Parrot: Efficient Serving of LLM-based

Applications with Semantic Variable

Author: Chaofan Lin, Zhenhua Han, Chengruidong Zhang
Yuqging Yang, Fan Yang, Chen Chen, Lili Qiu

OSDI 2024

Presented by Chaoyi Ruan, Kunzhao Xu and Bosen Yang
In Reading Group Meeting at USTC

Disclaimer: S XS EMKIBX A, MNBEFN, HAKE!

Agenda TE. GLINA
9 = ADSLAB

* LLM Service and Application

e Problem Statement

* Designh and Optimizations
* Evaluations

e Summary

The Rise of Large Language Models (LLMs)

* Advanced models trained to
generate and manipulate
human language.

* GPT-2, GPT-3, GPT-4, Claude...

* Popular Apps:
* Chatbot
* Content Creation
* Code copilot
* Al agents

e 17/53 OSDI’24 papers

The Rise of Large Language Models

- Chatbots ° 1! uonuTng

OIMEE
(MRnmaoceo) Longae Oemonstene Progrouim dnetstion Progrermie
I l CHRANABRNQEIIY
@ Engine mp Prograting
A 5 Tokens
2 0GP e,
Sa)y

)

(Dap-puaener

@ e —5Y
s —en—
10 —&R—

)~ IMi-> Il -
-~ 4 =
Engine Engine

GPT-2 GPT-2 GPT-4 GPT-4 GPT-4 API Call

= al Key Parnatons & 12 .
F%r" :‘:W v Tokens™ GPT-4
o= e A Ll ‘MaX_TokenS‘”’ o

—_— 1 o0 flar

USTC, CHINA

Aé ADSLAB

Paradigm Shift of Computer Programs

USTC, CHINA

= ADSLAB

* Anovel type of LLM-empowered programs are shaping the future
* Ability of understanding semantics beyond bits

* Complex planning

@ |angchain-ai/langchain
N @ Build cgutext-aware reasoning applications
@ Python Updated 9 minutes ago

B Mmicrosoft/autogen

A programming framework for agentic Al. Discord: http
https://aka.ms/autogen-roadmap

chat chatbot gpt chat-application agent-be
@ Jupyter Notebookpdated 24 minutes ago

=" microsoft/semantic-kernel

Integrate cutting-edge LLM technology quickly and e:

sdk ai artificial-intelligence openai llm

@ Updated 2 hours ago

9 geekan/MetaGPT

3% The Multi-Agent Framework: First Al Software Company,
Programming

agent multi-agent gpt hacktoberfest lIm

L] Python Updated yesterday

& Hot!

APl-based LLM Service / USTC, CHINA
e ADSLAB

* Service are provisioned via a text completion API

LLM_call (prrompt: str) > generated_text : str.

import openai
openai.api_key = "your-api-key-here"

prompt = "Explain the impact of large language models on society."”

response = openai.Completion.create(engine="gpt-4", prompt=prompt,
max_tokens=100)

print(response.choices[@].text.strip())

G A :

OpenAl GPT MS Azure service Antropic

Diverse Workflows of LLM Apps

= ADSLAB

* High-quality LLM apps often need multiple LLM requests to collaborate

in different workflows

* Prompt engineering is needed for high-quality results

—

—

Chunk1 |» LLM
H ‘ Chunk 2 }-» LLM
ChunkN » LLM

S, v
Final
LLM { Summary]
SN

Complex prompt engineering: Map-reduce Summarization

Diverse Workflows of LLM Apps / usTC, CHINA
Z=ADSLAB

* High-quality LLM apps often need multiple LLM requests to collaborate
in different workflows

[Chunk1 }» LLM }-| s, [Chunk 1 }-»{ L.LM)y » LLMRequest
— M Passii
(Chunkz)M -5,)+ LD (Chunk2)+ (5.)T) essage Passing
= Final
: : : LLM ,
H i i Summary i
-~ ~ Final
[ChunkN]"[LLM H Sy [ChunkN]+[S,]+[S,][Syq]>[LLM
(1) Map-Reduce Summary (2) Chain Summary

User Query Rewriter], § [Product Manger L
Query v = 1 - y
([Architect v ™.

