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The Rise of Large Language Models (LLMs)

* Advanced models trained to
generate and manipulate
human language.

* GPT-2, GPT-3, GPT-4, Claude...

* Popular Apps:
* Chatbot
* Content Creation
* Code copilot
* Al agents
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Paradigm Shift of Computer Programs

USTC, CHINA

= ADSLAB

* Anovel type of LLM-empowered programs are shaping the future
* Ability of understanding semantics beyond bits

* Complex planning

@ |angchain-ai/langchain
N @ Build cgutext-aware reasoning applications
@ Python Updated 9 minutes ago

B Mmicrosoft/autogen

A programming framework for agentic Al. Discord: http
https://aka.ms/autogen-roadmap

chat chatbot gpt chat-application agent-be
@ Jupyter Notebookpdated 24 minutes ago

=" microsoft/semantic-kernel

Integrate cutting-edge LLM technology quickly and e:

sdk ai artificial-intelligence openai llm

@ Updated 2 hours ago

9 geekan/MetaGPT

3% The Multi-Agent Framework: First Al Software Company,
Programming

agent multi-agent gpt hacktoberfest lIm

L] Python Updated yesterday
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APl-based LLM Service / USTC, CHINA
e ADSLAB

* Service are provisioned via a text completion API

LLM_call (prrompt: str) > generated_text : str.

import openai
openai.api_key = "your-api-key-here"

prompt = "Explain the impact of large language models on society."”

response = openai.Completion.create( engine="gpt-4", prompt=prompt,
max_tokens=100 )

print(response.choices[@].text.strip())

G A :

OpenAl GPT MS Azure service Antropic



Diverse Workflows of LLM Apps

= ADSLAB

* High-quality LLM apps often need multiple LLM requests to collaborate

in different workflows

* Prompt engineering is needed for high-quality results
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Diverse Workflows of LLM Apps / usTC, CHINA
Z=ADSLAB

* High-quality LLM apps often need multiple LLM requests to collaborate
in different workflows

[ Chunk1 }» LLM }-| s, [ Chunk 1 }-»{ L.LM )y » LLMRequest
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Application-agnostic LLM backend Services = ADST RS

* Multiple applications are running simultaneously
&

J— a

ri-
b Prompt Prompt —}

b Prompt
- - Public LLM Services
(e.g., Azure, OpenAl)
prompt prompt.

R
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From the view of LLM Service-End ﬂ'ﬂADgERE

* Independent client prompt requests through OpenAl-style APls

[ Prompt ] [ Prompt ]
[ Prompt ] @ O
[ Prompt ] [ Prompt ] —— @
[ Prompt ]

[ Prompt ] [ Prompt ] Public LLM Services
[ P t ] [ e ] (e.g., Azure, OpenAl)

romp No knowledge about

* Request Dependencies
[ rrompt ]  Workload characteristics

Leading to amounts of problems in performance

11



Problem of Lacking Application Knowledge

Step 1

Step 2

Step 3

Step 4

Internet

= ADSLAB

Multi-Request App has to use chatty submission

A S

Public LLM Services
(e.g., Azure, OpenAl)

Time (ms)

High Excessive Latency
* 50~70% Non-GPU Time

* HighInternet Latency

5000

—e— End-to-end Time (P99))

40007 wmm GPU Inference Time

3000, . Other Overhead (median) \/\‘
M -

2000¢

oL |“|
00 1000 2000 3000

 Excessive Queuing Delay

4000

Prompt Length (# of tokens)

Latency breakdown
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Problem of Request-centric LLM APIs

