4

26

Optimizing yield cost

• Preserve only registers that are “live” at yield location

• Exploit per-loop register saving/restoration
• General idea: Save / Restore at declare / use site of the register

Write R3, R4

Write R1, R2
Save R1, R2

Yield
Restore R1, R3

Read R1, R3

Save R3

Restore R2

Read R2, R4

Preheader

Loop Body

Dedicated exit

Declare R3, R4

Declare R1, R2

Use R1, R3

Use R2, R4

27

Optimizing yield cost

• Preserve only registers that are “live” at yield location

• Exploit per-loop register saving/restoration
• General idea: Save / Restore at declare / use site of the register

Write R3, R4

Write R1, R2
Save R1, R2

Yield
Restore R1, R3

Read R1, R3

Save R3, R4

Restore R2, R4

Read R2, R4

Preheader

Loop Body

Dedicated exit

Declare R3, R4

Declare R1, R2

Use R1, R3

Use R2, R4

28

MSH Runtime

Stealable

Stolen

Scavenger IDs

Flags

Details

Overall

SP

IP

Normal Next

Special Next

Yield Context (YC)

Stack Space

YC Pointer

Coroutine Context (CC)

Flags

Primary YC

Scavenger0 YC

Scavenger Pool CC0 CC1 CC2 CC3 CC4 ……

Primary thread 1

 Thread creation

 Thread blocking

 Thread destroy

Intercept thread state-changing function calls

29

MSH Runtime

Stealable

Stolen

Scavenger IDs

Flags

Details

Overall

SP

IP

Normal Next

Special Next

Yield Context (YC)

Stack Space

YC Pointer

Coroutine Context (CC)

Flags

Primary YC

Scavenger0 YC

Scavenger Pool CC0 CC1 CC2 CC3 CC4 ……

Primary thread 1

 Thread creation

 Assign scavenger

 Thread blocking

 Thread destroy Flags

Primary YC

Scavenger1 YC

Primary thread 2

Intercept thread state-changing function calls

30

MSH Runtime

Stealable

Stolen

Scavenger IDs

Flags

Details

Overall

SP

IP

Normal Next

Special Next

Yield Context (YC)

Stack Space

YC Pointer

Coroutine Context (CC)

Flags

Primary YC

Scavenger0 YC

Scavenger Pool CC0 CC1 CC2 CC3 CC4 ……

Primary thread 1

 Thread creation

 Assign scavenger

 Thread blocking

 Mark as stealable

 Thread destroy Flags

Primary YC

Scavenger1 YC

Primary thread 2

Intercept thread state-changing function calls

31

MSH Runtime

Stealable

Stolen

Scavenger IDs

Flags

Details

Overall

SP

IP

Normal Next

Special Next

Yield Context (YC)

Stack Space

YC Pointer

Coroutine Context (CC)

Scavenger Pool CC0 CC1 CC2 CC3 CC4 ……

 Thread creation

 Assign scavenger

 Thread blocking

 Mark as stealable

 Thread destroy

 Free contexts

Flags

Primary YC

Scavenger1 YC

Primary thread 2

Intercept thread state-changing function calls

32

Offline profiling

PEBS : Load instructions causing cache misses

LBR : basic block execution count

Bolt : Register liveness, reaching definition analysis

MSH Runtime

LD_PRELOAD override pthread functions

Implementation

33

Hardware

Dual-sockets 56-core Intel Xeon Platinum 8176 CPUs operating at
2.1GHz

Metrics
Measure at primary workload with P95 latency

Setup: Testbed

34

Classes of harvestable cycles

Mechanisms

MSH only

MSH + KS

MSH + SMT/KS (use SMT when primary latency meets requirement, use KS otherwise)

Setup: Mechanisms

MSHSMTKS (kernel scheduling)