LLM-powered Search]v 7 T .,
‘ __..-.-.. LLM e LLM
[QA w/ search result]‘ En*gll"IE?l']‘ """ -

[safety Checker [- [_Code Reviewer }*
I | Final —
'I A I

(3) Chat Search (4) Multi-agent Coding

.,
.,

Agenda TE. GLINA
2 = ADSLAB

* Problem Statement
* Designh and Optimizations
 Evaluations

e Summary

Application-agnostic LLM backend Services = ADST RS

* Multiple applications are running simultaneously
&

J— a

ri-
b Prompt Prompt —}

b Prompt
- - Public LLM Services
(e.g., Azure, OpenAl)
prompt prompt.

R

10

From the view of LLM Service-End ﬂ'ﬂADgERE

* Independent client prompt requests through OpenAl-style APls

[Prompt] [Prompt]
[Prompt] @ O
[Prompt] [Prompt] —— @
[Prompt]

[Prompt] [Prompt] Public LLM Services
[P t] [e] (e.g., Azure, OpenAl)

romp No knowledge about

* Request Dependencies
[rrompt] Workload characteristics

Leading to amounts of problems in performance

11

Problem of Lacking Application Knowledge

Step 1

Step 2

Step 3

Step 4

Internet

= ADSLAB

Multi-Request App has to use chatty submission

A S

Public LLM Services
(e.g., Azure, OpenAl)

Time (ms)

High Excessive Latency
* 50~70% Non-GPU Time

* HighInternet Latency

5000

—e— End-to-end Time (P99))

40007 wmm GPU Inference Time

3000, . Other Overhead (median) \/\‘
M -

2000¢

oL |“|
00 1000 2000 3000

 Excessive Queuing Delay

4000

Prompt Length (# of tokens)

Latency breakdown

12

Problem of Request-centric LLM APIs

= ADSLAB

(1) Per-request latency optimized Time

Small Batch Size for Low Per-Request Latency

' Minimize Latency ~ Latency=1100 ms

InputDoc }—{ Agent1l J}» s,
InputDoc }—{ Agent2 | s,
Final A] . 1
NpUtDoc }—{ Agent3 (5, ;) inal Answer Misaligned
T e T Scheduling Objectives
4+ Maximize Throughput
Map Stage
0 Agent 8 Agent 16
1l Agent 7 Agent 15
Ny Map Stage Latency=2700 ms S : :
+ : :
-5 [(Agent2 [Agent4 | Agent6 | Agent 16 | .REduc?Stage 1 @ | Agents T AgentTo | o
E Agent1 | Agent3 | Agent5 | Agent15 | Final Answer | Agent 1 Agent9 | Final Answer }

» Time

(2) End-to-end latency optimized

Large Batch Size for Map Stage

13

Problem of Unknown Prompt Structure

A USTC, CHINA

* Existing LLM services receive "rendered” prompt without structure info

Some apps use same prompt prefix for different user queries

[system](#instructions) [system] (#context) [system] (#context)

You are the chat mode - New conversation with user A. - New conversation with user B.

of Microsoft Bing search: - Time at the start of this conversation is - Time at the start of this conversation is
- You identify as Sun, 30 Oct 2022 16:13:49 GMT. The Mon, 20 Nov 2023 16:13:49 GMT. The
Microsoft Bing search to user is located in Redmond, Washington, user is located in London, UK.

users, **not** an United States. [user](#message)

assistant. [user](#message) Hi. Can you help me Explain Al agent for a kid.

- You should introduce with something?

yourself with “This is [assistant](#inner_monologue)

Bing”, butonly atthe | |
beginning ofa......