= ADSLAB

(1) Per-request latency optimized Time

Small Batch Size for Low Per-Request Latency

' Minimize Latency ~ Latency=1100 ms

InputDoc }—{ Agent1l J}» s,
InputDoc }—{ Agent2 | s,
Final A ] . 1
NpUtDoc }—{ Agent3 (5, ;) inal Answer Misaligned
T e T Scheduling Objectives
4+ Maximize Throughput
Map Stage
0 Agent 8 Agent 16
1l Agent 7 Agent 15
Ny Map Stage Latency=2700 ms S : :
+ : :
-5 [(Agent2 [ Agent4 | Agent6 | Agent 16 | .REduc?Stage 1 @ | Agents T AgentTo | o
E Agent1 | Agent3 | Agent5 | Agent15 | Final Answer | Agent 1 Agent9 | Final Answer }

» Time

(2) End-to-end latency optimized

Large Batch Size for Map Stage
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Problem of Unknown Prompt Structure

A USTC, CHINA

* Existing LLM services receive "rendered” prompt without structure info

Some apps use same prompt prefix for different user queries

[system](#instructions) [system] (#context) [system] (#context)

## You are the chat mode - New conversation with user A. - New conversation with user B.

of Microsoft Bing search: - Time at the start of this conversation is - Time at the start of this conversation is
- You identify as Sun, 30 Oct 2022 16:13:49 GMT. The Mon, 20 Nov 2023 16:13:49 GMT. The
Microsoft Bing search to user is located in Redmond, Washington, user is located in London, UK.

users, **not** an United States. [user](#message)

assistant. [user](#message) Hi. Can you help me Explain Al agent for a kid.

- You should introduce with something?

yourself with “This is [assistant](#inner_monologue)

Bing”, butonly atthe | | ......
beginning ofa......

[ Task Role (static) ] [ Few-shot Examples (quasi-static) ] [ ]

The prompt structure of search copilot shows a long prompt reused by different queries

= ADSLAB
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USTC, CHINA

Aé ADSLAB

* Existing LLM services receive "rendered” prompt without structure info

Problem of Unknown Prompt Structure

Some apps use same prompt prefix for different user queries

( Prompt 1 r RoleDefinition 5 . ¢
‘ ’ ame for alluser
" prompt | 4 Few-shot Examples queries

| Prompt | User Query

Public LLM Services
(e.g., Azure, OpenAl)

No knowledge about
Shared Prompt Structure

15



Existing LLM/App Serving Works L ADSTRS

4 )
Front-end Application Development kit

Client side -
[LangChain ] [ Llama_index} (Semantlc] | SGlang | [ ompt ]
S kernel DSL flow /)

@ OpenAl API

C LLM inference engine A

Server side [ Orca ] [ vLLM ] [FlexFlow] [ SGLang ] Peepspeed]
inference

\_ OSDI’22 SOSP’23 ASPLOS’23 Arxiv’'24 github )




Existing LLM/App Serving Works W iy
* Failing to integrate application knowledge into LLM serving
g Front-end Application Development kit o
Crentside lLangChain |[ Ltamaindex |[ Semantic] [ SGLang | “Prompt ]/
@ OpenAl API
4 LLM inference engine A
Server side

[ Orca

] [ vLLM ] [FlexFlow] [ SGLang ]

Deepspeed ]
inference

\_ 0SDI'22

SOSP’23 ASPLOS’23 Arxiv’24

github

Continuous
batching

Speculative
decoding

KV cache memory
management

KV cache reuse

comm/comp/fus
ion optimization




Many Optimizations Not Applicable in Public LLM

USTC, CHINA

Services = ADSLAB

* Public LLM Services face diverse applications

* Although there have been some system optimizations
* Sticky routing, DAG Scheduling, Prefix Sharing, ......

