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• Advanced models trained to 
generate and manipulate 
human language. 

• GPT-2, GPT-3, GPT-4, Claude…
• Popular Apps: 

• Chatbot
• Content Creation
• Code copilot
• AI agents

• 17/53 OSDI’24 papers

The Rise of Large Language Models (LLMs)



Paradigm Shift of Computer Programs
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Hot!

• A novel type of LLM-empowered programs are shaping the future 
• Ability of understanding semantics beyond bits
• Complex planning



API-based LLM Service

• Service are provisioned via a text completion API

LLM_call (prompt: str) → generated_text : str. 

MS Azure serviceOpenAI GPT Antropic

import openai
openai.api_key = "your-api-key-here"

prompt = "Explain the impact of large language models on society."

response = openai.Completion.create( engine="gpt-4", prompt=prompt, 
max_tokens=100 ) 

print(response.choices[0].text.strip())



• High-quality LLM apps often need multiple LLM requests to collaborate 
in different workflows

• Prompt engineering is needed for high-quality results
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Diverse Workflows of LLM Apps

Doc

Complex prompt engineering: Map-reduce Summarization



• High-quality LLM apps often need multiple LLM requests to collaborate 
in different workflows
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Diverse Workflows of LLM Apps
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Application-agnostic LLM backend Services
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Public LLM Services
(e.g., Azure, OpenAI)

Prompt

Prompt

Prompt

Prompt

PromptPrompt

Prompt

Prompt
Prompt

Prompt

Prompt

• Multiple applications are running simultaneously



From the view of LLM Service-End
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Public LLM Services
(e.g., Azure, OpenAI)

Prompt

Prompt

Prompt

Prompt

Prompt

Prompt

PromptPrompt

Prompt
Prompt

Prompt

• Independent client prompt requests through OpenAI-style APIs

Leading to amounts of problems in performance

No knowledge about 
• Request Dependencies
• Workload characteristics



Problem of Lacking Application Knowledge
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High Excessive Latency
• 50~70% Non-GPU Time
• High Internet Latency
• Excessive Queuing Delay

Public LLM Services
(e.g., Azure, OpenAI)

Step 1

Step 2

Step 3

Step 4

Internet Multi-Request App has to use chatty submission

Latency breakdown



Problem of Request-centric LLM APIs
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Misaligned
Scheduling Objectives

Small Batch Size for Low Per-Request Latency Large Batch Size for Map Stage



Problem of Unknown Prompt Structure

14

• Existing LLM services receive ”rendered” prompt without structure info

Some apps use same prompt prefix for different user queries

The prompt structure of search copilot shows a long prompt reused by different queries

[system](#instructions) 

## You are the chat mode 

of Microsoft Bing search: 

- You identify as 

Microsoft Bing search to 

users, **not** an 

assistant. 

- You should introduce 

yourself with “This is 

Bing”, but only at the 

beginning of a ……

[system](#context) 

- New conversation with user A. 

- Time at the start of this conversation is 

Sun, 30 Oct 2022 16:13:49 GMT. The 

user is located in Redmond, Washington, 

United States. 

[user](#message) Hi. Can you help me 

with something? 

[assistant](#inner_monologue)

……

[system](#context) 

- New conversation with user B. 

- Time at the start of this conversation is 

Mon, 20 Nov 2023 16:13:49 GMT. The 

user is located in London, UK. 

[user](#message)

Explain AI agent for a kid.

Task Role (static) Few-shot Examples (quasi-static) User Input (dynamic)

+ +



Problem of Unknown Prompt Structure
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Public LLM Services
(e.g., Azure, OpenAI)