[Task Role (static)] [Few-shot Examples (quasi-static)] []

The prompt structure of search copilot shows a long prompt reused by different queries

= ADSLAB

14

USTC, CHINA

Aé ADSLAB

* Existing LLM services receive "rendered” prompt without structure info

Problem of Unknown Prompt Structure

Some apps use same prompt prefix for different user queries

(Prompt 1 r RoleDefinition 5 . ¢
‘ ’ ame for alluser
" prompt | 4 Few-shot Examples queries

| Prompt | User Query

Public LLM Services
(e.g., Azure, OpenAl)

No knowledge about
Shared Prompt Structure

15

Existing LLM/App Serving Works L ADSTRS

4)
Front-end Application Development kit

Client side -
[LangChain] [Llama_index} (Semantlc] | SGlang | [ompt]
S kernel DSL flow /)

@ OpenAl API

C LLM inference engine A

Server side [Orca] [vLLM] [FlexFlow] [SGLang] Peepspeed]
inference

_ OSDI’22 SOSP’23 ASPLOS’23 Arxiv’'24 github)

Existing LLM/App Serving Works W iy
* Failing to integrate application knowledge into LLM serving
g Front-end Application Development kit o
Crentside lLangChain |[Ltamaindex |[Semantic] [SGLang | “Prompt]/
@ OpenAl API
4 LLM inference engine A
Server side

[Orca

] [vLLM] [FlexFlow] [SGLang]

Deepspeed]
inference

_ 0SDI'22

SOSP’23 ASPLOS’23 Arxiv’24

github

Continuous
batching

Speculative
decoding

KV cache memory
management

KV cache reuse

comm/comp/fus
ion optimization

Many Optimizations Not Applicable in Public LLM

USTC, CHINA

Services = ADSLAB

* Public LLM Services face diverse applications

* Although there have been some system optimizations
* Sticky routing, DAG Scheduling, Prefix Sharing,

* Lacking essential information about applications
* Have to blindly use a universal treatment for all requests

18

Agenda TE. GLINA
2 = ADSLAB

* Designh and Optimizations
* Evaluations

e Summary

Goals in Parrot P//=AD§ERE

* A unified abstraction to expose application-level knowledge
* Uncover correlation of multiple requests
* End-to-end optimization of LLM applications

LN

20

Parrot Overview PﬂAD USSERE

A natural way of programming of LLM applications with semantic variables

Applications (front-end)
Applications [Parrot Front-end Others (LangChain, SK, etc.)
I i
- = Internet - - — - —— [Parrot APls w/ Semantic Variables]- -— ==
3 1
r "'I

Parrot Manager w/ Inter-Request Analysis

[Inter-Request Comm.][Perf. Objective Deduction |

Parrot [Sharing Prompt Prefix J [App-centric Scheduling |
App-centric \ , - J
LLM Service | Contextual Fill/ Gen |

I [
ParrotLLM Engine

Context Hanagament Efficient GPU Kernels

L™

Parrot Overview ﬁ:ﬁAD USSERE

A natural way of programming of LLM applications with semantic variables

Applications (front-end)
Applications [Parrot Front-end Others (LangChain, SK, etc.)
I i
- = Internet - - — - —— [Parrot APls w/ Semantic Variables]- -— ==

 Schedule requests at

Parrot Manager w/ Inter-Request Analysis

[Inter-Request Comm.][Perf. Objective Deduction | cluster level

[
Parrot | Sharing Prompt Prefix | [App-centric Scheduling | Schedule requests t(?
App-centric GPU-based LLM engine
LLM Service [Contextual Fill / Gen |

I |
ParrotLLM Engine

Context Hanagament Efficient GPU Kernels

L™

Insight from Prompt Engineering = ADSTRE
ol

* Developers usually use prompt template to program LLM apps

* {{Placeholders}} are often used for inputs/outputs

You are an expert software engineer
Write the python code of {{input:task}}
Your Code: {{output:code}}

You are expert QA engineer, given code for {{input:task}}
{{input:code}}
Your write test cases: {{output:test}}

23

Key Abstraction: Semantic Variables = AD ST RS

@P.SemanticFunction

def lWritePythonCode (task: P.SemanticVariable):
""W You are an expert software engineer.
Write python code of {{input:task}}.