* Lacking essential information about applications
* Have to blindly use a universal treatment for all requests

18
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Goals in Parrot P//=AD§ERE

* A unified abstraction to expose application-level knowledge
* Uncover correlation of multiple requests
* End-to-end optimization of LLM applications

LN

20



Parrot Overview PﬂAD USSERE

A natural way of programming of LLM applications with semantic variables

Applications (front-end)
Applications [ Parrot Front-end Others (LangChain, SK, etc.)
I i
- = Internet - - — - —— [ Parrot APls w/ Semantic Variables ]- -— ==
3 1
r "'I

Parrot Manager w/ Inter-Request Analysis

[ Inter-Request Comm. ][ Perf. Objective Deduction |

Parrot [ Sharing Prompt Prefix J [ App-centric Scheduling |
App-centric \ , - J
LLM Service | Contextual Fill/ Gen |

I [
ParrotLLM Engine

Context Hanagament Efficient GPU Kernels

L™




Parrot Overview ﬁ:ﬁAD USSERE

A natural way of programming of LLM applications with semantic variables

Applications (front-end)
Applications [ Parrot Front-end Others (LangChain, SK, etc.)
I i
- = Internet - - — - —— [ Parrot APls w/ Semantic Variables ]- -— ==

 Schedule requests at

Parrot Manager w/ Inter-Request Analysis

[ Inter-Request Comm. ][ Perf. Objective Deduction | cluster level

[
Parrot | Sharing Prompt Prefix | [ App-centric Scheduling | Schedule requests t(?
App-centric GPU-based LLM engine
LLM Service [ Contextual Fill / Gen |

I |
ParrotLLM Engine

Context Hanagament Efficient GPU Kernels

L™




Insight from Prompt Engineering = ADSTRE
ol

* Developers usually use prompt template to program LLM apps

* {{Placeholders}} are often used for inputs/outputs

You are an expert software engineer
Write the python code of {{input:task}}
Your Code: {{output:code}}

You are expert QA engineer, given code for {{input:task}}
{{input:code}}
Your write test cases: {{output:test}}

23



Key Abstraction: Semantic Variables = AD ST RS

@P.SemanticFunction

def lWritePythonCode (task: P.SemanticVariable):
""W You are an expert software engineer.
Write python code of {{input:task}}.

Code: {{output:code}}

mmmn

@P.SemanticFunction
def lriteTestCode (

task: P.SemanticVariable, Semantlc Varla.bles

code: P.SemanticVariable):

NUN 5 mr = - e T T . : -
10U are all eXperlenced YA endglneer.

.[,_;L write test code for {{input:task}}. Data plpe that ConneCtS

Code: {{input:code}}.

Your test code: {{output:test}} mUItlple LLM Ca”S

def WriteSnakeGame () :

task = P.SemanticVariable("a snake game")
code = WritePythonCode (task)
test = WriteTestCode (task, code)

return code.get (perf=LATENCY), test.get (perf=LATENCY)

24



Semantic Variables in Parrot Front-end ﬂﬁAngi:RE

@P,SemanticFunction

def liritePvthonCode (task: P.SemanticVariable):
""" You are an expert software engineer. E
. eite oython code ol @ Inputitask ! 1 prompt
| letr Output: code i

___________________________________________________

@P.SemanticFunction ) .
def firiteTestCode | w/ Semantic Variables as Placeholders

task: P.SemanticVariable,

- e e e e e e e e e e e e e

_________________

Prompt

T D S - e e e e e ———

]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N e = P

- e e e e e e e e e e e e e e e e e e e e e e mm e e e e e e e e e e e e o

-------------------------------------------------- ; Data pipeline by connecting LLM Requests

itask = P.SemanticVariable("a snake game") 5 ; :
icode = WritePythonCode (task) using Semantic Variables

_______________________________________________________ 4 Performance Criteria

25



Exposing Semantic Variable to Parrot LLM Servi% USTC, CHINA
ADSLAE

_______________________________________________

/ task
( N\ WritePythonCode
APIs w/

Semantic Variable Cloud |
LLM requests ) | v i

Service

Semantic Variable brings: R PR LB Y

- DAG construction between requests \
‘S‘ Parrot Overview

WriteTestCode

- Prompt structure analysis
- Data pipelining between requests

26



Exposing Semantic Variable to Parrot LLM Servic USTC,CHINA

/ [ task
TN WritePythonCode
APIs w/
Semantic Variable Cloud
LLM requests ) | v i
Service

