
Parrot: Efficient Serving of LLM-based

Applications with Semantic Variable

Author: Chaofan Lin, Zhenhua Han, Chengruidong Zhang
Yuqing Yang, Fan Yang, Chen Chen, Lili Qiu

OSDI 2024

Presented by Chaoyi Ruan, Kunzhao Xu and Bosen Yang
in Reading Group Meeting at USTC

Disclaimer: 今天分享依据文本，如有争议，概不负责！

Agenda

• LLM Service and Application

• Problem Statement

• Design and Optimizations

• Evaluations

• Summary

3

• Advanced models trained to
generate and manipulate
human language.

• GPT-2, GPT-3, GPT-4, Claude…
• Popular Apps:

• Chatbot
• Content Creation
• Code copilot
• AI agents

• 17/53 OSDI’24 papers

The Rise of Large Language Models (LLMs)

Paradigm Shift of Computer Programs

5

Hot!

• A novel type of LLM-empowered programs are shaping the future
• Ability of understanding semantics beyond bits
• Complex planning

API-based LLM Service

• Service are provisioned via a text completion API

LLM_call (prompt: str) → generated_text : str.

MS Azure serviceOpenAI GPT Antropic

import openai
openai.api_key = "your-api-key-here"

prompt = "Explain the impact of large language models on society."

response = openai.Completion.create(engine="gpt-4", prompt=prompt,
max_tokens=100)

print(response.choices[0].text.strip())

• High-quality LLM apps often need multiple LLM requests to collaborate
in different workflows

• Prompt engineering is needed for high-quality results

7

Diverse Workflows of LLM Apps

Doc

Complex prompt engineering: Map-reduce Summarization

• High-quality LLM apps often need multiple LLM requests to collaborate
in different workflows

8

Diverse Workflows of LLM Apps

Agenda

• LLM Service and Application

• Problem Statement

• Design and Optimizations

• Evaluations

• Summary

Application-agnostic LLM backend Services

10

Public LLM Services
(e.g., Azure, OpenAI)

Prompt

Prompt

Prompt

Prompt

PromptPrompt

Prompt

Prompt
Prompt

Prompt

Prompt

• Multiple applications are running simultaneously

From the view of LLM Service-End

11

Public LLM Services
(e.g., Azure, OpenAI)

Prompt

Prompt

Prompt

Prompt

Prompt

Prompt

PromptPrompt

Prompt
Prompt

Prompt

• Independent client prompt requests through OpenAI-style APIs

Leading to amounts of problems in performance

No knowledge about
• Request Dependencies
• Workload characteristics

Problem of Lacking Application Knowledge

12

High Excessive Latency
• 50~70% Non-GPU Time
• High Internet Latency
• Excessive Queuing Delay

Public LLM Services
(e.g., Azure, OpenAI)

Step 1

Step 2

Step 3

Step 4

Internet Multi-Request App has to use chatty submission

Latency breakdown

Problem of Request-centric LLM APIs

13

Misaligned
Scheduling Objectives

Small Batch Size for Low Per-Request Latency Large Batch Size for Map Stage

Problem of Unknown Prompt Structure

14

• Existing LLM services receive ”rendered” prompt without structure info

Some apps use same prompt prefix for different user queries

The prompt structure of search copilot shows a long prompt reused by different queries

[system](#instructions)

You are the chat mode

of Microsoft Bing search:

- You identify as

Microsoft Bing search to

users, **not** an

assistant.

- You should introduce

yourself with “This is

Bing”, but only at the

beginning of a ……

[system](#context)

- New conversation with user A.

- Time at the start of this conversation is

Sun, 30 Oct 2022 16:13:49 GMT. The

user is located in Redmond, Washington,

United States.

[user](#message) Hi. Can you help me

with something?

[assistant](#inner_monologue)

……

[system](#context)

- New conversation with user B.

