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Explosive growth of log data

Software 
systems

Logs

Error detection

Performance debugging

Operation management

Usage analysis

Security

2022-04-25T00:00:01.000 INFO Task task_12 assigned to 
container, operation took 0.335 seconds. 

Unstructured log

{
"timestamp": "2022-04-25T00:00:01.000",
"level": "INFO",
"task": "task_12",
"message": "Task assigned to container",
“operationDuration": 0.335 

} 

Semi-structured log



Log Compression in cloud systems

• Logs are widely used in cloud systems

• Lots of logs are produced every day

• need to save for months

• Compression is desirable to save storage cost

• 1 PB logs result in annual storage cost at $35,019,817

1PB/day at AliCloud
(LogReducer[FAST’21])

10PB/day at Uber
(uSlope[OSDI’24])



Existing work for log compression

• What works have been published in the past 3 years?

• FAST’21 — LogReducer (Variable compression) —— THU & AliCloud

2022-04-25T00:00:01.000 INFO Task 
task_12 assigned to container, operation 
took 21 seconds, error 

\Time INFO Task \Val assigned to container, operation 
took \Num seconds, \Val 

Origin Log

Template

2022-04-25T00:00:01.000, task_12, 21(int), error

Variables

Δt, task_12, 21 (1Byte), error



Existing work for log compression

• What works have been published in the past 3 years?

• FAST’21 — LogReducer (Variable compression) —— THU & AliCloud

• EuroSys’23 — LogGrep (Pattern extraction & Compression) —— THU & AliCloud

Δt, task_12, 21(1Byte), error Δt, 12, 21 (1Byte),0

0 error

1 …
Task_<>

Δt1, 12, 21 ,0

Δt2, 10, 24 ,1

Δt3, 15, 13 ,0

…
Group & Compress

Runtime pattern 
extraction



Existing work for log compression

• What works have been published in the past 3 years?

• FAST’21 — LogReducer (Variable compression) —— THU & AliCloud

• EuroSys’23 — LogGrep (Pattern extraction & Compression) —— THU & AliCloud

• OSDI’21 — CLP (Variable extraction) —— Yscope & UofT

ID Log Type

0
INFO Task \Val assigned to container, 
operation took \DVal seconds, \Val 

Log Type Dictionary

ID Format

0 task_12

1 error

Variable Dictionary

Timestamp Log Type Variable values

2022-04-25T00:00:01.000 0 0 21 1

Encoded Messages

2022-04-25T00:00:01.000 INFO Task 
task_12 assigned to container, operation 
took 21 seconds, error 

Origin Log

Past works mostly focus on unstructured log



Semi-structured Logs

{
"level": "error",
"message": "Can’t fetch flow 6, cell_32",
"serviceA": {

"traceID": "abc-xyz"
},
"error": "Error404",
"request": {

"namespace": "driver_onboarding"
},
"timestamp": "2023-03-16T07:58:02.368"

}

{
"level": "error",
"message": "Can't fetch flow 8, cell_32",
"serviceB": {

"traceID": "def-uvw"
},
"request": "vehicle_compliance",
"timestamp": "2023-03-16T07:58:06.246”

}

KV pair

2023-03-16T07:58:06.246 ERROR Can't fetch flow 8, cell_32. 
TraceID def-uvw, Request vehicle_compliance.

2023-03-16T07:58:02.368 ERROR Can’t fetch flow 6, cell_32. 
TraceID abc-xyz, Error Error404, Request 
namespace_driver_onboarding.



Semi-structured Logs

{
"level": "error",
"message": "Can’t fetch flow 6, cell_32",
"serviceA": {

"traceID": "abc-xyz"
},
"error": "Error404",
"request": {

"namespace": "driver_onboarding"
},
"timestamp": "2023-03-16T07:58:02.368"

}

{
"level": "error",
"message": "Can't fetch flow 8, cell_32",
"serviceB": {

"traceID": "def-uvw"
},
"request": "vehicle_compliance",
"timestamp": "2023-03-16T07:58:06.246”

}

2023-03-16T07:58:06.246 ERROR Can't fetch flow 8, cell_32. 
TraceID def-uvw, Request vehicle_compliance.