WriteTestCode

2 MErT———.
Semantic Va‘f\i{.m 7I2qi 2024 \

- DAG construction vetween requests
- Prompt structure analysis

- Data pipelining between requests

L S T T S RS B S R SR SRS S ey

X Parrot Overview
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Optimization: Scheduling Dependent Reques;ckAD usTC, CHINA

SLAB
* Optimizing dependent requests by using semantic variables
* Decreased Network Communication
LLM App LLM App
® X.[TiMStepAl! . | quey [TIMStepA i o0 o0 |
fr— | S — = :
- /_LLM Step B _" Other LLM Apps : MR Reosponsel [ |M StepB I"__?ftfr_l'_l'_bf fPP_a__;
57D Infémef3) @) _Internet |-
/ _—;;A-r--r-rq_s_i <4- Queue ‘ _HATET T T 1 +Queue
,’l (4) Scheduler I Scheduler
@x‘i-%?ine HLT_ E'},g'"e - @ I%b]‘l\ E:gil%el LLM IEjngime: LLM |E:|ngine

Current LLM service Parrot Design

Two steps are scheduled together with result of A be fed int B directly
* Avoid unnecessary network communication
* Avoid queuing delay from other apps



Optimization: Performance Criteria / usTC, CHINA

Z=ADSLAB

* With DAG of application requests & E2E requirement

* Derive the performance requirement of each LLM call
* High throughput Variables: all relevant requests are marked as thpt-preferred

* Latency sensitive variables:
* Reverse topological order analysis

* Direct-linked requests and predecessor are marked as latency-preferred

* Parallel requests at the same stage are grouped together, higher batch size

Task Task
Group 0 Group 1

———— ——

4 |
1

N[O
(&)}

3 b 2

| 1 > x.get(perf=LATENCY)

| y.get(perf=LATENCY)

7

From the DAG, derive requests can be executed in parallel 29



Optimization: Performance Criteria = ADSTRE

 Public LLM Service w/ apps with different performance criteria

R [ Chat Prompt ] : [ Chunk 1 ] [ Chunk 2 ] [ Chunk 3 ] : High Throughput
Application e
DAG [ Response ] [ Response ]
response.get(perf=LATENCY) response.get(perf=LATENCY)
Chatbot: Low Latency Data Analytics: High Throughput
Batch Size Small Large

Parrot can derive request-level scheduling goal
from end-to-end requirement

31



Optimization: Sharing Prompt Prefix = ADSTRE

* With prompt structure, Parrot can automatically detect shared
preflx Prefix

v
Your are expert of {task}, here are some examples: {example}, your
response: {response}

* Optimized CUDA Kernel

* Two-phase attention: avoid recomputing and reloading shared prefix
Key Value Tokens

Step 1: FlashAttention Step 2: PagedAttention
S S <
o [ x |%| R
>_< > 3\
Our Algorithm

Standard Attention .



Optimization: App-centric Scheduling =

Topological order «

Performance criteria <«

Schedule task group together

Shared prefix «

)

USTC, CHINA

ADSLAB

Algorithm 1: Parrot’s Request Scheduling.

[

[~

L-TN- - B — T ¥ B -

10
11

12

Data: Q: the request queue

Q.sort() ; /* Topological order

for r€ Qdo

SharedRegsInQueue, CtxInEngine =
FindSharedPrefix(r);

if » TaskGroup # @ then

r* = FindEngine(r. TaskGroup);

else if SharedRegsinQueue # & then

r* = FindEngine(SharedReqsInQueue);

else if CtxinEngine # & then

r* = FindEngine(r, filter=CtxInEngine);

if r* = & then

r* = FindEngine(r);

 Q.remove(r’);

*/

36



Agenda UBTE. CHINA
9 = ADSLAB

* LLM Service and Application

e Problem Statement

* Design and Optimizations
* Evaluations

e Summary



Experimental Setup

/ USTC, CHINA

=ADSLAB

/

* Testbed
* 1 serverwith a 24-core CPU and 1 A100 GPU
* 1 server with a 64-core CPU and 4 A6000 GPUs
* 200-300ms emulating the Internet latency