- Time at the start of this conversation is

Mon, 20 Nov 2023 16:13:49 GMT. The

user is located in London, UK.

[user](#message)

Explain AI agent for a kid.

Task Role (static) Few-shot Examples (quasi-static) User Input (dynamic)

+ +

Problem of Unknown Prompt Structure

15

Public LLM Services
(e.g., Azure, OpenAI)

• Existing LLM services receive ”rendered” prompt without structure info

Prompt

No knowledge about
Shared Prompt Structure

Role Definition

Few-shot Examples

User Query

Prompt

Prompt

Same for all user
queries

Some apps use same prompt prefix for different user queries

Existing LLM/App Serving Works

Client side

Server side
LLM inference engine

OpenAI API

Orca vLLM FlexFlow SGLang

LangChain Llama_index Semantic
kernel

Prompt
flow

Front-end Application Development kit

OSDI’22 SOSP’23 ASPLOS’23 Arxiv’24

Deepspeed
inference

SGLang
DSL

github

• Failing to integrate application knowledge into LLM serving

Existing LLM/App Serving Works

Client side

Server side
LLM inference engine

OpenAI API

Orca vLLM FlexFlow SGLang

LangChain Llama_index Semantic
kernel

Prompt
flow

Front-end Application Development kit

OSDI’22 SOSP’23 ASPLOS’23 Arxiv’24

Continuous

batching

KV cache memory

management

Speculative

decoding
KV cache reuse

Deepspeed
inference

SGLang
DSL

comm/comp/fus

ion optimization

github

Many Optimizations Not Applicable in Public LLM
Services

• Public LLM Services face diverse applications

• Although there have been some system optimizations
• Sticky routing, DAG Scheduling, Prefix Sharing, ……

• Lacking essential information about applications
• Have to blindly use a universal treatment for all requests

18

Agenda

• LLM Service and Application

• Problem Statement

• Design and Optimizations

• Evaluations

• Summary

Goals in Parrot

• A unified abstraction to expose application-level knowledge

• Uncover correlation of multiple requests

• End-to-end optimization of LLM applications

20

Parrot Overview

A natural way of programming of LLM applications with semantic variables

Parrot Overview

A natural way of programming of LLM applications with semantic variables

• Schedule requests at
cluster level

• Schedule requests to
GPU-based LLM engine

Insight from Prompt Engineering

• Developers usually use prompt template to program LLM apps

• {{Placeholders}} are often used for inputs/outputs

23

You are expert QA engineer, given code for {{input:task}}
{{input:code}}
Your write test cases: {{output:test}}

You are an expert software engineer
Write the python code of {{input:task}}
Your Code: {{output:code}}

Key Abstraction: Semantic Variables

Semantic Variables

Data pipe that connects

multiple LLM calls

24

Semantic Variables in Parrot Front-end

25

PromptInput: task
Output: code

Input: task
Input: code

Output: test

w/ Semantic Variables as Placeholders

Prompt

Data pipeline by connecting LLM Requests
using Semantic Variables

Performance Criteria

Exposing Semantic Variable to Parrot LLM Service

Semantic Variable brings:

- DAG construction between requests

- Prompt structure analysis

- Data pipelining between requests

…

26

task

code

WritePythonCode

WriteTestCode

test

Cloud
LLM

Service
LLM requests

APIs w/
Semantic Variable

Parrot Overview

Exposing Semantic Variable to Parrot LLM Service

Semantic Variable brings:

- DAG construction between requests

- Prompt structure analysis

- Data pipelining between requests

…

27

task

code

WritePythonCode

WriteTestCode

test

Cloud
LLM

Service
LLM requests

APIs w/
Semantic Variable

Parrot Overview

USTC 编译原理和技
术 2024

Optimization: Scheduling Dependent Requests

• Optimizing dependent requests by using semantic variables
• Decreased Network Communication

