
Nomad: Non-Exclusive Memory 

Tiering via Transactional Page 

Migration

Authors: Lingfeng Xiang, Zhen Lin, Weishu Deng, Hui Lu, Jia Rao, Yifan

Yuan and Ren Wang

Speaker: Jiahao Li



2

NUMA Systems

processor

0

DRAM

iM
C

Node 0

processor 

1

DRAM

iM
C

Node 1

processor 

2

DRAM

iM
C

Node 2

processor 

3

DRAM

iM
C

Node 3



3

NUMA Systems

1. Nodes are connected through inter-connections.

2. Accessing remote memory is more costly than accessing local memory.

e.g. Intel UPI supports ≈ 22.4 GB/s for each direction.

This capacity is small compared to DRAM’s bandwidth.

processor

0

DRAM

iM
C

Node 0

processor 

1

DRAM

iM
C

Node 1

processor 

2

DRAM

iM
C

Node 2

processor 

3

DRAM

iM
C

Node 3



4

New Memory Hierarchy

CXL enables more versatile memory hierarchy



5

NUMA Systems

processor

0

DRAM

CXL

iM
C

Node 5

Node 0

processor 

1

DRAM

iM
C

Node 1

processor 

2

DRAM

iM
C

Node 2

processor 

3

DRAM
iM

C

Node 3

Different from DRAM, CXL memory is treated 

as a CPU-less NUMA node in Linux.



6

Memory Tiering – Hardware Approach

DRAM

NVM/CXL

CPU 0

DRAM becomes “L4” cache and NVM/CXL becomes main memory.



7

Memory Tiering – Hardware Approach

DRAM

NVM/CXL

CPU 0

DRAM becomes “L4” cache and NVM/CXL becomes main memory.

Pros: 

1. Transparent.

2. Small granularity (cacheline).

Cons: 

1. Hard-coded

2. Prone to cache conflicts. [Johnny Cache OSDI’23]



8

Memory Tiering – Software Approach

Page migration is used in exclusive memory tiering to speedup 

memory access:

1. Migrate hot remote pages to application’s local node.

2. Migrate cold pages to slower tier to make space for hot 

pages.

NVM/CXLDRAM

CPU 0

demotion

promotion



9

Memory Tiering – Challenges

1. Which page to promote/demote?

2. Where to place the migrated pages?

3. How to migrate pages efficiently?



10

Memory Tiering – Hotness Tracking

These methods are used to tracking page accesses:

1. Page faults (Linux NUMA balancing)

• Periodically make part of application’s address space (256MB) inaccessible, page’s 

hotness is indicated by whether page faults are triggered.

• Faulted pages are considered hot and will be migrated to fast tier.



11

Memory Tiering – Hotness Tracking

These methods are used to tracking page accesses:

1. Page faults (Linux NUMA balancing)

2. Page Table Scanning (Linux kswapd)

• Kernel maintains active and inactive LRU lists for each NUMA node.

• Periodically scan all PTEs’ access bits. If a PTE’s access bit is set, the 

corresponding page will be moved to the active LRU.

• Pages in inactive list are considered cold. When the memory is nearly full, they 

will be swapped out to swap space.



12

Memory Tiering – Hotness Tracking

These methods are used to tracking page accesses:

1. Page faults (Linux NUMA balancing)

2. Page Table Scanning (Linux kswapd)

3. Processor Event-based Sampling (HeMem SOSP’21)

• Intel processor support event-based sampling to sample page access through 

certain events (e.g. MEM_LOAD_L3_MISS_RETIRED.LOCAL_DRAM).

• Pages with larger access count are considered hot.



13

Memory Tiering – Hotness Tracking



14

Memory Tiering – TPP

Transparent Page Placement (TPP) is SOTA tiering approach 

in Linux:

1. Lightweight reclamation

• Migration instead of swapping



15

Memory Tiering – TPP

Transparent Page Placement (TPP) is SOTA tiering approach 

in Linux:

1. Lightweight reclamation

2. Decoupling allocation and reclamation



16

Memory Tiering – TPP

Transparent Page Placement (TPP) is SOTA tiering approach 

in Linux:

1. Lightweight reclamation

2. Decoupling allocation and reclamation

3. New promotion strategy



17

Memory Tiering – TPP

Transparent Page Placement (TPP) is SOTA tiering approach 

in Linux:

1. Lightweight reclamation

2. Decoupling allocation and reclamation

3. New promotion strategy

4. Page type-aware allocation



18

Page Migration is Complex

Page migration procedure:

1. The system must trap to the kernel.

2. Lock the PTE of the migrating page and unmap it from page table.

3. TLB shootdown.

4. Copy the content of the page.

5. Remap the PTE.



19

Page Migration – TPP

An experiment to demonstrate TPP problems:

• Workload: memory access with Zipfian distribution

• Fast tier size: 16GB

• Working set size (WSS): 10GB / 24GB

• Allocation policy: frequency-opt / random, pre-allocating 10GB in 

fast tier to simulate memory usage of existing applications



20

Page Migration – TPP



21

Page Migration – TPP

Two problems in TPP:

1. Migration limit the application’s memory access bandwidth.



22

Page Migration – TPP

Two problems in TPP:

1. Migration limit the application’s memory access bandwidth.

2. When WSS exceeds the capacity of the fast tier, TPP enters memory 

thrashing.