* Workloads

* Model utilized: LlaMA 7/13B model Serving . . _
. . . Workload Dependent Perf. D.bj. Sharing Appcen_mc
* Task-1: long document analysis with Arxiv dataset Requests. | Deduction | Prompt | Scheduling
. . : . . Data Analytics v v v
* Task-2: BingCopilot with synthesized user queries Serving Popular y
. . . . LLM Applicati
* Task-3: Multi-agent application via MetaGPT Mum-agfn'tci;fs 7 7 7
Mixed Workloads v v v

* Task-4: Mixed workload (chat application + task-1)

* Baseline
. (Application frameworlj +\LLM serving + Engine Backend

| f
Langchain FastChat + HG transformer/vLLM

)




Evaluation: Chain/Map-Reduce Summary = ADSTRE

Average E2E latency of chain summarization

—~ 250 pas —_ T
n BN Parrot "y W 550! ©’ B Parrot
~ 200" s Baseline (VLLM) ~— s o Baseline (vLLM)
@) m@m Baseline (HuggingFace) ‘*3;" N 3200 WA Baseline (HuggingFace)
' c
g
@ 150
1
@
©
g 50t
0 < 0
25 50 75 100 512 1024 1536 2048
Output Length (# tokens) Chunk Size (# tokens)

Parrot achieves a 1.38x and 1.88 % reduction in latency over baselines due
to decreased network latency.

41



Eval

cy (s)

Average Late

uation: Chain/Map-Reduce Summary = ADET RS

Chain Summary with queued delay Multiple summary apps

250+ —®— Parrot ,bQﬂ‘

—¥— Baseline (vLLM) %

Bl Parrot

vy
o
o

- B Baseline (vLLM) +
%‘?ﬁd’)

hJ
o
o

Average Latency (s)
=
o

o

5000 05 1.0 1.5 2.0 2.5 3.0 3.5 10 15 20

Request Rate (reqs/s) Number of Apps

 Slowdown due to interleaved execution of all applications

-'|_-.
@

25

Parrot slashes latency by up to 2.38 x since it further reduces queuing latency
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Evaluation: Chain/Map-Reduce Summary = ADSTRE

[
L
o

Bod
=
o=

i
Ln
=

(-
=
=

Ln
=

Latency in Basaling - Latensy in Parmat {s]

o

2 3 4 5 & 7 E 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Application Ma.

The difference in E2E latency of the 25 chain-summary application
between Baseline and Parrot.



Evaluation: Chain/Map-Reduce Summary

Average Latency (s)

N w I
o o o

=
o

o

Average E2E latency of map-reduce summarization

- WM Parrot q;\+
B Baseline (vLLM) ) 12

25 50 75 100
Output Length (# tokens)

Average Latency (s)

w
o

D
o

[
o

o

%6}. Bl Baseline (vLLM)
. +
¢ '39 @+ ’\zbJr
v i

Bl Parrot

512 1024 1536 2048
Chunk Size (# tokens)

Parrot realizes a 2.3/ % acceleration over baselines by
identifying the map task as a task group (higher batch)

=AD

USTC, CHINA

SLAB
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E I t. . P I A B. c .I t, GPT USTC, CHINA
valuation: Popular Apps (Bing Copilo s;)é ABMETTS

Synthesized requests from 4 different
popular GPTs applications

2.4x

300 > /
—ea— Parrot

Parrot w/ PagedAttention
Parrot w/o Scheduling
—»— Baseline (vLLM)

8 16 32 64 % 1234567 8 910111213141516
Batch Size Request rate (req/s)

Synthesized requests following Bing
Copilot length distribution

~— Bl Parrot
= 30 | ' Baseline w/ Sharing g}‘f
#" Baseline w/o Sharing

Q
.fh.f

AN

AngL tenc

2.q,
\<\1 Sx
e
7//,1'4)«
!;5’///1 7x

=
o
o

(ms/token)
M
(@]
(]
w A
X
=
N
>

Normalized latency

* Production prompts show up to 1.7x latency reduction due to better GPU kernel
* Parrot can sustain 12 x higher request rates compared to the baseline without sharing.