2023-03-16T07:58:02.368 ERROR Can’t fetch flow 6, cell_32. 
TraceID abc-xyz, Error Error404, Request 
namespace_driver_onboarding.

Key can be dynamic



Semi-structured Logs

{
"level": "error",
"message": "Can’t fetch flow 6, cell_32",
"serviceA": {

"traceID": "abc-xyz"
},
"error": "Error404",
"request": {

"namespace": "driver_onboarding"
},
"timestamp": "2023-03-16T07:58:02.368"

}

{
"level": "error",
"message": "Can't fetch flow 8, cell_32",
"serviceB": {

"traceID": "def-uvw"
},
"request": "vehicle_compliance",
"timestamp": "2023-03-16T07:58:06.246”

}

2023-03-16T07:58:06.246 ERROR Can't fetch flow 8, cell_32. 
TraceID def-uvw, Request vehicle_compliance.

2023-03-16T07:58:02.368 ERROR Can’t fetch flow 6, cell_32. 
TraceID abc-xyz, Error Error404, Request 
namespace_driver_onboarding.

Value can be dynamic



Semi-structured Logs

{
"level": "error",
"message": "Can’t fetch flow 6, cell_32",
"serviceA": {

"traceID": "abc-xyz"
},
"error": "Error404",
"request": {

"namespace": "driver_onboarding"
},
"timestamp": "2023-03-16T07:58:02.368"

}

{
"level": "error",
"message": "Can't fetch flow 8, cell_32",
"serviceB": {

"traceID": "def-uvw"
},
"request": "vehicle_compliance",
"timestamp": "2023-03-16T07:58:06.246”

}

2023-03-16T07:58:06.246 ERROR Can't fetch flow 8, cell_32. 
TraceID def-uvw, Request vehicle_compliance.

2023-03-16T07:58:02.368 ERROR Can’t fetch flow 6, cell_32. 
TraceID abc-xyz, Error Error404, Request 
namespace_driver_onboarding.

value can be
{"key": value} or 
{value, value,…}



Traditional RDBMS cannot handle

level message
serviceA.
traceId

request timestamp
serviceB.
traceId

serviceB.
error

"warn"
"Could not fetch 
cell for flow 1."

"abc"
"vehicle_compli

ance"

"2022-04-
14T07:58:02.36

82"
NULL NULL

"error"
"Error handling 

inbound request"
NULL NULL

"2022-04-
14T07:58:02.37

22"
"xyz"

"application_er
ror"

• Predefined schema for each field
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Traditional RDBMS cannot handle

level message
serviceA.
traceId

request timestamp
serviceB.
traceId

serviceB.
error

"warn"
"Could not fetch 
cell for flow 1."

"abc"
"vehicle_compl

iance"

"2022-04-
14T07:58:02.36

82"
NULL NULL

"error"
"Error handling 

inbound request"
NULL NULL

"2022-04-
14T07:58:02.37

22"
"xyz"

"application_er
ror"

• Predefined schema for each field

• Sparse table

• Polymorphism limitation

{
"request": {

"namespace": "driver_onboarding"
},

}



Traditional RDBMS cannot handle

level message
serviceA.
traceId

request timestamp
serviceB.
traceId

serviceB.
error

"warn"
"Could not fetch 
cell for flow 1."