23

Page Migration – TPP

In TPP, promotion is synchronous

Synchronous promotion causes TPP performance degradation during migration



24

NOMAD Overview

Goals:

• Enable the CPU to freely access both fast and slow memory

• Move page migration off the critical path of users’ data access

NOMAD Approaches:

• Transactional page migration

• Non-exclusive tiering via page shadowing



25

Design Overview

Key ideas:

• Keep pages accessible during 

migration

• Invalidate the migration if 

pages are dirtied PFN0 D

Page table entry

PFN0

Old page New page

PFN1

virtual
page

Application
MMU

Flip bit



26

Transaction Page Migration (TPM)

Major steps:

1. Clear the dirty bit in PTE

D

Page table entry (PTE)

PFN0

Old page New page

PFN1

virtual
page

Application
MMU

PFN0 D

Issue a TLB shootdown.
The page remains accessible



27

Transaction Page Migration (TPM)

Major steps:

1. Clear the dirty bit in PTE

2. Copy page

PFN0 D

Page table entry (PTE)

PFN0

Old page New page

PFN1

virtual
page

Application
MMU

Copy



28

Transaction Page Migration (TPM)

Major steps:

1. Clear the dirty bit in PTE

2. Copy page

3. Unmap page
0x0 D

Page table entry

PFN0

Old page New page

PFN1

virtual
page

Application
MMU

Issue second TLB shootdown.
The page becomes inaccessible



29

Transaction Page Migration (TPM)

Major steps:

1. Clear the dirty bit in PTE

2. Copy page

3. Unmap page

If D bit is clean:

4. Map the page to destination

PFN1 D

Page table entry

PFN0

Old page New page

PFN1

virtual
page

Application
MMU



30

Transaction Page Migration (TPM)

Major steps:

1. Clear the dirty bit in PTE

2. Copy page

3. Unmap page

If D bit is dirty:

4. Map the page to source and 

abort migration

PFN0 D

Page table entry

PFN0

Old page New page

PFN1

virtual
page

Application
MMU



31

Minimizing Page Faults

Linux batches (up to 15) LRU movements to reduce queue 

management overhead. In the worst case, migrating one page may 

generate as many as 15 page faults.



32

Minimizing Page Faults

• NOMAD introduces PCQ to 

record pages that faulted but 

not in the active list.

• Scan PTEs of pages in PCQ 

on every fault to decide 

whether promote it to MPQ

• kpromote asynchronously 

performs TPM on pages in 

MPQ

CXL / Pmem pageApplication

MMU

Page faultCold Cold

HotHot

Tail Head

Tail Head

CPU2

kpromote

User 
space

Kernel 
space

Promotion 
candidate queue 

(PCQ)

Migration 
pending queue 

(MPQ)

Exactly one per page

CPU1



33

Page Shadowing

Key ideas:

Keep a shadow copy of a page 

promoted from slow tier to fast tier.
DRAM page CXL/PMem page

Application

fast tier slow tier

PFN 1 Promote

load 0x7fff1234

PFN 0

Page table entryPFN0

Shadow r/w Writeable

11

preserve original writable info in 

new shadow r/w bit



34

Page Shadowing

NOMAD marks all master 

pages as read-only DRAM page CXL/PMem page

Application

fast tier slow tier

PFN 1 Promote

load 0x7fff1234

PFN 0

Page table entryPFN0

Shadow r/w Writeable

01



35

Page Shadowing

Restore writable bit on page 

writes:

• No overhead for read-only pages

• Single page fault for writable 

pages

store 0x7fff1234

DRAM page CXL/PMem page

Application

fast tier slow tier

PFN 1 Promote PFN 0

Page table entryPFN01 1

Shadow r/w Writeable



36

Testbeds

• Intel CPU + 16 GB Intel FPGA-based CXL memory (CXL-FPGA)

• Intel CPU + 6 x 256GB Optane PMem (PMem)

• AMD CPU + 4 x 256GB Micron CXL memory (CXL-Product)

• DRAM: 16 GB



37

Microbenchmarks

DRAM CXL / PMem

Working set size Resident set size

Small WSS

Medium WSS

Large WSS

Approaching DRAM performance 
(best case)

Graceful degradation during
intensive thrashing

(worst case)

Migration in-progress Migration stable



38

Microbenchmarks

Small WSS Large WSS

3

2

1

Testbed: CXL-FPGA

1. NOMAD significantly 
outperforms TPP during 
active migration and for 
large WSS

1

Memtis-default NOMADTPP Memtis-default NOMADTPP



39

Microbenchmarks

Small WSS Large WSS

3

2

2

Testbed: CXL-FPGA

1. NOMAD significantly 
outperforms TPP during 
active migration and for 
large WSS

1

2. Sampling-based approach 
(Memtis) achieves stable 
performance during 
thrashing but fails to 
optimally place hot data in 
fast memory