• Existing LLM services receive ”rendered” prompt without structure info

Prompt

No knowledge about 
Shared Prompt Structure

Role Definition

Few-shot Examples

User Query

Prompt

Prompt

Same for all user 
queries

Some apps use same prompt prefix for different user queries



Existing LLM/App Serving Works

Client side

Server side
LLM inference engine

OpenAI API

Orca vLLM FlexFlow SGLang

LangChain Llama_index Semantic 
kernel

Prompt 
flow

Front-end Application Development kit

OSDI’22 SOSP’23 ASPLOS’23 Arxiv’24

Deepspeed 
inference

SGLang
DSL

github



• Failing to integrate application knowledge into LLM serving

Existing LLM/App Serving Works

Client side

Server side
LLM inference engine

OpenAI API

Orca vLLM FlexFlow SGLang

LangChain Llama_index Semantic 
kernel

Prompt 
flow

Front-end Application Development kit

OSDI’22 SOSP’23 ASPLOS’23 Arxiv’24

Continuous 

batching

KV cache memory 

management

Speculative 

decoding
KV cache reuse

Deepspeed 
inference

SGLang
DSL

comm/comp/fus

ion optimization

github



Many Optimizations Not Applicable in Public LLM 
Services

• Public LLM Services face diverse applications

• Although there have been some system optimizations
• Sticky routing, DAG Scheduling, Prefix Sharing, ……

• Lacking essential information about applications 
• Have to blindly use a universal treatment for all requests
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Goals in Parrot

• A unified abstraction to expose application-level knowledge

• Uncover correlation of multiple requests

• End-to-end optimization of LLM applications
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Parrot Overview

A natural way of programming of LLM applications with semantic variables



Parrot Overview

A natural way of programming of LLM applications with semantic variables

• Schedule requests at 
cluster level

• Schedule requests to 
GPU-based LLM engine 



Insight from Prompt Engineering

• Developers usually use prompt template to program LLM apps

• {{Placeholders}} are often used for inputs/outputs
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You are expert QA engineer, given code for {{input:task}}
{{input:code}}
Your write test cases: {{output:test}}

You are an expert software engineer
Write the python code of {{input:task}}
Your Code: {{output:code}}



Key Abstraction: Semantic Variables

Semantic Variables

Data pipe that connects 

multiple LLM calls

24



Semantic Variables in Parrot Front-end
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PromptInput: task
Output: code

Input: task
Input: code

Output: test

w/ Semantic Variables as Placeholders

Prompt

Data pipeline by connecting LLM Requests 
using Semantic Variables

Performance Criteria



Exposing Semantic Variable to Parrot LLM Service

Semantic Variable brings:

- DAG construction between requests

- Prompt structure analysis

- Data pipelining between requests

…
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task

code

WritePythonCode

WriteTestCode

test

Cloud
LLM

Service
LLM requests

APIs w/ 
Semantic Variable

Parrot Overview



Exposing Semantic Variable to Parrot LLM Service

Semantic Variable brings:

- DAG construction between requests

- Prompt structure analysis

- Data pipelining between requests

…
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task

code

WritePythonCode

WriteTestCode

test

Cloud
LLM

Service
LLM requests

APIs w/ 
Semantic Variable

Parrot Overview

USTC 编译原理和技
术 2024



Optimization: Scheduling Dependent Requests

• Optimizing dependent requests by using semantic variables
• Decreased Network Communication

Current LLM service Parrot Design

Two steps are scheduled together with result of A be fed int B directly
• Avoid unnecessary network communication
• Avoid queuing delay from other apps



Optimization: Performance Criteria

• With DAG of application requests & E2E requirement

• Derive the performance requirement of each LLM call
• High throughput Variables: all relevant requests are marked as thpt-preferred
• Latency sensitive variables:

• Reverse topological order analysis
• Direct-linked requests and predecessor are marked as latency-preferred
• Parallel requests at the same stage are grouped together, higher batch size

29From the DAG, derive requests can be executed in parallel



Optimization: Performance Criteria

• Public LLM Service w/ apps with different performance criteria

31

Parrot can derive request-level scheduling goal 
from end-to-end requirement

Chat Prompt

response.get(perf=LATENCY)

Response

response.get(perf=LATENCY)

Chunk 1 Chunk 2 Chunk 3 High Throughput

Response

Chatbot: Low Latency Data Analytics: High Throughput

Batch Size Small Large

Application
DAG



Optimization: Sharing Prompt Prefix

• With prompt structure, Parrot can automatically detect shared 
prefix

• Optimized CUDA Kernel
• Two-phase attention: avoid recomputing and reloading shared prefix
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Your are expert of {task}, here are some examples: {example}, your 
response: {response}