"abc"
"vehicle_compli

ance"

"2022-04-
14T07:58:02.36

82"
NULL NULL

"error"
"Error handling 

inbound request"
NULL NULL

"2022-04-
14T07:58:02.37

22"
"xyz"

"application_er
ror"

• Predefined schema for each field

• Sparse table

• Polymorphism limitation

• Uber (ClickHouse): only use selected keys as columns, use lots of index 
to improve query, results in low compression ratio (less than 4:1) 



Limitation of Native JSON support

{
"hello": "world" 

}

\x16\x00\x00\x00           // size (32-bit): 22 bytes
\x02                       // 0x02 = value type String
hello\x00                  // key name
\x06\x00\x00\x00world\x00  // size of value (6 bytes), value
\x00                       // 0x00 = 'end of object' 

JSON Log BSON

• E.g. BSON from MongoDB, jsonb from PostgreSQL, and OSON from Oracle



Limitation of Native JSON support

{
"hello": "world" 

}

\x16\x00\x00\x00           // size (32-bit): 22 bytes
\x02                       // 0x02 = value type String
hello\x00                  // key name
\x06\x00\x00\x00world\x00  // size of value (6 bytes), value
\x00                       // 0x00 = 'end of object' 

JSON Log BSON

• E.g. BSON from MongoDB, jsonb from PostgreSQL, and OSON from Oracle

• Low compression ratio

• Extra metadata

• Row-oriented format



Inefficient search engines

• Low compression ratio

• Require extra indices

• The indices size is at the same order of magnitude as the raw data

• Low ingestion speed & High resource usage

• Parsing, tokenization, updating indices

• Ingestion involves complex processing



Challenge of using CLP



Challenge of using CLP

ID Format

0 1.

1 abc

2 1_vehicle_compliance

3 2022-04-14T07

4 02.368Z

5 02.372Z

ID Log Type

0
{"level": "warn","message": "Could not fetch cell for flow \DICTVAR","serviceA": 
{"traceID": "\DICTVAR"},"request": "\DICTVAR","timestamp": 
"\DICTVAR:\NDVAR:\DICTVAR"}

1
{"level": "error","message": "Error handling inbound request.","serviceB": {"traceID": 
"xyz","error": "application_error"},"timestamp": "\DICTVAR:\NDVAR:\DICTVAR"}

Log Type Dictionary

Variable Dictionary
Timestamp Log Type Variable values

NULL 0 0 1 2 3 58 4

NULL 1 3 58 5

Encoded Messages

request: 1_vehicle_compliance
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4 02.368Z

5 02.372Z
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Challenge of using CLP

ID Format

0 1.

1 abc

2 1_vehicle_compliance

3 2022-04-14T07

4 02.368Z

5 02.372Z

ID Log Type

0
{"level": "warn","message": "Could not fetch cell for flow \DICTVAR","serviceA": 
{"traceID": "\DICTVAR"},"request": "\DICTVAR","timestamp": 
"\DICTVAR:\NDVAR:\DICTVAR"}

1
{"level": "error","message": "Error handling inbound request.","serviceB": {"traceID": 
"xyz","error": "application_error"},"timestamp": "\DICTVAR:\NDVAR:\DICTVAR"}

Log Type Dictionary

Variable Dictionary
Timestamp Log Type Variable values

NULL 0 0 1 2 3 58 4

NULL 1 3 58 5

Encoded Messages

*.traceId: abc AND request: 1*

*{*"traceID"*:*"abc"*}*"request"*:*"1*"*
*"request"*:*"1*"*{*"traceID"*:*"abc"*}*

NOT, OR operators and numeric comparison ?
Incompatible query interface
Poor query performance



𝜇Slope Goals

Automatic Schema inference

More complex query support

High compression ratio and fast search



Characterizing Semi-structured Log

• Key idea: Semi-structured logs are highly repetitive

• Dataset analyzed:

• 21 machine-generated log datasets with 1 million log records each from

• Frequently used data in Uber 

• Public software: Spark, MongoDB, CockroachDB, ElasticSearch, PostgreSQL

• 23091 real-world queries spanning twenty days from Uber

• 7665 of them are unique



Schema Variation

• Schema & Key definition

• Two schemas are the same if and only if their keys are all the same

• Two keys are the same if and only if their full name & value types are the same