Code: {{output:code}}

mmmn

@P.SemanticFunction
def lriteTestCode (

task: P.SemanticVariable, Semantlc Varla.bles

code: P.SemanticVariable):

NUN 5 mr = - e T T . : -
10U are all eXperlenced YA endglneer.

.[,_;L write test code for {{input:task}}. Data plpe that ConneCtS

Code: {{input:code}}.

Your test code: {{output:test}} mUItlple LLM Ca”S

def WriteSnakeGame () :

task = P.SemanticVariable("a snake game")
code = WritePythonCode (task)
test = WriteTestCode (task, code)

return code.get (perf=LATENCY), test.get (perf=LATENCY)

24

Semantic Variables in Parrot Front-end ﬂﬁAngi:RE

@P,SemanticFunction

def liritePvthonCode (task: P.SemanticVariable):
""" You are an expert software engineer. E
. eite oython code ol @ Inputitask ! 1 prompt
| letr Output: code i

@P.SemanticFunction) .
def firiteTestCode | w/ Semantic Variables as Placeholders

task: P.SemanticVariable,

- e e e e e e e e e e e e e

Prompt

T D S - e e e e e ———

]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N e = P

- e mm e e e e e e e e e e e e o

-- ; Data pipeline by connecting LLM Requests

itask = P.SemanticVariable("a snake game") 5 ; :
icode = WritePythonCode (task) using Semantic Variables

___ 4 Performance Criteria

25

Exposing Semantic Variable to Parrot LLM Servi% USTC, CHINA
ADSLAE

/ task
(N\ WritePythonCode
APIs w/

Semantic Variable Cloud |
LLM requests) | v i

Service

Semantic Variable brings: R PR LB Y

- DAG construction between requests \
‘S‘ Parrot Overview

WriteTestCode

- Prompt structure analysis
- Data pipelining between requests

26

Exposing Semantic Variable to Parrot LLM Servic USTC,CHINA

/ [task
TN WritePythonCode
APIs w/
Semantic Variable Cloud
LLM requests) | v i
Service

WriteTestCode

2 MErT———.
Semantic Va‘f\i{.m 7I2qi 2024 \

- DAG construction vetween requests
- Prompt structure analysis

- Data pipelining between requests

L S T T S RS B S R SR SRS S ey

X Parrot Overview

27

Optimization: Scheduling Dependent Reques;ckAD usTC, CHINA

SLAB
* Optimizing dependent requests by using semantic variables
* Decreased Network Communication
LLM App LLM App
® X.[TiMStepAl! . | quey [TIMStepA i o0 o0 |
fr— | S — = :
- /_LLM Step B _" Other LLM Apps : MR Reosponsel [|M StepB I"__?ftfr_l'_l'_bf fPP_a__;
57D Infémef3) @) _Internet |-
/ _—;;A-r--r-rq_s_i <4- Queue ‘ _HATET T T 1 +Queue
,’l (4) Scheduler I Scheduler
@x‘i-%?ine HLT_ E'},g'"e - @ I%b]‘l\ E:gil%el LLM IEjngime: LLM |E:|ngine

Current LLM service Parrot Design

Two steps are scheduled together with result of A be fed int B directly
* Avoid unnecessary network communication
* Avoid queuing delay from other apps

Optimization: Performance Criteria / usTC, CHINA

Z=ADSLAB

* With DAG of application requests & E2E requirement

* Derive the performance requirement of each LLM call
* High throughput Variables: all relevant requests are marked as thpt-preferred

* Latency sensitive variables:
* Reverse topological order analysis

* Direct-linked requests and predecessor are marked as latency-preferred

* Parallel requests at the same stage are grouped together, higher batch size

Task Task
Group 0 Group 1

———— ——

4 |
1

N[O
(&)}

3 b 2

| 1 > x.get(perf=LATENCY)

| y.get(perf=LATENCY)