Current LLM service Parrot Design

Two steps are scheduled together with result of A be fed int B directly
• Avoid unnecessary network communication
• Avoid queuing delay from other apps

Optimization: Performance Criteria

• With DAG of application requests & E2E requirement

• Derive the performance requirement of each LLM call
• High throughput Variables: all relevant requests are marked as thpt-preferred
• Latency sensitive variables:

• Reverse topological order analysis
• Direct-linked requests and predecessor are marked as latency-preferred
• Parallel requests at the same stage are grouped together, higher batch size

29From the DAG, derive requests can be executed in parallel

Optimization: Performance Criteria

• Public LLM Service w/ apps with different performance criteria

31

Parrot can derive request-level scheduling goal
from end-to-end requirement

Chat Prompt

response.get(perf=LATENCY)

Response

response.get(perf=LATENCY)

Chunk 1 Chunk 2 Chunk 3 High Throughput

Response

Chatbot: Low Latency Data Analytics: High Throughput

Batch Size Small Large

Application
DAG

Optimization: Sharing Prompt Prefix

• With prompt structure, Parrot can automatically detect shared
prefix

• Optimized CUDA Kernel
• Two-phase attention: avoid recomputing and reloading shared prefix

35

Your are expert of {task}, here are some examples: {example}, your
response: {response}

Prefix

Standard Attention Our Algorithm

Step 1: FlashAttention Step 2: PagedAttention

Q

Key Value Tokens

Optimization: App-centric Scheduling

36

Topological order

Performance criteria
Schedule task group together

Shared prefix

Agenda

• LLM Service and Application

• Problem Statement

• Design and Optimizations

• Evaluations

• Summary

• Testbed
• 1 server with a 24-core CPU and 1 A100 GPU
• 1 server with a 64-core CPU and 4 A6000 GPUs
• 200-300ms emulating the Internet latency

• Workloads
• Model utilized: LlaMA 7/13B model
• Task-1: long document analysis with Arxiv dataset
• Task-2: BingCopilot with synthesized user queries
• Task-3: Multi-agent application via MetaGPT
• Task-4: Mixed workload (chat application + task-1)

• Baseline
• Application framework + LLM serving + Engine Backend

Experimental Setup

Langchain FastChat + HG transformer/vLLM

Evaluation: Chain/Map-Reduce Summary

41

Parrot achieves a 1.38× and 1.88× reduction in latency over baselines due
to decreased network latency.

Average E2E latency of chain summarization

Evaluation: Chain/Map-Reduce Summary

42

Chain Summary with queued delay Multiple summary apps

• Parrot slashes latency by up to 2.38× since it further reduces queuing latency
• Slowdown due to interleaved execution of all applications

Evaluation: Chain/Map-Reduce Summary

The difference in E2E latency of the 25 chain-summary application
between Baseline and Parrot.

Evaluation: Chain/Map-Reduce Summary

44

Parrot realizes a 2.37× acceleration over baselines by
identifying the map task as a task group (higher batch)

Average E2E latency of map-reduce summarization

Evaluation: Popular Apps (Bing Copilot, GPTs)

45

12x

2.4x

Synthesized requests from 4 different
popular GPTs applications

Synthesized requests following Bing
Copilot length distribution

• Production prompts show up to 1.7x latency reduction due to better GPU kernel
• Parrot can sustain 12× higher request rates compared to the baseline without sharing.

• Only 3X higher request rates without co-locate requests from the same app.
• Even compared with paged attention, Parrot achieves 2.4x throughput improvement.

3X

Evaluation: Multi-agent Applications

46

End-to-end latency

• MetaGPT: code review and revision task
• Architect outlines files structures and APIs
• Reviewers leave comments for each file
• Coders revise codes based on comments

GPU Memory of KV cache

• Parrot achieves a speedup of up to 11.7× compared with the latency-centric baseline. (higher batch size)
• Even compared with throughput-centric baseline, Parrot achieves 2.45x throughput improvement.