• A key’s full name includes all the nested keys

{
"level": "error",
"message": "Can’t fetch flow 6, cell_32",
"serviceA": {

"traceID": "abc-xyz"
},
"error": "Error404",
"request": {

"namespace": "driver_onboarding"
},
"timestamp": "2023-03-16T07:58:02.368"

}

{
"level": "error",
"message": "Can't fetch flow 8, cell_32",
"serviceB": {

"traceID": "def-uvw"
},
"request": "vehicle_compliance",
"timestamp": "2023-03-16T07:58:06.246”

}



Schema Variation

• Schemas are dynamic, but also repetitive

• All except two datasets have more than 1 unique schemas

• On average, 25000 records get the same schema

• Repetition will be larger when increasing the sample size

• Unique keys varies greatly (from 20 (LogM) to 5627 (Spark))

• This result suggests that the variation in schemas is likely due to the variation of keys

Number of unique schemas and keys for each dataset



Type Composition & Repetitive Values

• 71% of the values are variables (single-word strings) and highly repetitive

• High repetition ratio means dictionary deduplication can be effective

• What’s more, dictionary can speed up common wildcard keys (nearly 30%) filter queries.

• Array fields are low at 0.79%, and only 0.4% of the queries search on array fields

Average number of keys per record, broken down by 
value types & repetition ratio of variables



Importance of Schema Search

• 29% of the queries can be completed by querying the schema structure

• They do not match any of the schema structure

• Example: error detect

• Regularly verify the nonexistence of certain error events

• But existing systems waste this opportunity since the schema structure is 
interspersed with the values

Error:*

{
"level": "error",
"message": "Can’t fetch flow 6, cell_32",
"serviceA": {

"traceID": "abc-xyz"
},
"error": "Error404",
"request": {

"namespace": "driver_onboarding"
},
"timestamp": "2023-03-16T07:58:02.368"

}



Key Takeaways

• Schemas are dynamic, but also repetitive

• Need to precisely track the schema of semi-structured data

• Repetition shows opportunities to group records in well-structured form.

• 71% of the values are variables (single-word strings) and highly 
repetitive, and commonly queried on

• Dictionary can help effectively deduplication and speed up search

• 29% of the queries can be completed by querying the schema structure

• Decouple schema structure and records can speed up search



𝜇Slope Design

• Overview

• Logs are parsed, partitioned by schema, encoded, then compressed into archives

• Generate multiple archives

• Once the memory buffer is full, write all the data into archives

• Each archive can be searched independently, resulting in high parallel performance

Semi-structured Logs

Merged Parse Tree 
(MPT)

Schema Map

Compressed 
Archives

Parsing & 
Encoding

Compression

Search



Schema Tree
{

"level": "error",
"message": "Can’t fetch flow 6, cell_32",
"serviceA": {

"traceID": "abc-xyz"
},
"error": "Error404",
"request": {

"namespace": "driver_onboarding"
},
"timestamp": "2023-03-16T07:58:02.368"

}

{
"level": "error",
"message": "Can't fetch flow 8, cell_32",
"serviceB": {

"traceID": "def-uvw"
},
"request": "vehicle_compliance",
"timestamp": "2023-03-16T07:58:06.246”

}

root

level:str

message:str

serviceA:obj

timestamp:str

request:obj

error:str

traceID:str

namespace:str

root

level:str

message:str

serviceB:obj

timestamp:str

request:str

traceID:str

Schema TreeLog



Schema Tree
{

"level": "error",
"message": "Can’t fetch flow 6, cell_32",
"serviceA": {

"traceID": "abc-xyz"
},
"error": "Error404",
"request": {

"namespace": "driver_onboarding"
},
"timestamp": "2023-03-16T07:58:02.368"