7

From the DAG, derive requests can be executed in parallel 29

Optimization: Performance Criteria = ADSTRE

 Public LLM Service w/ apps with different performance criteria

R [Chat Prompt] : [Chunk 1] [Chunk 2] [Chunk 3] : High Throughput
Application e
DAG [Response] [Response]
response.get(perf=LATENCY) response.get(perf=LATENCY)
Chatbot: Low Latency Data Analytics: High Throughput
Batch Size Small Large

Parrot can derive request-level scheduling goal
from end-to-end requirement

31

Optimization: Sharing Prompt Prefix = ADSTRE

* With prompt structure, Parrot can automatically detect shared
preflx Prefix

v
Your are expert of {task}, here are some examples: {example}, your
response: {response}

* Optimized CUDA Kernel

* Two-phase attention: avoid recomputing and reloading shared prefix
Key Value Tokens

Step 1: FlashAttention Step 2: PagedAttention
S S <
o [x |%| R
>_< > 3\
Our Algorithm

Standard Attention .

Optimization: App-centric Scheduling =

Topological order «

Performance criteria <«

Schedule task group together

Shared prefix «

)

USTC, CHINA

ADSLAB

Algorithm 1: Parrot’s Request Scheduling.

[

[~

L-TN- - B — T ¥ B -

10
11

12

Data: Q: the request queue

Q.sort() ; /* Topological order

for r€ Qdo

SharedRegsInQueue, CtxInEngine =
FindSharedPrefix(r);

if » TaskGroup # @ then

r* = FindEngine(r. TaskGroup);

else if SharedRegsinQueue # & then

r* = FindEngine(SharedReqsInQueue);

else if CtxinEngine # & then

r* = FindEngine(r, filter=CtxInEngine);

if r* = & then

r* = FindEngine(r);

 Q.remove(r’);

*/

36

Agenda UBTE. CHINA
9 = ADSLAB

* LLM Service and Application

e Problem Statement

* Design and Optimizations
* Evaluations

e Summary

Experimental Setup

/ USTC, CHINA

=ADSLAB

/

* Testbed
* 1 serverwith a 24-core CPU and 1 A100 GPU
* 1 server with a 64-core CPU and 4 A6000 GPUs
* 200-300ms emulating the Internet latency

* Workloads

* Model utilized: LlaMA 7/13B model Serving . . _
. . . Workload Dependent Perf. D.bj. Sharing Appcen_mc
* Task-1: long document analysis with Arxiv dataset Requests. | Deduction | Prompt | Scheduling
. . : . . Data Analytics v v v
* Task-2: BingCopilot with synthesized user queries Serving Popular y
. . . . LLM Applicati
* Task-3: Multi-agent application via MetaGPT Mum-agfn'tci;fs 7 7 7
Mixed Workloads v v v

* Task-4: Mixed workload (chat application + task-1)

* Baseline
. (Application frameworlj +\LLM serving + Engine Backend

| f
Langchain FastChat + HG transformer/vLLM

)

Evaluation: Chain/Map-Reduce Summary = ADSTRE

Average E2E latency of chain summarization

—~ 250 pas —_ T
n BN Parrot "y W 550! ©’ B Parrot
~ 200" s Baseline (VLLM) ~— s o Baseline (vLLM)
@) m@m Baseline (HuggingFace) ‘*3;" N 3200 WA Baseline (HuggingFace)
' c
g
@ 150
1
@
©
g 50t
0 < 0
25 50 75 100 512 1024 1536 2048
Output Length (# tokens) Chunk Size (# tokens)

Parrot achieves a 1.38x and 1.88 % reduction in latency over baselines due
to decreased network latency.

41

Eval

cy (s)

Average Late

uation: Chain/Map-Reduce Summary = ADET RS

Chain Summary with queued delay Multiple summary apps

250+ —®— Parrot ,bQﬂ‘

—¥— Baseline (vLLM) %

Bl Parrot

vy
o
o

- B Baseline (vLLM) +
%‘?ﬁd’)

hJ
o
o

Average Latency (s)
=
o

o

5000 05 1.0 1.5 2.0 2.5 3.0 3.5 10 15 20

Request Rate (reqs/s) Number of Apps

 Slowdown due to interleaved execution of all applications

-'|_-.
@

25

Parrot slashes latency by up to 2.38 x since it further reduces queuing latency

42

Evaluation: Chain/Map-Reduce Summary = ADSTRE

[
L
o

Bod
=
o=

i
Ln
=

(-
=
=

Ln
=

Latency in Basaling - Latensy in Parmat {s]

o

2 3 4 5 & 7 E 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Application Ma.