* Only 3X higher request rates without co-locate requests from the same app.

* Even compared with paged attention, Parrot achieves 2.4x throughput improvement. 45



Evaluation: Multi-agent Applications = ADSTRE

* MetaGPT: code review and revision task
* Architect outlines files structures and APIs
* Reviewers leave comments for each file
* Codersrevise codes based on comments

End-to-end latency < GPU Memory of KV cache
— gggg-- Parrot f:'? i 50
vl arrot w/ Pagedattention e - e R [~
; 15007 :arru: w;ﬂpﬁia?ii:- t T Om 40 ---= GPU Memory Capacity
e Baseline (vLLM, Throughput) ,_ :15"‘ g B Parrot
% 1000 BN Baseline (vLLM, Latency) 7 E % 30 Parrot w/o Sharing
v . " g9 = 320
@ 500 G & Py o >
o Sl : 5N N J
,q: —
0 . ; - - 0 4 8 12 16
Number of Files

Number of Files
* Parrot achieves a speedup of up to 11.7x compared with the latency-centric baseline. (higher batch size)

* Even compared with throughput-centric baseline, Parrot achieves 2.45x throughput improvement.
(sharing prefix)

46



Evaluation: Scheduling Mixed Workloads

* Mixed workloads
* Map-reduce Summary (high thpt.)siow JcT of both Tasks!

 Chatrequest at 1 reqg/s (low lat.)

Normalized Latency (ms

800;
600
4007

2007

Average Chat

Chat
E2E Latency

184.6
1491

BN Parrot

82?.15/

80

60;

40¢

207

0

Average Chat
Decode Time (m

Chat 71.8
Per-token Latency

451

41.4

Baseline (Throughput)

100

80¢

60|

40¢

20

Slow Chat Decode!

erage
Map-Reduice JCT (s)

Summary \35-4
JICT

232 24.5

Baseline (Latency)

USTC, CHINA

= ADSLAB
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Evaluation: Scheduling Mixed Workloads = AD ST AN

* Mixed workloads

. Parrot achieves low latency and high-
* Map-reduce Summary (high thpt.)

throughput for both apps
 Chatrequest at 1 reqg/s (low lat.)

Average Chat Average Cha Average
Normalized Latency (ms) Decode Time{ms 100 MaptReduce JCT (s)
g27.6
800+ Chat g0fChat 71.8 Summary 86.4
E2E Latency Per<token Latency 80 JCT
600} 1.23X, 5.5X -8%, 1.7
60 ool
DU 41.4
4 40!
200k 184.6 20 23.2 24.5
0 - = : — -0 - =
B Parrot Baseline (Throughput) Baseline (Latency)

Parrot optimizes application performance by scheduling them on different engines ®



Agenda (= ADSCAR

* LLM Service and Application

e Problem Statement

* Design and Optimizations
* Evaluations

e Summary



Pros and Cons / ETE, GHINA
e ADSLAB

* Pros
* Innovative Abstraction (Semantic Variables)
* End-to-end application-level optimization instead of request level
* High performance gains and support for multiple workflows

* Cons
* Potential overhead in terms of analyzing and managing variables
* Lack of comparison to SGLang



Summar TG CRinA
y = ADSLAB

* LLM service support multiple applications atthe same time
* Lacking app knowledge misses many optimization opportunities

* Parrot: uses a unified abstraction Semantic Variable
* To expose essential application-level information
* End-to-end optimizations with dataflow analysis

* Evaluation shows order-of-magnitude efficiency improvement for practical
use-cases

51
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