}

{
"level": "error",
"message": "Can't fetch flow 8, cell_32",
"serviceB": {

"traceID": "def-uvw"
},
"request": "vehicle_compliance",
"timestamp": "2023-03-16T07:58:06.246”

}

root

level:str

message:str

serviceA:obj

timestamp:str

request:obj

error:str

traceID:str

namespace:str

root

level:str

message:str

serviceB:obj

timestamp:str

request:str

traceID:str

Schema TreeLog



Merged Schema Tree

root

level:str

message:str

serviceA:obj

timestamp:str

request:obj

error:str

traceID:str

namespace:str

root

level:str

message:str

serviceB:obj

timestamp:str

request:str

traceID:str

Schema Tree

0 root

1 level:str

2 message:str

3 serviceA:obj

8 timestamp:str

6 request:obj

5 error:str

4 traceID:str

7 namespace:str

9 serviceB:obj

11 request:str

10 traceID:str

Merged Schema Tree (MST)



Merged Parse Tree

0 root

1 level:str

2 message:str

3 serviceA:obj

8 timestamp:str

6 request:obj

5 error:str

4 traceID:str

7 namespace:str

9 serviceB:obj

11 request:str

10 traceID:str

unname node:UUID/filepath

app_spark:value

message:value

latency:value

status:value

type:value

Merged Parse Tree (MPT)

1. Key name contains random data

• UUID, filepath, …

2. The value of a key could be 
highly repetitive

• "app": spark

3. Encode the structure of strings 
with key-value pairs

• "message": "latency=35, 
status=OK, type=READ"

4. Stores fine-grained string types



Merged Parse Tree

Merged Parse Tree (MPT)

0 root

1 level:str(var)

2 message:str(log-text)

3 serviceA:obj

8 timestamp:str(timestamp)

6 request:obj

5 error:str(var)

4 traceID:str(var)

7 namespace:str(var)

9 serviceB:obj

11 request:str(var)

10 traceID:str(var)

unname node:UUID/filepath

app_spark:value

message:value

latency:value

status:value

type:value

1. Key name contains random data

• UUID, filepath, …

2. The value of a key could be 
highly repetitive

• "app": spark

3. Encode the structure of strings 
with key-value pairs

• "message": "latency=35, 
status=OK, type=READ"

4. Stores fine-grained string types



Merged Parse Tree

Merged Parse Tree (MPT)

0 root

1 level:var

2 message:log-text

3 serviceA:obj

8 timestamp:timestamp

6 request:obj

5 error:var

4 traceID:var

7 namespace:var

9 serviceB:obj

11 request:var

10 traceID:var

{
"level": "error",
"message": "Can’t fetch flow 6, cell_32",
"serviceA": {

"traceID": "abc-xyz"
},
"error": "Error404",
"request": {

"namespace": "driver_onboarding"
},
"timestamp": "2023-03-16T07:58:02.368"

}

Schema ID Node IDs

0 1 2 4 5 7 8

Schema Map



Merged Parse Tree
{

"level": "error",
"message": "Can’t fetch flow 6, cell_32",
"serviceA": {

"traceID": "abc-xyz"
},
"error": "Error404",
"request": {

"namespace": "driver_onboarding"
},
"timestamp": "2023-03-16T07:58:02.368"

}

Schema ID Node IDs

0 1 2 4 5 7 8

1 1 2 8 10 11

{
"level": "error",
"message": "Can't fetch flow 8, cell_32",
"serviceB": {

"traceID": "def-uvw"
},
"request": "vehicle_compliance",
"timestamp": "2023-03-16T07:58:06.246”

} Schema Map

Merged Parse Tree (MPT)

0 root

1 level:var

2 message:log-text

3 serviceA:obj

8 timestamp:timestamp

6 request:obj

5 error:var

4 traceID:var

7 namespace:var

9 serviceB:obj

11 request:var

10 traceID:var



Encoded Record Tables (ERT)

