
1

PIT: Optimization of Dynamic Sparse Deep Learning 
Models via Permutation Invariant Transformation

SOSP’ 23

Ningxin Zheng∗, Huiqiang Jiang∗, Quanlu Zhang, Zhenhua Han, Lingxiao Ma, 
Yuqing Yang, Fan Yang, Chengruidong Zhang, Lili Qiu, Mao Yang, Lidong Zhou

Microsoft Research

Presented by Jiaan Zhu, Long Zhao and Qinghe Wang



l Background & Challenges
l Design & Implementation
l Evaluation

2

Outline



l Sparse
u Tensors with many zeros (token, weight, activation, etc.)

3

Background

Tensor



l Sparse
l Dynamic Sparse

u Depend on inputs and is only known at runtime

4

Background



l Sparse
l Dynamic Sparse

u Depend on inputs and is only known at runtime
u App-level

5

Background

(a) MoE (b) Super-Resolution

(c) Video Generation

We

Love

RG



l Sparse
l Dynamic Sparse

u Depend on inputs and is only known at runtime
u App-level, Tensor-level

6

Background

(a) Dynamic Attention1,2 (c) Dynamic Sequence Length4(b) Sparse Training3

(1) Generating long sequences with sparse transformers. arXiv preprint arXiv:1904.10509, 2019.
(2) Transformer acceleration with dynamic sparse attention. ArXiv preprint,abs/2110.11299, 2021.
(3) Block pruning for faster transformers. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.
(4) Megablocks: Efficient sparse training with mixture-of-experts. MLSys2023, 2023.



l Sparse
l Dynamic Sparse

u Depend on inputs and is only known at runtime
u App-level, Tensor-level

7

Background

(a) Dynamic Attention1,2 (b) Dynamic Sequence Length3 (c) Sparse Training4

(1) Generating long sequences with sparse transformers. arXiv preprint arXiv:1904.10509, 2019.
(2) Transformer acceleration with dynamic sparse attention. ArXiv preprint,abs/2110.11299, 2021.
(3) Megablocks: Efficient sparse training with mixture-of-experts. MLSys2023, 2023.
(4) Block pruning for faster transformers. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.

Dynamic sparsity leads to inefficient computation.
Even for SOTA compilers!



l Tiling
u Split tensor into smaller slices (tiles)
u Reusing cached tiles can reduces the amount of data movement
u Choosing an appropriate size can optimize data reuse

8

Background



l Tiling
l Tiling with Dynamic Sparsity

u Trade-off exists between efficient tiling & sparsity shape alignment

9

Background

Tensor Tensor

Tile

Tile
Low Waste
Low GPU Util

High GPU Util
High Waste



10

Existing Solutions

Compiler/Library Sparsity Aware Dynamic Sparsity Low Overhead
Triton
ROLLER [OSDI’22]
TVM-sparsity
SparTA [OSDI’22]
cuSparse
Spunik [SC’20]
PIT [SOSP’23]

Specialized 
GPU Kernels

Convert to
Special Format



l Try to find the most efficient tiling scheme
u Minimize zero values
u Maximize parallelism
u Minimize latency

11

Goal



l Sparse data can be merge to efficient dense tile
u With equivalent computation

12

Opportunity

Sparse Tensor A

M

K

Dense Tensor B

K

N

0

2

5

7

×

0
2

5
7

Data rearranged 
in M-axis

0

2

5

7

A’ B’

2
0

7
5

Output Tensor C = A×B C’ = A’×B’



l Sparse data can be merge to efficient dense tile
u With equivalent computation

13

Opportunity

Sparse Tensor B

M

K

×

Data rearranged 
in K-axis

0 14

A’ B’

Output Tensor C = A×B
C’ = A’×B’

K

0

3

4

0 1 4

Sparse Tensor B

N

0

4

3



l Sparse data can be merge to efficient dense tile
u With equivalent computation

14

Opportunity

Sparse Tensor B

M

K

×

Data rearranged 
in K-axis

0 14

A’ B’

Output Tensor C = A×B
C’ = A’×B’

K

0

3

4

0 1 4

Sparse Tensor B

N

0

4

3

Rearrangement overhead can be really small!