(sharing prefix)

Evaluation: Scheduling Mixed Workloads

47

Slow Chat Decode!
Slow JCT of both Tasks!

Chat
E2E Latency

Chat
Per-token Latency

Summary
JCT

• Mixed workloads
• Map-reduce Summary (high thpt.)
• Chat request at 1 req/s (low lat.)

Evaluation: Scheduling Mixed Workloads

• Mixed workloads
• Map-reduce Summary (high thpt.)
• Chat request at 1 req/s (low lat.)

48

Chat
E2E Latency
1.23X, 5.5X

Chat
Per-token Latency
-8%, 1.72X

Summary
JCT

Parrot achieves low latency and high-
throughput for both apps

Parrot optimizes application performance by scheduling them on different engines

Agenda

• LLM Service and Application

• Problem Statement

• Design and Optimizations

• Evaluations

• Summary

Pros and Cons

• Pros
• Innovative Abstraction (Semantic Variables)
• End-to-end application-level optimization instead of request level
• High performance gains and support for multiple workflows

• Cons
• Potential overhead in terms of analyzing and managing variables
• Lack of comparison to SGLang

Summary

• LLM service support multiple applications at the same time
• Lacking app knowledge misses many optimization opportunities

• Parrot: uses a unified abstraction Semantic Variable
• To expose essential application-level information
• End-to-end optimizations with dataflow analysis

• Evaluation shows order-of-magnitude efficiency improvement for practical
use-cases

51

	Slide 1: Parrot: Efficient Serving of LLM-based Applications with Semantic Variable
	Slide 2: Agenda
	Slide 3: The Rise of Large Language Models (LLMs)
	Slide 5: Paradigm Shift of Computer Programs
	Slide 6: API-based LLM Service
	Slide 7: Diverse Workflows of LLM Apps
	Slide 8: Diverse Workflows of LLM Apps
	Slide 9: Agenda
	Slide 10: Application-agnostic LLM backend Services
	Slide 11: From the view of LLM Service-End
	Slide 12: Problem of Lacking Application Knowledge
	Slide 13: Problem of Request-centric LLM APIs
	Slide 14: Problem of Unknown Prompt Structure
	Slide 15: Problem of Unknown Prompt Structure
	Slide 16: Existing LLM/App Serving Works
	Slide 17: Existing LLM/App Serving Works
	Slide 18: Many Optimizations Not Applicable in Public LLM Services
	Slide 19: Agenda
	Slide 20: Goals in Parrot
	Slide 21: Parrot Overview
	Slide 22: Parrot Overview
	Slide 23: Insight from Prompt Engineering
	Slide 24: Key Abstraction: Semantic Variables
	Slide 25: Semantic Variables in Parrot Front-end
	Slide 26: Exposing Semantic Variable to Parrot LLM Service
	Slide 27: Exposing Semantic Variable to Parrot LLM Service
	Slide 28: Optimization: Scheduling Dependent Requests
	Slide 29: Optimization: Performance Criteria
	Slide 31: Optimization: Performance Criteria
	Slide 35: Optimization: Sharing Prompt Prefix
	Slide 36: Optimization: App-centric Scheduling
	Slide 38: Agenda
	Slide 39: Experimental Setup
	Slide 41: Evaluation: Chain/Map-Reduce Summary
	Slide 42: Evaluation: Chain/Map-Reduce Summary
	Slide 43: Evaluation: Chain/Map-Reduce Summary
	Slide 44: Evaluation: Chain/Map-Reduce Summary
	Slide 45: Evaluation: Popular Apps (Bing Copilot, GPTs)
	Slide 46: Evaluation: Multi-agent Applications
	Slide 47: Evaluation: Scheduling Mixed Workloads
	Slide 48: Evaluation: Scheduling Mixed Workloads
	Slide 49: Agenda
	Slide 50: Pros and Cons
	Slide 51: Summary