Memtis-default NOMADTPP Memtis-default NOMADTPP



40

Microbenchmarks

Small WSS Large WSS

3

2

Testbed: CXL-FPGA

1. NOMAD significantly 
outperforms TPP during 
active migration and for 
large WSS

2. Sampling-based approach 
(Memtis) achieves stable 
performance during 
thrashing but fails to 
optimally place hot data in 
fast memory

3. NOMAD is more effective 
for read-only workloads and 
suffers from migration 
abortions for write-intensive 
workloads

Memtis-default NOMADTPP Memtis-default NOMADTPP



41

Microbenchmarks
Testbed: PMem

Although the sampling-based approach 
maintains high throughput during thrashing 
thanks to a lack of migrations, its latency is sub-
optimal, suggesting page migration is ineffective

Lower is better

Memtis-default NOMADTPP



42

Real-world Applications - Redis

NOMAD outperforms TPP in all cases and 
outperforms Memtis when WSS fits in fast tier.

Case 1: 13GB RSS, demote pages

Case 2: 24GB RSS, demote pages

Case 3: 24GB RSS, no demotion

Testbed: CXL-FPGA



43

Real-world Applications - Redis

Page migration could incur nontrivial overhead, and 
a strategy to dynamically switch it on/off is needed.

Case 1: 13GB RSS, demote pages

Case 2: 24GB RSS, demote pages

Case 3: 24GB RSS, no demotion

Testbed: CXL-FPGA



44

Real-world Applications - liblinear

PMem CXL-ProductPMem CXL-Product

Thrashing Normal NormalThrashing

Small RSS Large RSS

1. Page fault-based approaches 
outperform Memtis and no-
migration for small RSS



45

Real-world Applications - liblinear

PMem CXL-ProductPMem CXL-Product

Thrashing Normal NormalThrashing

Small RSS Large RSS

1. Page fault-based approaches 
outperform Memtis and no-
migration for small RSS

2. TPP’s performance significantly 
declines due to inefficient 
migration.



46

Conclusions

NOMAD is a tiered memory management mechanism that features:

• Transactional page migration

• Page shadowing

• Non-exclusive memory tiering

Results show that NOMAD is significantly more efficient than the 

state-of-the- art tiered memory management scheme in Linux but call 

for more research on memory tiering

• The optimal strategy to enable/disable page migrations under high memory 

pressure


	默认节
	幻灯片 1

	NUMA Intro
	幻灯片 2: NUMA Systems
	幻灯片 3: NUMA Systems
	幻灯片 4: New Memory Hierarchy
	幻灯片 5: NUMA Systems

	Memory Tiering Methods
	幻灯片 6: Memory Tiering – Hardware Approach
	幻灯片 7: Memory Tiering – Hardware Approach
	幻灯片 8: Memory Tiering – Software Approach
	幻灯片 9: Memory Tiering – Challenges
	幻灯片 10: Memory Tiering – Hotness Tracking
	幻灯片 11: Memory Tiering – Hotness Tracking
	幻灯片 12: Memory Tiering – Hotness Tracking
	幻灯片 13: Memory Tiering – Hotness Tracking
	幻灯片 14: Memory Tiering – TPP
	幻灯片 15: Memory Tiering – TPP
	幻灯片 16: Memory Tiering – TPP
	幻灯片 17: Memory Tiering – TPP

	Problems in Migration
	幻灯片 18: Page Migration is Complex
	幻灯片 19: Page Migration – TPP
	幻灯片 20: Page Migration – TPP
	幻灯片 21: Page Migration – TPP
	幻灯片 22: Page Migration – TPP
	幻灯片 23: Page Migration – TPP

	NOMAD Design
	幻灯片 24: NOMAD Overview
	幻灯片 25: Design Overview
	幻灯片 26: Transaction Page Migration (TPM)
	幻灯片 27: Transaction Page Migration (TPM)
	幻灯片 28: Transaction Page Migration (TPM)
	幻灯片 29: Transaction Page Migration (TPM)
	幻灯片 30: Transaction Page Migration (TPM)
	幻灯片 31: Minimizing Page Faults
	幻灯片 32: Minimizing Page Faults
	幻灯片 33: Page Shadowing
	幻灯片 34: Page Shadowing
	幻灯片 35: Page Shadowing

	Evaluation
	幻灯片 36: Testbeds
	幻灯片 37: Microbenchmarks
	幻灯片 38: Microbenchmarks
	幻灯片 39: Microbenchmarks
	幻灯片 40: Microbenchmarks
	幻灯片 41: Microbenchmarks
	幻灯片 42: Real-world Applications - Redis
	幻灯片 43: Real-world Applications - Redis
	幻灯片 44: Real-world Applications - liblinear
	幻灯片 45: Real-world Applications - liblinear

	Conclusion
	幻灯片 46: Conclusions