The difference in E2E latency of the 25 chain-summary application
between Baseline and Parrot.

Evaluation: Chain/Map-Reduce Summary

Average Latency (s)

N w I
o o o

=
o

o

Average E2E latency of map-reduce summarization

- WM Parrot q;\+
B Baseline (vLLM)) 12

25 50 75 100
Output Length (# tokens)

Average Latency (s)

w
o

D
o

[
o

o

%6}. Bl Baseline (vLLM)
. +
¢ '39 @+ ’\zbJr
v i

Bl Parrot

512 1024 1536 2048
Chunk Size (# tokens)

Parrot realizes a 2.3/ % acceleration over baselines by
identifying the map task as a task group (higher batch)

=AD

USTC, CHINA

SLAB

44

E I t. . P I A B. c .I t, GPT USTC, CHINA
valuation: Popular Apps (Bing Copilo s;)é ABMETTS

Synthesized requests from 4 different
popular GPTs applications

2.4x

300 > /
—ea— Parrot

Parrot w/ PagedAttention
Parrot w/o Scheduling
—»— Baseline (vLLM)

8 16 32 64 % 1234567 8 910111213141516
Batch Size Request rate (req/s)

Synthesized requests following Bing
Copilot length distribution

~— Bl Parrot
= 30 | ' Baseline w/ Sharing g}‘f
#" Baseline w/o Sharing

Q
.fh.f

AN

AngL tenc

2.q,
\<\1 Sx
e
7//,1'4)«
!;5’///1 7x

=
o
o

(ms/token)
M
(@]
(]
w A
X
=
N
>

Normalized latency

* Production prompts show up to 1.7x latency reduction due to better GPU kernel
* Parrot can sustain 12 x higher request rates compared to the baseline without sharing.

* Only 3X higher request rates without co-locate requests from the same app.

* Even compared with paged attention, Parrot achieves 2.4x throughput improvement. 45

Evaluation: Multi-agent Applications = ADSTRE

* MetaGPT: code review and revision task
* Architect outlines files structures and APIs
* Reviewers leave comments for each file
* Codersrevise codes based on comments

End-to-end latency < GPU Memory of KV cache
— gggg-- Parrot f:'? i 50
vl arrot w/ Pagedattention e - e R [~
; 15007 :arru: w;ﬂpﬁia?ii:- t T Om 40 ---= GPU Memory Capacity
e Baseline (vLLM, Throughput) ,_ :15"‘ g B Parrot
% 1000 BN Baseline (vLLM, Latency) 7 E % 30 Parrot w/o Sharing
v . " g9 = 320
@ 500 G & Py o >
o Sl : 5N N J
,q: —
0 . ; - - 0 4 8 12 16
Number of Files

Number of Files
* Parrot achieves a speedup of up to 11.7x compared with the latency-centric baseline. (higher batch size)

* Even compared with throughput-centric baseline, Parrot achieves 2.45x throughput improvement.
(sharing prefix)

46

Evaluation: Scheduling Mixed Workloads

* Mixed workloads
* Map-reduce Summary (high thpt.)siow JcT of both Tasks!

 Chatrequest at 1 reqg/s (low lat.)

Normalized Latency (ms

800;
600
4007

2007

Average Chat

Chat
E2E Latency

184.6
1491

BN Parrot

82?.15/

80

60;

40¢

207

0

Average Chat
Decode Time (m

Chat 71.8
Per-token Latency

451

41.4

Baseline (Throughput)

100

80¢

60|

40¢

20

Slow Chat Decode!

erage
Map-Reduice JCT (s)

Summary \35-4
JICT

232 24.5

Baseline (Latency)

USTC, CHINA

= ADSLAB

47

Evaluation: Scheduling Mixed Workloads = AD ST AN

* Mixed workloads

. Parrot achieves low latency and high-
* Map-reduce Summary (high thpt.)

throughput for both apps
 Chatrequest at 1 reqg/s (low lat.)