15

Idea

Tensor Tensor

Tile

Tile
Low Waste
Low GPU Util

High GPU Util
High Waste

Tensor

Tile

High GPU Util
Low Waste



l Background & Challenges
l Design & Implementation
l Evaluation

16

Outline



17

PIT Overview

l New Transformation Mechanism of PIT

l How to select Micro-tile and Kernel configuration

l Conversion Optimization for lower overhead



19

PIT Transformation Mechanism
l Micro-tile

Tensor

Tile

Micro-tile



20

PIT Transformation Mechanism
l New Primitives: SRead and SWrite



21

Micro-tile and Kernel Selection
Memory

Rearrange	on
M-axis

Sparsity	Tensor

M

K

Row-Major



22

Micro-tile and Kernel Selection
Memory

Rearrange	on
M-axis

Sparsity	Tensor

M

K

Row-Major

Rearrange	on
K-axis



23

Micro-tile and Kernel Selection

Related to hardware instructions
Related to hardware instructions

Cost model



25

Online Sparsity Detection

micro	tiling
7 2 5 0

Index	array

0

3

2

1

Index

Sread/Swrite

4

7

6

5

Online	detection



l Background & Challenges
l Design & Implementation
l Evaluation

26

Outline



l Setup
l End-to-End Inference 

u Latency
u Memory

l End-to-End Training
u Latency
u Memory

l Effectiveness of PIT Transformation
l Conversion Overhead
l Micro-Tile Online Searching

27

Evaluation



l Questions to answer:
u Q1: PIT’s advantages compared to baselines?
u Q2: PIT’s performance in inference and training?
u Q3: PIT’s conversion overhead?
u Q4: Why certain baseline outperform other baselines?

28

Evaluation: Concerns



l Baselines
u PyTorch v1.11.0: Deep learning framework

u DeepSpeed: Inference frameworks
n Features: Fuse a layer into one operator in inference(but not in training)

u TurboTransformers [SIGPLAN'21]:Inference frameworks
n Features: optimized the memory management for varying input length

u Tutel: Specific optimization techniques
n Features: A efficient Mixture of Experts (MoE) implementation library

29

Evaluation: Setup



l Baselines
u MegaBlocks [ML-Sys'23]: Inference frameworks

n Features: Identify blocky zero-element regions, and skip them during calculations

u SparTA [OSDI'22]: An optimization framework for static sparsity. 
n Features: Use efficient kernel calculations based on different sparse patterns

u PyTorch-S: A variant of PyTorch that uses backends: cuSPARSE, Sputnik, Triton
n cuSPARSE: mainly use Compressed Sparse Row (CSR) , provides efficient computational 

kernels

n Sputni [SC'20]: Analyze the sparse pattern of the input matrix and select the most 
appropriate storage format and algorithm

n Triton: A compiler and programming language, designed to simplify the process of writing 
GPU cores with high-performance

30

Evaluation: Setup



l Datasets and Hardware setup:

31

Evaluation: Setup



l Switch Transformer (1x A100, FP16/FP32)
u Latency: MegaBlocks stands out, but PIT is better

n Without padding overheads
n Simultaneous execution in MoE layers
n Low data reorganization cost

32

Evaluation: End-to-End Inference

PyTorch

PyTorch-S
PyTorch-S Convert
Tuel
Deepspeed
MegaBlocks
PIT



l Switch Transformer (1x A100, FP16/FP32)
u Latency: PIT is the lowest in FP32

n Without padding overheads
n Simultaneous execution in MoE layers
n Low data reorganization cost

33

Evaluation: End-to-End Inference

PyTorch

PyTorch-S
PyTorch-S Convert
Tuel
Deepspeed
MegaBlocks
PIT

La
te

nc
y(

m
s)



l Switch Transformer (1x A100, FP16/FP32)
u Memory: PIT is the lowest in FP16 and FP32

n Without padding 

Evaluation: End-to-End Inference

34

FP16

FP 32

PyTorch

PyTorch-S
PyTorch-S Convert
Tuel
Deepspeed
MegaBlocks
PIT

G
PU

 M
em

or
y(

G
B

)



l OPT (8x V100, 13B/30B)
u Latency: PIT is the lowest

n Eliminating the padding overhead
n Exploiting fine-grained sparsity in ReLU activation

u Memory: DeepSpeed is the lowest 
n Deepspeed fuse a layer into one operator

37

Evaluation: End-to-End Inference

PyTorch

PyTorch-S
PyTorch-S Convert
Deepspeed

PIT

PIT w/o activation



l Longformer(1x V100, FP32) Settings:
u Sparsity: Dynamic attention
u Input length: 2048/ 4096
u Baselines: 

n Add Longformer-S
p The sparse implementation specifically optimized for the Longformer

n PyTorch-S and Deepspeed both selects Triton as the backend

40

Evaluation: End-to-End Inference



l Longformer(1x V100, FP32)
u Latency: Longformer-S stands out, but PIT is better

n Longformer-S: specifically optimized GPU kernels
n PIT: no large data rearrangement overheads

u Memory: PIT is the lowest
n Without data re-arrangement (without intermediate tensors)