Prefix

Standard Attention Our Algorithm

Step 1: FlashAttention Step 2: PagedAttention

Q

Key Value Tokens



Optimization: App-centric Scheduling
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Topological order

Performance criteria
Schedule task group together

Shared prefix
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• Testbed
• 1 server with a 24-core CPU and 1 A100 GPU
• 1 server with a 64-core CPU and 4 A6000 GPUs
• 200-300ms emulating the Internet latency

• Workloads
• Model utilized: LlaMA 7/13B model
• Task-1: long document analysis with Arxiv dataset
• Task-2: BingCopilot with synthesized user queries
• Task-3: Multi-agent application via MetaGPT
• Task-4: Mixed workload (chat application + task-1)

• Baseline
• Application framework + LLM serving + Engine Backend

Experimental Setup

Langchain FastChat + HG transformer/vLLM



Evaluation: Chain/Map-Reduce Summary
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Parrot achieves a 1.38× and 1.88× reduction in latency over baselines due 
to decreased network latency.

Average E2E latency of chain summarization



Evaluation: Chain/Map-Reduce Summary
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Chain Summary with queued delay Multiple summary apps

• Parrot slashes latency by up to 2.38× since it further reduces queuing latency
• Slowdown due to interleaved execution of all applications



Evaluation: Chain/Map-Reduce Summary

The difference in E2E latency of the 25 chain-summary application 
between Baseline and Parrot. 



Evaluation: Chain/Map-Reduce Summary
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Parrot realizes a 2.37× acceleration over baselines by 
identifying the map task as a task group (higher batch)

Average E2E latency of map-reduce summarization



Evaluation: Popular Apps (Bing Copilot, GPTs)
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12x

2.4x

Synthesized requests from 4 different 
popular GPTs applications

Synthesized requests following Bing 
Copilot length distribution

• Production prompts show up to 1.7x latency reduction due to better GPU kernel
• Parrot can sustain 12× higher request rates compared to the baseline without sharing.

• Only 3X higher request rates without co-locate requests from the same app.
• Even compared with paged attention, Parrot achieves 2.4x throughput improvement.

3X



Evaluation: Multi-agent Applications
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End-to-end latency

• MetaGPT: code review and revision task
• Architect outlines files structures and APIs
• Reviewers leave comments for each file
• Coders revise codes based on comments

GPU Memory of KV cache

• Parrot achieves a speedup of up to 11.7× compared with the latency-centric baseline. (higher batch size)
• Even compared with throughput-centric baseline, Parrot achieves 2.45x throughput improvement. 

(sharing prefix)



Evaluation: Scheduling Mixed Workloads
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Slow Chat Decode!
Slow JCT of both Tasks!

Chat
E2E Latency

Chat
Per-token Latency

Summary
JCT

• Mixed workloads 
• Map-reduce Summary (high thpt.)
• Chat request at 1 req/s (low lat.)



Evaluation: Scheduling Mixed Workloads

• Mixed workloads 
• Map-reduce Summary (high thpt.)
• Chat request at 1 req/s (low lat.)
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Chat
E2E Latency
1.23X, 5.5X

Chat
Per-token Latency
-8%, 1.72X

Summary
JCT

Parrot achieves low latency and high-
throughput for both apps

Parrot optimizes application performance by scheduling them on different engines
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Pros and Cons

• Pros
• Innovative Abstraction (Semantic Variables)
• End-to-end application-level optimization instead of request level
• High performance gains and support for multiple workflows

• Cons
• Potential overhead in terms of analyzing and managing variables
• Lack of comparison to SGLang 



Summary

• LLM service support multiple applications at the same time
• Lacking app knowledge misses many optimization opportunities

• Parrot: uses a unified abstraction Semantic Variable
• To expose essential application-level information
• End-to-end optimizations with dataflow analysis

• Evaluation shows order-of-magnitude efficiency improvement for practical 
use-cases
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