Schema 0 Encoded Record Table

Schema 1 Encoded Record Table

• Records are stored in tables partitioned by schemas

Node 1 2 4 5 7 8

Values V0 L0 6,V1 V2 V3 V4 T0 1..8

Node 1 2 10 11 8

Values V0 L0 8,V1 V5 V6 T0 1..6

Schema ID Node IDs

0 1 2 4 5 7 8

1 1 2 8 10 11

Schema Map



Encoded Record Tables (ERT)

• Records are stored in tables partitioned by schemas

Merged Parse Tree (MPT)

0 root

1 level:var

2 message:log-text

3 serviceA:obj

8 timestamp:timestamp

6 request:obj

5 error:var

4 traceID:var

7 namespace:var

9 serviceB:obj

11 request:var

10 traceID:var

Schema 0 Encoded Record Table

Schema 1 Encoded Record Table

Node 1 2 4 5 7 8

Values V0 L0 6,V1 V2 V3 V4 T0 1..8

Node 1 2 10 11 8

Values V0 L0 8,V1 V5 V6 T0 1..6

Schema ID Node IDs

0 1 2 4 5 7 8

1 1 2 8 10 11

Schema Map



Encoded Record Tables (ERT)

• Records are stored in tables partitioned by schemas
ID Format ID Format

V0 error V4 driver_onboarding

V1 cell_32 V5 def-uvw

V2 abc-xyz V6 Vehicle_compliance

V3 Error404

Variable Dictionary

Schema 0 Encoded Record Table

Schema 1 Encoded Record Table

Node 1 2 4 5 7 8

Values V0 L0 6,V1 V2 V3 V4 T0 1..8

Node 1 2 10 11 8

Values V0 L0 8,V1 V5 V6 T0 1..6

Schema ID Node IDs

0 1 2 4 5 7 8

1 1 2 8 10 11

Schema Map



Encoded Record Tables (ERT)

• Records are stored in tables partitioned by schemas
ID Format ID Format

V0 error V4 driver_onboarding

V1 cell_32 V5 def-uvw

V2 abc-xyz V6 Vehicle_compliance

V3 Error404

Variable Dictionary

ID Log Type

L0 Can’t fetch flow \INT, cell \DICTVAR

Log Type Dictionary
Schema 0 Encoded Record Table

Schema 1 Encoded Record Table

Node 1 2 4 5 7 8

Values V0 L0 6,V1 V2 V3 V4 T0 1..8

Node 1 2 10 11 8

Values V0 L0 8,V1 V5 V6 T0 1..6

Schema ID Node IDs

0 1 2 4 5 7 8

1 1 2 8 10 11

Schema Map



Encoded Record Tables (ERT)

• Records are stored in tables partitioned by schemas
ID Format ID Format

V0 error V4 driver_onboarding

V1 cell_32 V5 def-uvw

V2 abc-xyz V6 Vehicle_compliance

V3 Error404

Variable Dictionary

Log Type Dictionary

ID Format

T0 yyyy-MM-dd’T’HH:mm:ss’.’SSS

Timestamp Dictionary

ID Log Type

L0 Can’t fetch flow \INT, cell \DICTVAR
Schema 0 Encoded Record Table

Schema 1 Encoded Record Table

Node 1 2 4 5 7 8

Values V0 L0 6,V1 V2 V3 V4 T0 1..8

Node 1 2 10 11 8

Values V0 L0 8,V1 V5 V6 T0 1..6

Schema ID Node IDs

0 1 2 4 5 7 8

1 1 2 8 10 11

Schema Map



Compression: encoded choice

• Strings: divided into timestamp, variable, log-text

• Timestamp: heuristics to detect if the string is a timestamp

• Comment: highly rely on its parser



Compression: encoded choice

• Strings: divided into timestamp, variable, log-text

• Timestamp: heuristics to detect if the string is a timestamp

• Comment: highly rely on its parser

• Integers/floating point/Boolean: directly encoded in binary form

• Array: treat as log-text, but in different dictionary to avoid pollution

• Random key and invariant values

• Random key: if a key does not appear in more than 1% of the records of the 
archive (when writing to disk), it will be truncated