Average Chat Average Cha Average
Normalized Latency (ms) Decode Time{ms 100 MaptReduce JCT (s)
g27.6
800+ Chat g0fChat 71.8 Summary 86.4
E2E Latency Per<token Latency 80 JCT
600} 1.23X, 5.5X -8%, 1.7
60 ool
DU 41.4
4 40!
200k 184.6 20 23.2 24.5
0 - = : — -0 - =
B Parrot Baseline (Throughput) Baseline (Latency)

Parrot optimizes application performance by scheduling them on different engines ®

Agenda (= ADSCAR

* LLM Service and Application

e Problem Statement

* Design and Optimizations
* Evaluations

e Summary

Pros and Cons / ETE, GHINA
e ADSLAB

* Pros
* Innovative Abstraction (Semantic Variables)
* End-to-end application-level optimization instead of request level
* High performance gains and support for multiple workflows

* Cons
* Potential overhead in terms of analyzing and managing variables
* Lack of comparison to SGLang

Summar TG CRinA
y = ADSLAB

* LLM service support multiple applications atthe same time
* Lacking app knowledge misses many optimization opportunities

* Parrot: uses a unified abstraction Semantic Variable
* To expose essential application-level information
* End-to-end optimizations with dataflow analysis

* Evaluation shows order-of-magnitude efficiency improvement for practical
use-cases

51

	Slide 1: Parrot: Efficient Serving of LLM-based Applications with Semantic Variable
	Slide 2: Agenda
	Slide 3: The Rise of Large Language Models (LLMs)
	Slide 5: Paradigm Shift of Computer Programs
	Slide 6: API-based LLM Service
	Slide 7: Diverse Workflows of LLM Apps
	Slide 8: Diverse Workflows of LLM Apps
	Slide 9: Agenda
	Slide 10: Application-agnostic LLM backend Services
	Slide 11: From the view of LLM Service-End
	Slide 12: Problem of Lacking Application Knowledge
	Slide 13: Problem of Request-centric LLM APIs
	Slide 14: Problem of Unknown Prompt Structure
	Slide 15: Problem of Unknown Prompt Structure
	Slide 16: Existing LLM/App Serving Works
	Slide 17: Existing LLM/App Serving Works
	Slide 18: Many Optimizations Not Applicable in Public LLM Services
	Slide 19: Agenda
	Slide 20: Goals in Parrot
	Slide 21: Parrot Overview
	Slide 22: Parrot Overview
	Slide 23: Insight from Prompt Engineering
	Slide 24: Key Abstraction: Semantic Variables
	Slide 25: Semantic Variables in Parrot Front-end
	Slide 26: Exposing Semantic Variable to Parrot LLM Service
	Slide 27: Exposing Semantic Variable to Parrot LLM Service
	Slide 28: Optimization: Scheduling Dependent Requests
	Slide 29: Optimization: Performance Criteria
	Slide 31: Optimization: Performance Criteria
	Slide 35: Optimization: Sharing Prompt Prefix
	Slide 36: Optimization: App-centric Scheduling
	Slide 38: Agenda
	Slide 39: Experimental Setup
	Slide 41: Evaluation: Chain/Map-Reduce Summary
	Slide 42: Evaluation: Chain/Map-Reduce Summary
	Slide 43: Evaluation: Chain/Map-Reduce Summary
	Slide 44: Evaluation: Chain/Map-Reduce Summary
	Slide 45: Evaluation: Popular Apps (Bing Copilot, GPTs)
	Slide 46: Evaluation: Multi-agent Applications
	Slide 47: Evaluation: Scheduling Mixed Workloads
	Slide 48: Evaluation: Scheduling Mixed Workloads
	Slide 49: Agenda
	Slide 50: Pros and Cons
	Slide 51: Summary