41

Evaluation: End-to-End Inference



l OPT Training(1x A100, 125M/350M/1.3B)
u Latency: PIT is the lowest

n Without padding
n Supports more fine-grained sparsity granularity

u Memory: PIT is the lowest
n Avoid reformatting data from dense to sparse formats

43

Evaluation: End-to-End Training

PyTorch

PyTorch-S
PyTorch-S Convert
Deepspeed

PIT



l BERT Training (1x V100) Settings:
u Iterative Pruning

n Generates a mask based on the weight’s magnitude
u Pruned using block-wise sparsity at two granularities: 32 × 64 and 32 × 1

44

Evaluation: End-to-End Training



l Granularity: 32×64
u Latency: PIT is the lowest

n PyTorch-S suffer from heavy index construction

l Similar trend occurs on granularity of 32×1
u Performance of PyTorch-S is worse than 32×64
u But accuracy increases slightly

45

Evaluation: End-to-End Training

PyTorch

PyTorch-S
PyTorch-S Convert

PIT



l BERT Training (1x V100):
u Memory: PIT is similar to baselines in both granularity,

footprint dropped slightly as sparsity ratio increased
n Weight tensors take up only a small fraction of memory

46

Evaluation: End-to-End Training



47

Evaluation: Effectiveness of PIT Transformation
l Exp1: PIT Transformation on Dense Kernels:

u Experiments Settings:
n Sparse matrix with different sparsity granularities and shapes
n Baselines: Sparse libraries, including cuSPARSE, Sputnik, OpenAI Block Sparse (Triton), 

and SparTA (state-of-art static sparsity optimization)
n Use a static sparsity pattern to evaluate the computation efficiency



Evaluation: Effectiveness of PIT Transformation
l Exp1: PIT Transformation on Dense Kernels:

u PIT, SparTA, and OpenAI Block Sparse have similar latency in 32×64 
n They use the same dense computation tile

u cuSPARSE and Sputnik perform poorly
n High conversion overheads 
n Poor kernels implementations

u PIT perform best in 32×1 and 1×64 
n support changing smaller micro tiles under small sparsity granularity

PIT

cuSPARSE

OpenAI Block
SparTA

Spunik



49

Evaluation: Effectiveness of PIT Transformation
l Exp2: PIT transformation on hardware instructions:

u Purpose: Show PIT transformation can adapt to the constraints of hardware 
instructions

u Experiments Settings:
n Two different sparsity granularities: 32×1 and 32×64
n [4096, 4096]×[4096, 4096] matrix multiplication
n Hardware instructions: Wmma, only supports three shapes ([16, 16]×[16, 16],[32, 8]×[8, 

16], [8, 32]×[32, 16]) in half-precision



50

Evaluation: Effectiveness of PIT Transformation
l Exp2: PIT transformation on hardware instructions:

u The two sparse kernels generated by PIT has similar latency at different 
sparsity ratios

u PIT transformation introduces little overhead



Evaluation: Conversion Overhead
l Exp1: Comparion of conversion latency(1x V100):

u Settings:
n Different sparsity granularities and sparsity ratios

u Convert Latency: 
n PIT is 3.6x~4.7x faster than cuSPARSE at 1× 1 granularity 
n 11.2x~14.2x faster than Triton at 16× 16 granularity
n 13.3x~26.5x faster than Triton at 32× 32 granularity

51



Evaluation: Conversion Overhead
l Exp2: The proportion of the conversion overhead:

u Conversion accounts for 0.7% to 1.1% of the end-to-end latency

52



Evaluation: Micro-Tile Online Searching
l Different sparsity patterns and different sparsity ratios may

lead to different optimal micro-tiles
u PIT balance between the efficiency and the waste
u Cost 30us~100us for PIT to search (fast enough)

53



l Pros:
u PIT achieves increased efficiency in dynamic sparsity.
u PIT supports various models, including those with static sparsity.
u PIT minimizes additional overhead by online sparsity detection.

l Further thoughts:
u Trade-off between rearrange granularity & efficiency
u Support for different operators
u Support for App-level sparsity
u Profiling is still heavy

54

Summary