• Invariant values: if a value never changes, it will be included in the MPT

• Truncated/included time: write all the buffered data into disk



Search through 𝜇Slope

0 root

1 level:var

2 message:log-text

3 serviceA:obj

6 timestamp:timestamp

5 request:var

9 error:var

4 traceID:var

7 serviceB:obj 8 traceID:var

Merged Parse Tree (MPT)

Schema ID Node IDs

0 1 2 4 5 6

1 1 2 6 8 9

Schema Map

*.traceID: abc AND request: 1*Query

Abstract Syntax 
Tree

AND

*.traceID<str>: abc request<str, int, float>: 1*

OR

4<var>: abc 8<var>: abc

AND

5<var>: 1*

After Key 
Resolution



Search through 𝜇Slope

Schema ID Node IDs

0 1 2 4 5 6

1 1 2 6 8 9

Schema Map

OR

4<var>: abc 8<var>: abc

AND

5<var>: 1*

After Key 
Resolution

AND

4: abc

OR

After Schema 
Resolution

5: 1*

AND

8: abc 5: 1*

0 root

1 level:var

2 message:log-text

3 serviceA:obj

6 timestamp:timestamp

5 request:var

9 error:var

4 traceID:var

7 serviceB:obj 8 traceID:var

Merged Parse Tree (MPT)



Search through 𝜇Slope

Schema ID Node IDs

0 1 2 4 5 6

1 1 2 6 8 9

Schema Map

OR

4<var>: abc 8<var>: abc

AND

5<var>: 1*

After Key 
Resolution

After Schema 
Resolution

AND<schema 0>

4: abc

OR

5: 1* 8: abc 5: 1*

AND<empty>

False Propagation

0 root

1 level:var

2 message:log-text

3 serviceA:obj

6 timestamp:timestamp

5 request:var

9 error:var

4 traceID:var

7 serviceB:obj 8 traceID:var

Merged Parse Tree (MPT)



Search through 𝜇Slope

Schema ID Node IDs

0 1 2 4 5 6

1 1 2 6 8 9

Schema Map

OR

4<var>: abc 8<var>: abc

AND

5<var>: 1*

After Key 
Resolution

After Schema 
Resolution

AND<schema 0>

4: abc 5: 1*

Search on Strings

ID Format

... ...

V1 abc

V2 1_vehicle_compliance

... ...

0 root

1 level:var

2 message:log-text

3 serviceA:obj

6 timestamp:timestamp

5 request:var

9 error:var

4 traceID:var

7 serviceB:obj 8 traceID:var

Merged Parse Tree (MPT)



Evaluation

• The evaluation mainly focus on：

• Compression Ratio and Speed

• Search Performance

• Worst Case On Synthetic Dataset

• Scalability (Large-scale evaluation)



Evaluation

• Experiment setup

• Hardware

• CPU: Intel Xeon E5-2630v3 

• Memory: 128GB DDR4

• Storage: Distributed file system (MooseFS) 
running on multiple 7200RPM SATA HDDs. 

• Datasets

• 16 from Uber (30.0GB to 102.9GB)

• 5 from public software (392.8MB to 64.8GB)

• Baselines

• Systems: CLP, MongoDB, PostgreSQL, 
ClickHouse, Elasticsearch

• Compressors: Zstandard, LZMA



Compression ratio

• μSlope outperforms all other baselines

• The average compression ratio of μSlope is 68.1:1

Compression Ratio on different dataset

CLP Zstandard LZMA ClickHouse-String ClickHouse-Pairwise 
Array

1.5X 2.3X 1.7X 2.75X 2.62X

ClickHouse-JSON MongoDB PostgreSQL Elasticsearch

1.34X 6.10X 16.5X 15.71X



Compression Ingestion Speed

• μSlope is faster than all fully-parsed JSON tools except CLP

• Outperforming ClickHouse-JSON, MongoDB, PostgreSQL and Elasticsearch by 
19.3%, 186.7%, 419.8%, 1127.3%