NYYIdle time

YYNMemory stalls

NYNNon-memory stalls

35

Primaries

Setup: Workload

ConfigurationDetailWorkload

8 thread , 16 MB arrayRandom pointer chasingPtrchase*

24 thread , Tailbench datasetIn-memory key-value storeMasstree

6 thread , Tailbench datasetSpeech recognition systemSphinx

ConfigurationDetailWorkload

4 MB arrayScan the array and compute the sum Scan-creating*

16 MB arrayPtrchase*

CRONO benchmarkGraph analysis
DFS

Connected component

Scavenger

Idle time Memory stall Non-memory stall Frequent stallHigh contention Mixed

*: Synthetic workload to show MSH advantage

36

Evaluation: Compared with SMT

72%

To meet the SLO , the SMP is disabledPrimary

S
ca

ve
n

ge
r

MSH harvests up to 72% scav. throughput of SMT with SMT disabled

37

MSH harvests up to 72% scav throughput of SMT with SMT disabled

MSH can trade off primary latency between scavenger’s throughput

Evaluation: Compared with SMT

Primary

S
ca

ve
n

ge
r

38

Evaluation: Compared with SMT

Primary

S
ca

ve
n

ge
r

MSH harvests up to 72% scav throughput of SMT with SMT disabled

MSH can trade off primary latency between scavenger’s throughput

MSH can fully harvest memory stalls when scav. stalls frequently

39

Evaluation: Compared with SMT

Thread countWorkload

1, 2
Ptrchase (16 MB)

SMT

1, 2, 4, 6, 8MSH

verify

MSH harvests up to 72% scav. throughput of SMT with SMT disabled

MSH can trade off primary latency between scavenger’s throughput

MSH can fully harvest memory stalls when scav. stalls frequently

Running multiple ptrchase threads, and measure the overall completion time

40

Evaluation: Compared with SMT

~50%

Yielding overhead larger than the benefits

MSH harvests up to 72% scav. throughput of SMT with SMT disabled

MSH can trade off primary latency between scavenger’s throughput

MSH can fully harvest memory stalls when scav. stalls frequently

41

MSH + KS
Add small latency and get much higher throughput at low loads

Evaluation: Compound mechanism

P
ri

m
ar

y

42

MSH + KS

MSH + SMT/KS
Better than SMT-only under almost all latency SLOs

When scavengers often stall, SMT is on, harvesting all the stalls

For contentious scavengers, KS can also harvest idle time

Evaluation: Compound mechanism

Scav. often stalls Contentious scav.

43

MSH optimizations
Bounding yield overhead: select load instructions with:

Significant portion of memory stalls

L3 cache miss likelihood

Bounding inter-yield distances: Scavenger yields

Reducing yield cost

Evaluation: Breakdown

Yield Yield
Too long

Scavenger yields

Scavenger

Write reg Save Yield Yield Restore Read reg

44

MSH optimizations
Bounding yield overhead: select load instructions with:

Significant portion of memory stalls

L3 cache miss likelihood

Bounding inter-yield distances: Scavenger yields

Reducing yield cost

Evaluation: Breakdown

Yield Yield
Too long

Scavenger yields

Scavenger

Write reg Save Yield Yield Restore Read reg

45

Yield overhead bounding

Inter-yield distance

Evaluation: Breakdown

Aggregate yield overhead bound Scavenger inter-yield distance

(Primary) Latency- (Scavenger) throughput trade-off

Latency bounding Latency Throughput Inter-yield distance Latency Throughput

46

MSH optimizations
Bounding yield overhead: select load instructions with:

Significant portion of memory stalls

L3 cache miss likelihood

Bounding inter-yield distances: Scavenger yields

Reducing yield cost

Evaluation: Breakdown

Yield Yield
Too long

Scavenger yields

Scavenger

Write reg Save Yield Yield Restore Read reg

47

Measure primary’s latency improvement for different inter-yield distance

Evaluation: Breakdown

23%

#Cache hit latency > #Duration of scavenger executing.
Yield cost won’t affect primary latency

Yield cost no longer plays the important part

w.r.t non-optimized yield mechanism

Reducing yielding cost shows benefits in P95 latency of the primary

48

Effectiveness of enforcing inter-yield distances

Effectiveness of profiling

Evaluation: Effectiveness

MSH accurately enforces target inter-yield distances

Accurately capturing load inst. incurs minimal overhead

Sample 100x more frequently slows down the application but does not affect profile results

49

MSH effectively harvests memory-bound stalls through …
Profile-guided binary instrumentation

Light-weight yield mechanisms

Efficient run-time

Pros:
The problem of memory-bound stall is interesting

The system is general and can be used together with other HW features

Cons:
The evaluation scale seems relatively small

Some conclusions in the evaluation are not convincing

Is profile-based solution really a good idea?

Conclusion