Average ingestion speed (log scale)



Search Performance

• Baselines

• ClickHouse, MongoDB, PostgreSQL

• Dataset & query

• 15 queries on Uber LogF, LogO and MongoDB queries

Queries used in experiments



Search Performance

Query Latency

• 𝜇Slope outperforms all other tools on 14 queries

• 2.5x faster than the fastest setup of ClickHouse, 6.7x faster than MongoDB, 
8.1x faster than PostgreSQL
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• 2.5x faster than the fastest setup of ClickHouse, 6.7x faster than MongoDB, 
8.1x faster than PostgreSQL

• For Query B, μSlope needs to scan all the ERTs and decode them 



Search Performance

Query Latency

• 𝜇Slope outperforms all other tools on 14 queries

• 2.5x faster than the fastest setup of ClickHouse, 6.7x faster than MongoDB, 
8.1x faster than PostgreSQL

• For Query B, μSlope needs to scan all the ERTs and decode them 

• For Query J/L/N/O, there are only a small number of schemas matches



Synthetic Evaluation

• Demonstrate the boundaries of 𝜇Slope’s capabilities

• Since the efficiency of μSlope relies on the repetitiveness of schemas and 
variable values

• All KV set to: “UUID : UUID”, each record gets 20 keys, 670K records totally

• Repetitiveness of variable values 

• 𝑟𝑒𝑝𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠

• Repetitiveness of schemas

• the n-th most frequent schema appears in 𝑃 × 1 − 𝑃 𝑛 of the records 
(where n starts from 0)



Compression ratio

• μSlope outperforms Zstandard

• In the extreme case where P 
approaches 0, the compression 
ratio drops notably 

• The compression ratio quickly 
increases as P increases to the 
next smallest value (10−4) and 
remains relatively stable

High schema reptitivenessLow schema reptitiveness



Search performance

• Query: “*: UUID”

High schema reptitivenessLow schema reptitiveness

Lower repetition ratio, 
introducing a constant 
overhead before returned

we have a large number 
of small ERTs where each 
has only one record. 



Large-scale compression

• Dataset: 434TB of production logs from Uber to evaluate compression.

• Average compression ratio: 30.5:1

• The outliers with low compression ratio contain large amounts of random 
non-repeating binary data such as base64 encoded binary data and UUIDs.

Compression ratio distribution 



Search Scalability

• Dataset: 26.2TB subset from Uber’s LogF to evaluate search scalability. 

• Run on 8 containers, each has access to 96 cores, 2TB of network attached SSD, 
and 32GB of RAM, 2,155 archives are evenly distributed across these machine.

• All queries scale well to 16 workers but have limited scalability to 32 workers. 

Query Completion Time & Response Time



Search Scalability

• Dataset: 26.2TB subset from Uber’s LogF to evaluate search scalability. 

• Run on 8 containers, each has access to 96 cores, 2TB of network attached SSD, 
and 32GB of RAM, 2,155 archives are evenly distributed across these machine.

• All queries scale well to 16 workers but have limited scalability to 32 workers. 

Query Completion Time & Response Time

Limited by different 
skewness of dataset



Summary

• 𝜇Slope: An efficient semi-structured log management system that
• Handles dynamic schema structures

• Achieves unprecedented compression ratio

• Allows search without full decompression

• Pros
• Good & reasonable design motivated by complete analysis

• Good writing

• Lots of evaluation (but lack of explanation)

• Cons
• Limited on read-only workload & highly rely on repetition ratio

• Still lack of functionality to deal with other query operation

• Lack of LogGrep Baseline
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